
  

  

Abstract—Autonomous man-portable robots have the 

potential to provide a wide range of new capabilities for both 

military and civilian applications.  Previous research in 

autonomy for small robots has focused on vision, LIDAR, and 

sonar sensors.  While vision and LIDAR work well in clear 

weather, they are seriously impaired by rain, snow, fog, and 

smoke.  Sonar can penetrate adverse weather, but has limited 

range outdoors, and suffers from specular reflections indoors.  

For the Daredevil Project, we have investigated the use of ultra-

wideband (UWB) radar to provide obstacle detection 

capabilities for man-portable robots.  Our research shows that 

UWB radar can effectively penetrate adverse weather, 

including dense fog, and detect obstacles that would be 

undetectable by vision or LIDAR under the same conditions.  

We have developed filtering algorithms that process the raw 

radar returns to eliminate reflections from ground clutter and 

make obstacles easier to detect.  We have tested this system on 

an iRobot PackBot equipped with both UWB radar and 

LIDAR, and we have demonstrated how UWB radar can be 

used for obstacle detection in obscured environments. 

I. INTRODUCTION 

MALL unmanned ground vehicles (UGVs) have 

revolutionized the way in which improvised explosive 

devices (IEDs) are disarmed by explosive ordnance disposal 

(EOD) technicians. Thousands of man-portable UGVs, such 

as the iRobot PackBot, have been deployed to Iraq and 

Afghanistan, where they have saved many lives. Other 

robots, such as the Future Combat Systems (FCS) Small 

Unmanned Ground Vehicle (SUGV) developed by iRobot, 

are bringing remote reconnaissance capabilities to the 

broader US Army infantry forces. 

The small UGVs currently deployed on the battlefield are 

teleoperated by a remote operator who must control all of the 

robot’s actions via a video link. This requires the operator’s 

full attention and prevents the operator from conducting 

other tasks. Often, another soldier is required to protect the 

operator from any threats in the vicinity. 

One of the next steps in battlefield robotics will be to 

enable robots to navigate autonomously, allowing the 

operator to direct the robot using high-level commands (e.g. 

“Navigate to location X.”) and freeing the operator to 
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conduct other tasks. Autonomous navigation is a key 

capability that is required to achieve force multiplication (i.e. 

allowing one operator to control many robots). 

Much previous research has been conducted in mobile 

robot navigation, including some work with man-portable 

robots [1]-[4]. These robots typically use sensors such as 

vision, LIDAR, and sonar to perceive the world and avoid 

collisions. While vision and LIDAR work well in clear 

weather, they have serious limitations when dealing with rain 

and snow, and they are unable to see through thick smoke or 

fog. Sonar is able to operate in adverse weather and 

penetrate smoke and fog. However, sonar has limited range 

when used in the relatively sparse medium of air (as opposed 

to the dense medium of water). In addition, when a sonar 

pulse hits a flat surface, such as building wall, at a shallow 

angle, it often reflects away from the sensor (i.e. specular 

reflection), resulting in either an erroneously long range 

reading or no reading at all. 

Radar offers the capability to detect obstacles through 

rain, snow, and fog without the limitations of sonar. Radar-

based Adaptive Cruise Control (ACC) and active brake assist 

systems are available as factory options for luxury 

automobiles from Audi, BMW, Cadillac, Lexus, and 

Mercedes, among others [5]. ACC systems monitor the range 

to the vehicle ahead and adjust the throttle to maintain a 

constant following distance, while active brake assist systems 

provide additional braking force if a collision is imminent. 

For the Daredevil Project [6], we are investigating the use 

of UWB radar to provide all-weather perception capabilities 

for the man-portable iRobot PackBot UGV. Unlike 

conventional radar, which transmits relatively long pulses of 

RF energy within a narrow frequency range, UWB radar 

sends an extremely short pulse of RF energy across a wide 

range of frequencies. The brief duration of each pulse results 

in improved range resolution, immunity to passive 

interference (e.g. rain, fog, aerosols), and the ability to detect 

targets that are stationary with respect to the sensor [7]. 

II. RELATED WORK 

In [6], we described our initial experiments with UWB 

radar. These experiments showed that UWB radar could 

reliably detect obstacles in a snowstorm, through dense fog, 

and through sparse foliage. 

