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Abstract— In this paper we show that visual landmark
generation and redetection is possible with a single feature per
frame. The approach is based on the assumption that highly
discriminative regions are easily redetectable in subsequent
frames as well as in frames visited from different viewpoints.
We investigate which feature detectors fit for this purpose
and under which conditions the discriminability applies. The
approach is tested in a topological localization scenario in
which the best feature is tracked over several frames to build
landmarks. We show that we can represent a large environment
with a few salient landmarks and that a large percentage
of these landmarks is robustly redetectable from different
viewpoints.

I. INTRODUCTION

Self localization and navigation belong to the key compe-

tences of mobile robots and have been a topic of intensive

research during the last decades. Vision-based approaches are

of special interest in many applications, since cameras are

light-weight, low-cost, passive sensors, that additionally offer

rich information about the environment [1], [2], [3]. Visual

localization and navigation is often based on landmarks,

that means on objects or regions in the environment that

serve as reference points for the robot. Ideally, they shall be

easily redetectable from different viewpoints, under changing

illumination conditions, and in the presence of disturbances

such as walking people.

The first step of visual landmark detection is usually

the feature detection. However, not all detected features

are useful landmark candidates. Especially corner features

are often detected at intersections of objects and thus not

stable [4]. Furthermore, most feature detectors obtain a

feature repeatability of 50 – 80%, depending on the scene

and the transformation between frames [5]. That means, a

large amount of the detected features is not redetected in a

following frame. Only a few of the features are stable enough

to survive the tracking over several frames. To find stable

landmarks, a common approach is to extract a large amount

of features (usually several hundred per frame), track them

over several frames and keep only the most stable ones [4].

However, detecting, matching and storing of hundreds of

features per frame and the comparison to a large image

database is costly. Robots usually have to operate in real-

time and additionally have to share resources between dif-

ferent modules and tasks. While there have been successful

approaches to deal even with large amount of features [6],

[7], it is certainly preferable if it is possible to solve the task
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Fig. 1. Repeatability depending on number of features per frame. Features
are selected by their quality as defined in sec. II-A.4. Examples determined
on data sets 1 and 5 of Fig. 3 for 4 different viewpoints (after 50, 100, 150,
and 200 frames) for Harris-affine regions, MSERs, and bottom-up salient
regions (VOCUS bu). Two typical cases occur: either the best feature is
very poor or extremely stable.

with less features. Desirable would be to know in advance

which features will turn out to be stable and thus will be

good candidates for landmarks.

When investigating sparse sets of features (1–20 features

per frame, features selected by their quality as defined in

sec. II-A.4), we found two typical cases for the distribution

of the repeatability values: Before converging to stable

repeatability values, the repeatability of the best feature was

either very poor or extremely high, often reaching 100%

repeatability (cf. Fig. 1). This behaviour depended on the

scene and was observed for all the investigated detectors. The

proportion of poor versus high performance cases however

differed among the detectors.

Outgoing from this observation, we pose the following

questions: is it possible to exploit the fact that the best feature

often is extremely stable? Is it possible to generate landmarks

and redetect them reliably with only one feature per frame?

For topological localization, it is in principle enough to

have one landmark every few meters. The robot does not

have to know its exact position and it is not necessary

to see a landmark in each frame, as long as the scene is

recognized reliably from time to time. A certain redundancy

is necessary anyway since some landmarks may be occluded

or removed upon revisiting that place, but as long as a few

stable landmarks per environment remain, this is sufficient.

In this paper, we show that topological localization is

possible with a single feature per frame. First, we inves-

tigate which feature detectors are suitable to be restricted

to a sparse set and which quality measure suits to deter-

mine the best feature. We investigate Harris-affine regions

[5], maximally stable extremal regions (MSERs) [8] and

a saliency detector [9]; we finally chose the last one for
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further investigations and show that it is possible to build

stable landmarks from the most salient feature. In a scene

classification experiment, we show that a reliable redetection

of landmarks from different viewpoints is possible and that

a test sequence can be reliable allocated to the correct scene.

Feature selection has been investigated before in several

ways. In applications in which training data is available,

machine learning methods often determine the best features

for a class of objects from a pool of training images [10],

[11]. The reduced set however contains usually still several

dozens of features per frame or object and reduces only

the features in the database, not the ones obtained during

testing. Other approaches compare descriptors applied to the

detected regions and keep only the most discriminative ones

[12]. The main difference in our approach is that we start

much earlier with the preselection, namely already during

feature selection. In applications in which no training data is

available, e.g. visual SLAM (simultaneous localization and

mapping), some people use thresholds to reduce the number

of features. E.g., [2] only add features to their map if the

number of features visible in the robot view is below a

threshold and [3] keep only landmarks that perform well

over a sequence of frames. Preliminary investigations on the

repeatability of a single stable feature have been made in

[13]. Here, we extend this study by using detectors that

are known to perform well in other applications (Harris-

affine, MSERs), by introducing a more adequate repeatability

measure, and by performing more detailed experiments.

