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Abstract— The iterative closest points (ICP) algorithm is
widely used for ego-motion estimation in robotics, but subject
to bias in the presence of outliers. We propose a random
sample consensus (RANSAC) based algorithm to simultaneously
achieving robust and realtime ego-motion estimation, and multi-
scale segmentation in environments with rapid changes. Instead
of directly sampling on measurements, RANSAC matching
investigates initial estimates at the object level of abstraction
for systematic sampling and computational efficiency. A soft
segmentation method using a multi-scale representation is
exploited to eliminate segmentation errors. By explicitly taking
into account the various noise sources degrading the effective-
ness of geometric alignment: sensor noise, dynamic objects and
data association uncertainty, the uncertainty of a relative pose
estimate is calculated under a theoretical investigation of scor-
ing in the RANSAC paradigm. The improved segmentation can
also be used as the basis for higher level scene understanding.
The effectiveness of our approach is demonstrated qualitatively
and quantitatively through extensive experiments using real
data.

I. INTRODUCTION

Ego-motion estimation in dynamic environments is one of

the most fundamental problems in mobile robotics, which is

the problem of determining the pose of a robot relative to

its previous location. It is not easily achievable as there are

two motions involved: the motions of moving objects and the

motion of the robot itself. A large body of work in computer

vision over the last decade has been concerned with the

extraction of ego-motion information from image sequence

[1–3]. The performance of ego-motion estimation depends

on the consistency between observations at successive time

steps, and can be degraded in the presence of outliers. The

motivation of this work is intended to provide a robust

realtime solution to the problem of relative pose estimation

in non-rigid scenes.

The iterative closest points (ICP) algorithm [4, 5], which

is based on least squares minimization, has been widely

used for aligning range images. However, conventional least

squares approaches are subject to bias in the presence of
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outliers. Since the introduction of the ICP algorithm, many

variants have been proposed upon the basic ICP concept.

Rusinkiewicz and Levoy [6] proposed a combination of ICP

variants optimized for high speed with a point-to-plane error

metric. Pfister et al. [7] introduced a weighted matching

algorithm to estimate the transformation by matching succes-

sive range scans. Pfister and Burdick [8] described a multi-

scale point and line-based representation of range scans to

improve efficiency of scan matching. Minquez et al. [9] used

a new metric distance in the robot’s configuration space.

Bosse and Zlot [10] presented an iterative scan matching

technique using an extended Kalman filter maintaining all

the vehicle poses. More recently, we proposed a RANSAC-

based segment matching approach [11] to estimate a robot’s

ego-motion in dynamic environments. However, conventional

approaches cannot deal with dynamic objects. Segment-

based approaches are subject to imperfect segmentation.

As the key development in robotics has been the adop-

tion of probabilistic approaches, many recent state-of-the-art

robotic systems employ probabilistic techniques for robotic

perception. However, in developing a practical relative pose

estimation algorithm, it can be difficult to quantify the effec-

tiveness of a relative pose estimate. Gutmann and Schlegel

[12] described a comparison on the covariances from several

scan matching approaches in indoor environments. These

approaches work fine in office-like environments, particularly

with orthogonal or rectilinear walls, but are infeasible for

unstructured environments. Lu and Milios [13] have shown

how a covariance matrix for the ICP algorithm can be

estimated directly from the corresponding pair of points.

Unfortunately, the uncertainty estimates are too conservative

and do not correspond to reality. Bengtsson and Baerveldt

[14] presented to calculate the covariance matrix by esti-

mating the Hessian matrix of the error function minimized

by the iterative dual correspondence (IDC) algorithm. The

approximation mandates predefined constant offsets in trans-

lation and rotation for evaluating the minimization error.

Wang and Thorpe [15] proposed a hierarchical object based

representation for simultaneous localization and mapping

(SLAM) which estimates the uncertainty using a sampling-

based approach. The registration process is performed repet-

itively with random initial estimates. Censi [16] proposed a

Laplace approximation to calculate the covariance matrix for

scan matching algorithms.

In the computer vision literature, random sample consen-

sus (RANSAC) [17] is one of the most effective algorithms

for model fitting to data containing a significant percentage of

gross errors. It is an iterative method to estimate parameters

of a mathematical model from a set of observed data which
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contains outliers. A theoretical investigation of scoring under

a simple inlier-outlier model is performed to discriminate

outliers from the inlier model. The RANSAC paradigm

which is capable of fitting data containing a significant

percentage of gross errors is advanced in its effectiveness

and efficiency, and particularly applicable to scene analysis.