Other researchers have developed obstacle avoidance and 

navigation techniques for man-portable robots using vision, 

LIDAR, and sonar. Konolige developed sonar-based reactive 
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navigation capabilities for the inexpensive ERRATIC robot 

that won second-place in the 1994 AAAI Robot Competition 

[1]. Researchers at the Jet Propulsion Laboratory (JPL), 

Carnegie Mellon University (CMU), iRobot, and the 

University of Southern California (USC) developed 

autonomous navigation capabilities for the Urban Robot (a 

predecessor to the iRobot PackBot) using vision and LIDAR 

[2]. As part of the Small Robot Technology Transfer 

Program, the US Navy Space and Naval Warfare Systems 

Command (SPAWAR) and the Idaho National Laboratory 

(INL) transitioned algorithms for obstacle avoidance, 

mapping, localization, and path planning to several different 

small robots, including the iRobot PackBot [3]. 

Automotive radars have been used as sensors for a number 

of autonomous vehicles, including several entrants in the 

DARPA Urban Challenge. The winning vehicle, CMU’s 

Boss, used a Continental ARS 300 automotive radar to 

measure the velocity of other vehicles [8]. Stanford’s Junior 

used five BOSCH Long Range Radars to detect moving 

objects in intersections [9]. MIT’s Talos vehicle used fifteen 

Delphi ACC millimeter wave radars to detect fast-

approaching vehicles at long range [10]. 

These automotive radars differ in several fundamental 

ways from the UWB radar used by Daredevil. Automotive 

radars are optimized for detecting obstacles at long range (up 

to 200 m) with a typical range resolution of 1 m and a typical 

range accuracy of 5% [11]. In general, these radars return 

multiple tracks for the strongest targets. However, as 

Leonard points out [10], they are unable to reliably detect the 

difference between small objects (e.g. a metal bolt, a sewer 

grate) and large objects (e.g. cars). For that reason, all of 

these teams used radar primarily to detect moving objects, 

since any object moving at high speeds was almost certainly 

another vehicle under the conditions of the Urban Challenge. 

In contrast, the Multispectral Solutions (MSSI) Radar 

Developer’s Kit Lite (RaDeKL) UWB radar used by 

Daredevil was designed for precise ranging at short to 

medium range, providing 0.3 m (1 ft) resolution at ranges up 

to 78 m (256 ft). Instead of providing processed radar tracks, 

the RaDeKL radar provides the raw radar strength measured 

in each 0.3 m long range bin. As a result, the radar return can 

be used to measure the size and shape of obstacles. In 

addition, the RaDeKL radar is suitable for use indoors as 

well as outdoors, which is a key advantage for man-portable 

robots that are often used for indoor applications. 

III. DAREDEVIL PACKBOT 

Fig. 1 shows the Daredevil PackBot, which is built upon 

the rugged, man-portable, combat-proven iRobot PackBot 

platform. For Daredevil, we added an MSSI RaDeKL UWB 

radar sensor mounted on a TRACLabs Biclops pan/tilt 

mount, which in turn is mounted on a 1 m tall mast. The mast 

exists to raise the sensor and reduce the amount of energy 

reflected from ground clutter. 

 
The RaDeKL radar transmits an ultra wideband pulse (400 

MHz wide) centered around 6.35 GHz, with an FCC-

approved 30 mW peak power level. The brief duration of 

this pulse results in extremely low transmit power (0.2 nW), 

which is equivalent to one ten-millionth of the power of a 

typical cell phone. The sensor requires a 1.2 W power input 

with a power voltage anywhere in the range of 7.2-35 V.  

The sensor measures returned radar strength over 

sequential 2 ns time intervals, corresponding to round-trip 

distance intervals of 0.6 m (2 ft) and one-way range intevals 

of 0.3 m (1 ft). During each time interval, the sensor 

integrates the signal return strength and maps the resulting 

total to an 8-bit value (0-255). The sensor repeats this 

process 256 times, to measure the radar return strength at 

ranges from 0 to 78 m (0 to 255 ft). The sensor then 

publishes this 256-value array over its USB interface, which 

is based on FTDI drivers. An optional time delay can be 

specified before the sensor begins to register return signals, 

allowing the 78 m usable sensor distance to begin at a longer 

range from the sensor (up to 273 m). However, at longer 

ranges, multipath from ground reflection becomes an 

increasing problem. In our experiments, we did not use any 

offset, and used the default minimum range of 0 m and 

maximum range of 78 m. 