Completely new in this paper is the integration of the single-

feature approach into a topological localization scenario.

II. FEATURE DETECTION

In this section, we discuss and evaluate the feature detec-

tion. First, we describe the investigated feature detectors and

the quality measure to determine the best feature (sec. II-A).

Second, we present the performance measure repeatability

and extend the definition to image sequences (sec. II-B).

Finally, we investigate in several experiments which feature

detector provides the most stable feature in tracking and

redetection situations (sec. IV-A).

A. Feature Detectors

1) Harris-Affine Regions: Harris-affine regions are com-

puted by detecting interest points with the Harris detector

in scale-space and determining an elliptical region for each

point based on the second moment matrix of the intensity

gradient [5].1 For each pixel �x = (x, y), the Harris detector

determines its cornerness c(�x) (also strength or Harris re-

sponse) as c(�x) = det(M) − αtrace2(M), where M is the

second moment matrix describing the local neighborhood

of �x. This detector is applied to multiple scales and the

characteristic scale is chosen to obtain scale-invariance.

Finally, the affine region is determined according to [14].

If the cornerness exceeds a certain threshold, the pixel is

defined as a corner.

1We used the detector from http://www.robots.ox.ac.uk/∼vgg/research/affine

2) MSERs: Maximally Stable Extremal Regions (MSERs)

were introduced in [8] and have shown high repeatability

results under various image transformations [5].2 The MSER

algorithm first detects several nested sets of extremal regions

Q1, ..., Qk. Each Qi is a region such that for all pixels

p ∈ Qi, q ∈ ∂Qi : I(p) > I(q) (MSER+) or I(p) < I(q)
(MSER-), where ∂Qi is the boundary of Qi, consisting of

pixels that are adjacent but do not belong to Qi, and I(p) is

the intensity value of p. A region Qi is maximally stable

iff the stability q(i) = |Qi+∆ − Qi−∆|/|Qi| has a local

minimum at i. Usually, a fixed ∆ is used. This however

results often in a set of regions with the same stability value

(e.g. q(i) = 0) making it impossible to determine a single

best MSER. Increasing∆ results in fewer regions with higher

repeatability but usually lower q(i), while a too large ∆
might result in no MSERs in certain images. In our approach,

we increase the ∆ automatically until the MSER with the

lowest q(i) is non-ambiguous.

3) Biologically-inspired salient regions: Biologically-

inspired attention systems compute the saliency of regions

based on concepts of the human visual system [15]. They

have shown to outperform other methods such as intensity

contrasts, local oriented edge density, or entropy in terms

of predicting human eye movements [16]. Here, we use the

attention system VOCUS [9] that is real-time capable (20 ms

for a 320×240 pixel image, on a 2.5 GHz PC [17]) and has

a top-down part to search for targets.

VOCUS creates a saliency map by computing image

contrasts and uniqueness of a feature. The feature com-

putations for the features intensity, orientation, and color

are performed on 3 different scales with image pyramids.

Two intensity feature maps, for on-off and off-on contrasts,

are computed by center-surround mechanisms. Similarly,

4 orientation maps (0 ◦, 45 ◦, 90 ◦, 135 ◦) and 4 color maps

(green, blue, red, yellow) are computed (cf. [9]).

The core of the saliency detector is the uniqueness weight

that is applied before feature channels are fused: a feature

which occurs seldomly in a scene is assigned a higher

saliency than a frequently occurring feature. This is a mech-

anism which enables humans to instantly detect outliers. The

uniqueness W of map X is computed as W(X) = X/
√
m,

where m is the number of local maxima that exceed a

threshold. Note that this weighting, together with the parallel

investigation of different feature channels, distinguishes this

detector from standard detectors such as Harris corners or

MSERs because it considers the global instead of the local

discriminability of a region.

The weighted feature maps are summed up to 3 conspicu-

ity maps I (intensity), O (orientation) and C (color) and

combined to the saliency map: Sbu = W(I) + W(O) +
W(C). The salient regions, the VOCUS-ROIs, are the local

maxima in S above a threshold, extended to a region with a

region growing approach [18].