RANSAC-based approaches in the computer vision literature

mainly focus on segmenting a range image by feature extrac-

tion and parameter fitting [18,19]. Chen et al. [20] applies a

rigidity constraint for feature search in a data set. A random-

selection strategy is repeated until a solution is found. These

approaches can fail to reliably compute a robot’s relative

pose, particularly when registering range scans in unknown

environments, which are rather impoverished in the localized

landmarks [5].

Based on the RANSAC-based segment matching approach

[11], the paper introduces the RANSAC matching algorithm

utilizing a multi-scale representation of range images. To

provide robustness against poor segmentation and moving

objects, RANSAC matching solves the problem of relative

pose estimation at the object level of abstraction, in which

data association uncertainty and segmentation uncertainty are

tackled simultaneously. The uncertainty of a relative pose

estimate is calculated under a theoretical investigation of

scoring in the RANSAC paradigm. The multi-scale seg-

mentation can also supply a significant preprocessing step

for many robotics applications, such as modeling of non-

stationary environments [21] and moving entity tracking

from a moving vehicle [22]. RANSAC matching does not

employ any geometric features which are often environment

dependent. It also inherits the computational efficiency and

probabilistic robustness from the RANSAC paradigm. The

proposed approach is implemented and tested in the context

of ego-motion estimation and SLAM using laser range

data. Experimental results demonstrate the effectiveness and

robustness of our algorithm.

II. RANDOM SAMPLE CONSENSUS

First of all, we review the foundation and probabilistic

formulation of RANSAC. Classical techniques for parameter

estimation optimize the fit of a functional description to all

of the presented data. The RANSAC procedure is opposite

to that of conventional smoothing technique. Rather than

using as much of the data as possible to obtain an initial

solution and then attempting to eliminate the invalid data

points, RANSAC uses as small an initial data set as feasible

and enlarges this set with consistent data when possible [17].

RANSAC uses the geometric distribution in statistics

which models the discrete distribution: the probability distri-

bution of the number X of Bernoulli trials needed to get one

success, supported on natural numbers N. If the probability

of success on each trial is b, then the probability that the

k-th trial is the first success is

Pr(X = k) = (1− b)k−1b (1)

= (1− wn)k−1wn (2)

where w is the probability that any selected data point is

within the error tolerance of the model, and n is the number

of good data points required to determine the model, for all

k ∈ N. To ensure with probability p that at least one of the

random selections is an error-free set of n data points, we

must expect to make k selections, where

(1− b)k ≤ (1− p), (3)

k ≥ log(1− p)/ log(1− b). (4)

RANSAC is effective for model fitting, particularly when

a significant percentage of data are outliers. It is ideally

suited for applications in range image analysis. A detailed

derivation and a comprehensive description can be found in

Fischler and Bolles [17]. The RANSAC formulation contains

two remaining unspecific parameters n and w which are

highly relevant to characteristics of data. In the next section,

we will derive the parameters for the ego-motion estimation

problem where non-static objects can be rejected as outliers.

III. RANSAC SEGMENT MATCHING

Ego-motion estimation can be performed using range im-

age registration algorithms in the computer vision literature.

To ensure against the possibility of the final consensus set

being compatible with an incorrect model, the size of data

points per selection should be greater than or equal to three

for determining the pose transformation, including translation

and rotation. However, one of the most difficult problems

in range image processing is data association. Every single

measurement is featureless. Researchers usually apply the

closest point association rule to register data points with

unknown data association, such as the ICP algorithm [5].

A. Segmentation

In the RANSAC paradigm, a number of random samples

consisting of small sets are taken from an observation. A

first attempt is to generate random samples directly from all

measurements of an observation. Closest point association

often yields good estimate for data containing a mass of

points. However, registration performs very poorly on data

containing few points and often results in ambiguity. Sam-

pling directly on all measurements also requires compara-

tively large size of data points to preserve sufficient shape

information for registration. For example, if w = 0.5 and

n = 5, then b = 0.03125. To obtain a 99% assurance of

making at least one error-free selection, by Equation 4 we

have k ≥ 146. It is time-consuming and computationally

intractable for realtime applications, even though five points

are still insufficient for obtaining a good registration result.

Instead of direct sampling on measurements, we pro-

pose to use a higher level data representation – segment

– to achieve reliable registration and realtime performance.