The physical dimensions of the sensor are 15 cm x 8 cm x 

6 cm (6” x 3.25” x 2.375”). The radar has a field-of-view 

(FOV) that is 40° degrees wide along the horizontal axis and 

40° degrees wide along the vertical axis.  Both the transmit 

power and receiver sensitivity can be adjusted on-the-fly by 

commands over the USB interface. 

We mounted the RaDeKL radar on a Biclops PT pan/tilt 

base manufactured by TRACLabs. The pan/tilt unit provides 

360° degree coverage along the pan axis (±180°) and 180° 

degree range of motion along the tilt axis (±90°). The 

angular resolution of the pan/tilt encoders is 0.018°. The 

pan/tilt unit requires a 24 V power supply at 1 A and is 

controlled via a USB interface. Power for both the RaDeKL 

and the Biclops PT was provided by the PackBot’s onboard 

power system. 

 
Fig. 1. Daredevil PackBot equipped with a RaDeKL UWB radar on a 

pan/tilt mount and a SICK LD OEM LIDAR. 

3611



  

IV. UWB RADAR FILTER ALGORITHMS 

A. Raw Radar Returns 

We developed a real-time viewer for the scanning 

RaDeKL UWB radar mounted on the Biclops pan/tilt mount. 

Fig. 2 shows an overhead view of a radar scan. In this image, 

brighter areas correspond to stronger returns. The radar is 

located at the center of the image, and the concentric circles 

are spaced at 1 m intervals. The bright line indicates the 

current bearing of the radar. 

For these experiments, we rotated the radar 360° (panning 

left and right) at a speed of 0.1 radians/second. Full power 

was used for the radar transmitter (0 dB), while the radar 

receiver was attenuated by -20 dB to reduce noise. 

Radar readings were received at an average rate of 10 Hz, 

so the average angular separation between readings was 

roughly 0.5°. Each reading consisted of the return strength 

for the 256 range bins (each 0.3 m long) along the current 

bearing of the radar. For each bin, we drew a square area at 

the corresponding location, with the brightness of the area 

corresponding to strength of the radar return. Unlike a grid 

representation, the (x, y) center of each region is not 

quantized, since the current sensor bearing is a continuous 

floating-point value. 

 
Fig.2 shows the difficulty of directly interpreting the raw 

radar returns. The wide area of strong returns near the sensor 

is due to reflections from ground clutter. The large, bright 

arc at the top of the image is a concrete wall. The bright area 

on the top right of the image is a shipping container. The 

laptop controlling the radar is just to the left and below the 

radar at the center of the image. 

Our experiments showed that the radar can detect some 

obstacles reliably (e.g. walls), but that there is a large amount 

of energy being returned to the sensor from the ground 

clutter close to the sensor. These experiments were 

conducted in an open parking lot, with the sensor mounted 

one meter above the ground, oriented parallel to the ground, 

and horizontally polarized.  Based on these experiments, we 

concluded that additional filtering was required to facilitate 

the interpretation of radar data. 

B. Delta Filter Algorithm (DFA) 

We have developed the delta filter algorithm (DFA) to 

reduce the effects of ground clutter and better identify true 

obstacles in the sensor data. The DFA works by examining 

the radar return bins in order from the sensor outward. If the 

sensor reading for the current bin exceeds the reading from 

the previously examined bin by greater than a threshold 

value δ, the bin location is marked as occupied. Otherwise, 

the bin location is marked as empty. 

If rawi is the value of bin i, then the corresponding delta 

filter value is given by (1). 
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We performed a set of experiments comparing UWB radar 

data using DFA to SICK LIDAR range data in an urban 

environment (parking lot). Our experiments show that by 

applying the DFA, we can obtain accurate range readings 

from the UWB radar that closely approximate the LIDAR 

data. In addition, our experiments show that the UWB radar 

is able to see through fences and detect the obstacles behind. 

These experiments were performed with the delta threshold 

set to 1 (δ = 1), transmit attenuation set to -5 dB, and 

receiver sensitivity set to maximum (0 dB). 

In the next experiment, we positioned the Daredevil 

PackBot approximately 15 m from a chain link fence with 

white plastic slats forming an opaque barrier. Fig. 5 shows 

the UWB radar data output by the DFA filter (green) 

superimposed on SICK LIDAR data (red) collected at the 

same time. Grid lines are spaced at 10 m intervals. (Note that 

the apparent stair-stepping is an artifact of the way this 

image was rendered, with overlapping squares for the radar 

points. The actual range data shows smooth arcs.) 