4) Sorting features: To determine the best features, we

need a measure for the quality. This depends on the detector,

2We used the MSER code from the VLFeat library: http://www.vlfeat.org
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for Harris-affine regions we chose the cornerness, for MSERs

the stability, for VOCUS-ROIs the saliency. This results for

each detector in an ordered list of features Fi = (F1, ..., Fn),
where F1 is the best feature and Fj has a higher quality than

Fj+1.

B. Performance Measure: Repeatability

The performance measure to compare the stability of

features is the repeatability that is defined as follows:

R(Ij , Ik) =
# features in Ij with correspondence in Ik

# features in Ij
.

for parts of the scene visible in both frames Ij and Ik.

To be a valid correspondence, about 50% of the regions

have to overlap. This allows a relatively large overlap error

but a powerful descriptor is still able to match such regions

successfully (cf. [5]). A symmetric measure can be obtained

as follows:3

Rsym(Ij , Ik) = (R(Ij , Ik) +R(Ik, Ij))/2 .

To extend the repeatability definition to image sequences

or sets, we distinguish two different versions: we define the

tracking repeatability as the average repeatability between

consecutive frames:

RT (I1:t) =

∑t

i=2Rsym(Ii−1, Ii)

(t− 1) .

for an image sequence I1:t = I1, ..., It. It is called tracking

repeatability because it is mainly of interest when features

are tracked over frames. The viewpoint repeatability on the

other hand is defined as the average repeatability between a

frame Ii and the remaining images of the sequence or set:

RV (Ii, I1:t) =

∑t

j=1,Ij !=IiRsym(Ii, Ij)

(t− 1) .

It is called viewpoint repeatability because, in contrast to

tracking, the viewpoint between considered frames might

change strongly, usually the more the longer the sequence.

III. LANDMARK GENERATION

While a feature is a 2D region in an image, a landmark is

a region in the 3D world that can be observed from different

viewpoints. To create landmarks, the detected feature is

tracked over several frames. The resulting list of features

represents a landmark. The length of a landmark is the

number of elements in the list, which is equivalent to the

number of frames the feature was detected in.

To compute the landmarks, we match new features to

features from previous frames whereas we allow gaps of

up to 2 frames. We finally consider only landmark with a

3The symmetric measure in [5] divides instead by the smaller of the
number of regions in both frames. This might however result in problems
if the number of features in the 1st frame is a subset of the features in the
2nd frame. The measure would report a repeatability of 100%, even if the
number of features in the 2nd frame is considerably larger. This is especially
a problem for small numbers of features.

length ≥ k (here: k = 5). This enables to determine which

landmarks are stable over time.

To match two features, we use the SIFT descriptor [12]

that has outperformed most other descriptors in terms of

matching performance [19]. Usually, SIFT descriptors are

computed at intensity extrema in scale space [12] or at

Harris-Laplacians [5]. Here, we calculate one SIFT descrip-

tor for each VOCUS-ROI. The center of the ROI provides

the position and the size of the ROI determines the size

of the descriptor grid. The grid should be larger than the

ROI to allow catching information about the surrounding but

should also not include too much background and stay within

the image borders4. The procedure to generate landmarks is

illustrated in Fig. 2.

IV. EXPERIMENTS

In our experiments, we investigate three questions. First:

Which is the best feature detector for our purpose? This ex-

periment investigates the repeatability in tracking situations

as well as under strong viewpoint changes. Second: Is it

possible to create stable landmarks from a single feature per

frame? And third: Can localization be performed based on

such a sparse landmark representation?

A. Which is the best feature detector for our purpose?

To test which feature detector suits best for our purpose,

we investigated the repeatability of features on 7 image

sequences of 200-400 frames of size 320× 240 (cf. Fig. 3).

In all sequences, strong viewpoint changes occur. Data sets

1–4 show natural scenes in an office environment and contain

objects which were especially designed to be salient for

humans: a green exit sign, a magnet clamp, a red circle

containing a warning remark, and, in data set 4, a fire

extinguisher and a red piece of paper at the wall. The

last 3 data sets show natural, cluttered office environment

scenes. We investigated the tracking repeatability as well as

the viewpoint repeatability on these data sets. The results

are displayed in Table I. As to be expected, the tracking

repeatability is almost always higher than the viewpoint

repeatability. Worth to note is also that the viewpoint repeata-

bility naturally goes down the more the viewpoint changes.

It turns out that the Harris regions as well as the

salient VOCUS-ROIs perform well in most cases, whereas

the MSERs show a considerably lower performance. The

VOCUS-ROIs outperform the Harris regions on average

since the attention system is able to capture the uniqueness of

features in more cases. The low performance of the MSERs

can be explained as follows: usually, MSERs are stable, if

all possible MSERs in a scene are considered (as in [5]).

But, since all MSERs have an equal stability value, it is

hard to determine a stable subset or even a best feature. So,

if reduction of the number of features is desired, the other

detectors seem to be the better choice.

We decided to use the salient VOCUS-ROIs for our appli-

cation, first, because they yielded the highest repeatability

4We chose a grid size of 1.5 times the maximum of width and height of
the ROI.
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Fig. 2. The process to generate landmarks: For each feature (ROI, solid rectangle), a SIFT descriptor is computed (area in dashed rectangle). The
descriptors of the ROIs of consecutive frames are compared. If they match, a landmark is created. Gaps of up to 2 frames are allowed and only landmarks
of length ≥ k = 5 are considered.

Fig. 3. Data sets. 1st row: 1st frame, 2nd row: last frame of sequence

data Tracking repeatability [%] Viewpoint repeatability [%]
set # frames Harris MSER VOCUS-ROI Harris MSER VOCUS-ROI

1. 259 96 25 97 96 18 97
2. 210 76 80 100 78 89 100
3. 315 94 20 90 77 5 82
4. 254 95 33 83 92 21 29
5. 254 85 5 100 19 11 100
6. 209 76 13 82 61 1 14
7. 341 86 10 84 19 9 72

av. 87 27 91 63 22 71

TABLE I

THE TRACKING REPEATABILITY RT (I1:t) AND THE VIEWPOINT REPEATABILITY RV (I1, I2:t) OF THE BEST FEATURE F1 (SELECTED ACCORDING TO

SEC. II-A.4) ON THE DATA SETS OF FIG. 3.

and second, because it is possible to adapt the attention

system to search for expected regions in a top-down manner.

We plan to exploit this in future work.

B. Is it possible to create stable landmarks from a single

feature per frame?

In this section, we investigate whether the VOCUS-ROIs

can be used to create stable landmarks. A stable landmark

should be visible over several frames and should be rede-

tectable under viewpoint and illumination changes. We tested

our approach in 5 scenes of a typical office building: 3

corridors on different levels of the same building (scene

2,3,4) and two open areas (scene 1 and 5) (cf. Fig. 4).

The corridors, especially scene 3 and 4, are very similar,

resulting in matching ambiguities. The experiments were

performed during normal working hours, i.e. people walked

around, doors were opened or closed etc. In each of the

scenes, we recorded two image sequences (denoted a and b
in the following) with a mobile camera mounted on a moving

vehicle. Each track had a length of about 100m, images had

a resolution of 320× 240.
First, we test whether a single feature per frame is suf-

ficient at all to build landmarks. Remember that a feature

has to be seen and matched over at least 5 frames to

become a valid landmark. Thus, if repeatability is too low,

the system will not create any landmarks. The results are

shown in Table II. We obtained between 9 and 62 landmarks

per scene, depending on the length of the sequence. Each

landmark consists of 7 – 16 ROIs, on average 10 ROIs.

That means, a feature that was used to create a landmark

was on average visible over 10 frames. This shows that it is

possible to create landmarks even from a single feature per

frame. The approach can also be applied for tasks like visual

SLAM (simultaneous localization and mapping) in which no

previous training is possible.

Next, we investigate whether these landmarks can be rede-

tected under viewpoint and illumination changes. Especially

for a sparse landmark representation this is not obvious and

has to be investigated further.

To test the redetection of landmarks, we divided the image
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Fig. 4. Example frames of the 5 scenes we investigated for scene recognition

TABLE II

LANDMARK GENERATION

Scene # Frames # landmarks av. # ROIs per LM

1.a 539 13 8
1.b 598 26 10
2.a 1194 31 7
2.b 1144 56 9
3.a 828 32 12
3.b 749 17 10
4.a 1720 62 16
4.b 1064 48 11
5.a 580 26 12
5.b 568 9 7

TABLE III

LANDMARK REDETECTION. LEFT COLUMN: Si/Sj MEANS THAT

LANDMARKS WERE OBTAINED FROM REFERENCE SEQUENCE Si AND

REDETECTED IN TEST SEQUENCE Sj .