At longer ranges, reflections from the wall are represented 

by arcs rather than lines. This is due to the large 40° 

horizontal FOV of the sensor couple with the discretization 

of the range values.  In the future, we plan to accumulate 

multiple sensor readings over time using an occupancy grid 

[12], which should eliminate this effect.  Fig. 3 shows that 

the UWB radar using DFA can detect both the fence and the 

building wall behind. In comparison, the LIDAR detects only 

the fence and not the building. 

 
Fig. 2. Raw radar return strength from RaDeKL UWB radar 

positioned 1 m above pavement, with maximum transmit power and 

-20 dB receiver sensitivity. Concentric circles are spaced at 1 m 

intervals centered on radar. Brighter areas represent stronger return 

signals. Bright area at center is the result of ground clutter. Bright arc 

at top center corresponds to a concrete wall. 
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C. Max Filter Algorithm (MFA) 

The second filtering algorithm we developed was the max 

filter algorithm (MFA).  The MFA examines all of the radar 

bins in a given return and returns a positive reading for the 

bin with the maximum return strength, if that bin is farther 

than a minimum range threshold. If the maximum return 

strength is for a bin that is closer than the minimum range 

threshold, the filter returns a null reading. If more than one 

reading has the maximum value, the MFA returns the closest 

reading, if the range to that reading is over the minimum 

range threshold, and the null reading otherwise. 

The MFA is a very effective method for finding the 

strongest radar reflectors in an environment with many 

reflections. Fig. 4 shows the results from an indoor 

experiment using the MFA with the radar scanning 360° 

from a fixed location at the center of the hallway 

intersection. The green points show the ranges returned by 

the MFA. The red points show the LIDAR returns. The blue 

lines are spaced at 10 m intervals. 

 
As shown by Fig. 4, we were able to detect closed doors at 

the ends of these hallways at ranges of up to 45 meters. Note 

that in the case of the left door, the LIDAR was only able to 

get a single return, while the UWB radar was able to return 

multiple returns.  At the same time, this figure shows the 

relatively low angular resolution of the radar sensor.  In 

future work, we plan to use techniques such as occupancy 

grids [12] to accumulate radar data over multiple returns and 

provide a more precise estimation of target location based on 

the probabilistic sensor models. 

D. Calibrated Max Filter Algorithm (CMFA) 

Our most recent and best performing filter algorithm is the 

calibrated max filter algorithm (CMFA), a modified version 

of the MFA. The purpose of the CMFA is to eliminate the 

ambient reflections from the ground plane, which are 

stronger close to the sensor and weaker farther from the 

sensor. In the initial MFA, the minimum detection range had 

to be set farther from the sensor to ignore the reflections 

from ground clutter, but this prevented the MFA from 

detecting close-range obstacles. The CMFA is able to detect 

closer objects by subtracting the ambient reflection (with no 

obstacle present). Any remaining signal above ambient 

indicates the presence of an obstacle. 

In the calibration stage of the CMFA, the radar is first 

aimed at open space in the current environment. A series of 

raw radar readings is returned and the average value of each 

bin is stored in the calibration vector (2). 
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In (2), ci is element i of the calibration vector, rij is bin i 

from raw radar scan j, and n is the number of raw scans 

stored. For our experiments, we averaged over 20 raw radar 

scans, which were acquired over 2-4 seconds. 

During operation of the robot, the calibration vector is 

then subtracted from each raw range scan and the result is 

stored in an adjusted range vector (3). 
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In (3), ai is element i of the adjusted range vector, ri is bin 

i of the raw range vector, and ci is element i of the calibration 

vector. 

The MFA is then applied to the adjusted range vector to 

determine to return the filtered range value. The index of the 

maximum element of the adjusted range vector is returned. If 

more than one element has the maximum value, the index of 

the bin closest to the sensor is returned. 

In our experiments, we have found that the CMFA works 

significantly better than the MFA at detecting obstacles at 

close range. This is particularly useful for operations indoors 

and in cluttered environments. 

V. RADAR/LIDAR EXPERIMENTS IN FOG 

We conducted experiments to compare the capabilities of 

UWB radar and LIDAR in environments filled with water-

based fog. In these experiments, we determined that dense 

fog would completely obscure LIDAR and vision, but this 

fog had no effect on UWB radar returns. 