Scene redetected LMs [%]

1.a/1.b 84
2.a/2.b 83
3.a/3.b 75
4.a/4.b 61
5.a/5.b 73
1.b/1.a 69
2.b/2.a 79
3.b/3.a 94
4.b/4.a 38
5.b/5.a 78

average 73

sequences into train and test sequences. In a first run, the

sequences denoted by a (1.a, 2.a, ..., 5.a) are used as training

data Si, i ∈ {1, .., 5}, the ones denoted by b as test sequences

Sj , j ∈ {1, .., 5}. In a second run, we applied the sequences

vice versa. The redetection ratio was determined by matching

the detected VOCUS-ROIs of each frame of test sequence

Sj to all landmarks obtained from the training sequences

Si, i $= j. (Remember that only one of these sequences is

from the same environment as Sj , the other sequences are

from different environments.) Some matching examples are

displayed in Fig. 5; the percentage of redetected landmarks is

shown in Tab. III. It shows that generally the majority of the

landmarks, on average 73%, is redetected in a test sequence.

Thus, stable landmarks can be created from a single feature

per frame and reliably redetected.

C. Can we perform topological localization with such a

sparse landmark representation?

In this section, we show that the sparse landmark rep-

resentation that we obtained in the previous section can

be used to reliably localize a system in an office scenario.

We use the same sequences as in the previous section and

show that we can reliably assign the correct location to a

sequence of images. To show this, we cross-validated the

matching performance of all sequences to each other, i.e.

we considered one sequence Si as training data and another

sequence Sj as test data. For each sequence combination

(Si, Sj) we compute the confidence that the test sequence

Sj was obtained in the same environment as the reference

sequence Si:

C(Si, Sj) =
M(Si, Sj)

∑N

k=1,k !=j M(Sk, Sj)
, ∀i $= j

where N is the number of sequences, here N = 10, and

M(Si, Sj) denotes the number of ROI matches between Si

and Sj .

The confidence values are shown in Tab. IV. It can be seen

that the confidence values for test sequences from the same

environment as the reference sequences are considerably

higher (bold numbers). In most cases, they are between 95

and 100%. Only the matching confidences for scenes 3 and

4, two very similar corridors, are a little lower. The similarity

of the two scenes results in several false detections. Still, the

confidence for the correct sequence is always more than three

times as high as the confidence for each other sequence. The

final decision of the robot for a test sequence Sj is:

Estimated scene = argmaxi C(Si, Sj) (1)

Based on this decision rule, the system determines the

correct scene for all of the test sequences. Thus, we have

shown that it is possible to reliably localize a system based

on a single feature per frame. This is also applicable if no

training phase is possible as in visual SLAM.

V. DISCUSSION AND CONCLUSION

In this paper, we have shown that visual localization and

scene recognition is possible with a very sparse landmark

representation. Focusing on the most salient feature in a

frame enables to select the most discriminative regions in

an environment as landmark candidates. While this approach

does not detect landmarks in each part of the environment

(if there is nothing salient, no landmarks are found), it works

well as long as the environment contains some discriminative

parts. Especially human-made environments have plenty of

such salient objects: fire extinguishers, exit signs, doors or

posters can serve as valuable landmarks. The advantage

of such landmarks is that they are easily redetected from
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TABLE IV

THE CONFIDENCE VALUES FOR THE LANDMARK MATCHING. ROWS DENOTE THE REFERENCE SEQUENCES Si , COLUMNS THE TEST SEQUENCES Sj .

BOLD NUMBERS HIGHLIGHT THE HIGHEST VALUE IN A COLUMN.

1.a 1.b 2.a 2.b 3.a 3.b 4.a 4.b 5.a 5.b

1.a 100 0 0 0 0 0 0 0 0

1.b 100 0 0 0 0 0 0 0 0

2.a 0 0 99 2 1 0 1 0 0

2.b 0 0 95 1 1 0 0 1 0

3.a 0 0 3 1 82 11 19 1 1

3.b 0 0 1 0 75 7 11 0 0

4.a 0 0 0 1 8 5 68 0 0

4.b 0 0 1 0 14 1 82 0 0

5.a 0 0 0 0 1 0 0 0 98

5.b 0 0 0 0 1 0 0 0 98

Fig. 5. Some examples of matching ROIs. Top: test sequence, bottom: reference sequence. Four successful matches and one false match (right) are shown.

different viewpoints. We show in several experiments that the

one-feature-per-frame approach is well suited for landmark

generation and redetection.

While the approach works well in the presented setting, it

could be even improved with active camera control and top-

down feature search. This would enable the robot to actively

search for salient landmarks. In future work, we plan to

integrate the one-feature approach to a SLAM setting with

active camera control as the one in [3]. We also plan to

investigate how the approach copes with long-term changes

in the environment.
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