Fig. 3. DFA-filtered UWB radar (green) and LIDAR (red) data from 

chain link fence in front of building 

Fig. 4. MFA-filtered UWB radar detects doors at ranges up to 45 m 

(green = radar, red = LIDAR, blue lines space at 10 m intervals) 
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The following figures show the Daredevil PackBot in our 

indoor test area. Initially the robot is in clear air. Then the 

fog machine is activated, and fog is allowed to fill the room 

until the robot is fully obscured and LIDAR and vision are 

completely blocked. 

Fig. 5 shows the robot in the initial, fog-free environment.  

The radar rotates 360° (±180°) alternating direction with 

each sweep.  Fig. 6 shows the radar (green dots) and LIDAR 

(red dots) returns in this environment. 

Both sensors are able to detect the obstacles in this 

environment, and the LIDAR shows considerably higher 

resolution and accuracy. In future work, we plan to increase 

the effective angular resolution of the radar using occupancy 

grid techniques [12], but LIDAR will always provide greater 

precision in clear air. 

 

 

 
Fig. 7 shows the test area after the fog machine is 

activated. Fog has begun to fill the area, and the robot is 

partially obscured. Fig. 8 shows the radar and LIDAR returns 

in this partially obscured environment. Even in this moderate 

fog density, LIDAR readings have already become almost 

useless.  

In front and to the sides of the robot, the LIDAR can only 

penetrate this moderate fog to a depth of about 1 m. Only 

behind the robot is the air sufficiently clear that the LIDAR 

can continue to detect some obstacles. Note that the radar 

returns in Fig. 8 are virtually identical to those in Fig. 6. This 

shows that the fog has not affected radar accuracy. 

Fig. 9 shows the test area after it has been completely 

filled with dense fog. Optical sensors, including both LIDAR 

and vision, are completely useless in this environment. Fig. 9 

shows the corresponding radar and LIDAR returns. The 

LIDAR can penetrate less than 1 m through the fog in all 

directions, and is incapable of detecting any obstacles 

beyond this range. At the same time, the radar readings in 

Fig. 10 are nearly identical to those in Fig. 6 (clear air). 

 
Fig. 8. CMFA-filtered UWB radar (green) and LIDAR (red) readings 

in partially fogged environment 

 
Fig. 7. Fog begins to fill area 

 
Fig. 6. CMFA-filtered UWB radar (green) and LIDAR (red) readings 

in clear air 

 
Fig. 5. Daredevil PackBot in fog-free indoor test area 
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We then tested simple collision avoidance behaviors using 

both radar and LIDAR. With either sensor, the robot moves 

forward until the range to the closest obstacle ahead drops 

below a specified threshold.  Both behaviors worked 

flawlessly in clear air, driving to the specified distance from 

the forward wall and stopping. In a fog-filled environment, 

the LIDAR was unable to see through the fog, so the robot 

was unable to move. In contrast, the UWB radar was able to 

see through the fog, so the robot was able to drive to the 

specified distance from the wall and stop. There was no 

difference in the performance of the radar-based collision 

avoidance behavior in clear air and in dense fog. 

VI. CONCLUSIONS AND FUTURE WORK 

Our experiments show that UWB radar can provide useful 

perception capabilities for small, man-portable UGVs under 

all-weather conditions.  Unlike optical sensors, such as 

LIDAR and vision, UWB radar can penetrate dense fog to 

detect obstacles.  Unlike conventional radars (such as 

automotive radars), UWB radar provides precise range 

information, allowing perception systems to determine the 

size and shape of detected obstacles.  In addition, UWB 

radar is effective at sensing objects that are stationary with 

respect to the sensor, unlike many types of radar that can 

only detect moving obstacles.  Finally, due to the low power 

and precise ranging of UWB radars, they are effective for 

use indoors as well as outdoors and can allow robots to avoid 

collisions in cluttered environments. 

Future work will include improving the accuracy of UWB 

radar perception algorithms, fusing UWB radar data with 

LIDAR and stereo vision data, and integrating all of these 

perception capabilities within an autonomous navigation 

system.  We will investigate the use of occupancy grids to 

allow the robot to build maps over time that increase the 

effective angular resolution of the radar sensor and fuse 

radar data with LIDAR and stereo vision data.  We will also 

implement integrated capabilities for waypoint navigation, 

path planning, and autonomous exploration for the Daredevil 

navigation system. 
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Fig. 10. CMFA-filtered UWB radar (green) and LIDAR (red) 

readings in completely fogged environment 

 
Fig. 9. Fog completely obscures robot 
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