An observation is segmented and further split into sets

of measurements representing objects. Specifically, objects

are extracted by segmenting a range image into densely

sampled parts. Here, we use a distance criterion to segment

measurements into objects.
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B. Matching

In the classical RANSAC paradigm, letting o be a feature

and h be some hypothesis, the effectiveness of each (o, h) is

examined and represented using a binary score. Specifically,

if (o, h) is an inlier pair, the score sh of the hypothesis

h is incremented. As segments might be of significantly

different sizes, a binary score is insufficient to describe the

quantity of an association between two segments. Let z be

an observation and zi be the i-th segment in z. Comparing to

the classical RANSAC process, the score sih of each segment

zi is supported on N and the effectiveness of the pair (zi, h)
is represented by a natural number.

1) Sampling: To build consensus sets, z is segmented

and represented as a collection of segments z = ∪iz
i.

First, segments are randomly selected with probabilities

proportional to their sizes. A hypothesis h is generated by

matching the selected n segments with the reference model

z̄.

2) Scoring: To obtain the score sih of a segment zi, the

effectiveness of (zi, h) is examined by checking if (y, h) is

an inlier pair for all y ∈ zi. The score sih of a segment

zi is defined as the number of measurements y ∈ zi

which are located within neighborhoods of measurements

in the reference model z̄. Here, (y, h) is judged as an inlier

pair if and only if the measurement y transformed to the

global coordinate by the hypothesis h is located within a

neighborhood d of some measurement in the reference model

z̄. Specifically, the score sih is incremented if the pair (y, h)
is judged as an inlier pair. Therefore, we have

sh =
∑

{i|zi⊆z}

sih (5)

=
∑

zi⊆z

∑

y∈zi

1h(y) (6)

where 1h(y) is an indicator function indicating whether

or not (y, h) is an inlier pair. When the process finishes,

the hypothesis with the highest score is output as the best

transformation ψ. In this work, d is 0.3 meter.

The parameter n should be carefully determined and take

into account the tradeoff between efficiency and reliability,

and the characteristics of the data. For matching segments

with the reference model, one segment is usually sufficient

to preserve the shape information of the environment unless

an environment is composed of line segments which result

in ambiguity. It is clear that the higher the value n, the

higher the probability at least one hypotheses is an inlier, and

thus the reliability increases. Letting n = 2 and w = 0.5,

according to Equation 4, to obtain a 99% assurance of

making at least one error-free selection, the number k of

selections must be greater than or equal to 17, which is

computationally sufficient for realtime applications.

However, the present segmentation approach can fail as

the characteristics of an environment are subject to change

over time. Objects may be mis-merged with a high threshold,

while using a too low threshold results in over-segmentation.

Figure 1 gives an example illustrating the segmentation issue

and Figure 2(c) shows the visual image. On the top of these

figures, a static object and a moving object are very close to

each other. In Figures 1(b), 1(c) and 1(d), the two objects are

mis-segmented and merged together as they are not spaced

far enough apart from each other, whereas, in Figures 1(e),

1(f) and 1(g), the two objects are properly segmented but

most of the objects are split into fragmented segments.

IV. MULTI-SCALE RANSAC MATCHING

In this section, we describe the proposed RANSAC match-

ing algorithm in which segmentation issues are resolved

using a multi-scale representation. As segmentation is used

as a preprocessing step in segment-based approaches, the

segmentation errors introduced by the hard decisions bring

difficulties to the segment matching algorithm. A scale tree

representing objects of varying sizes in a range image is

proposed to eliminate the segmentation errors.

A. Multi-scale Representation

We define a scale tree comprising collections of segments

extracted from a range image at multiple scales. Edges inher-

iting parent-child relationships on the tree are established for

segments at different scales for which the child segment at

a finer scale is subsumed in the parent segment at a coarser

scale. A scale tree is constructed in a top-down manner. The

process is started by extracting segments at the coarsest scale

and then iteratively extracting finer segments by splitting

from the coarser segments. Let zj,i denote the i-th segment

extracted at the j-th scale. The vertex set of a scale tree can

then be defined as ∪j ∪i z
j,i. Figure 1 illustrates an example

of the multi-scale representation of a range image. In this

work, the segmentation thresholds are 12, 9, 6, 3, 1.5, and

0.75 meter respectively.

B. Multi-scale Matching

To avoid under-segmentation and over-segmentation, we

take advantage of the multi-scale representation wherein an

observation z is represented as collections of segments ex-

tracted at multiple scales. Instead of making hard decisions in

segmentation, we propose a soft segmentation method using

the multi-scale representation to simultaneously deal with

data association uncertainty and segmentation uncertainty.

All segments in a scale tree are taken into account in the

sampling stage of the RANSAC process. Comparing to the

segment matching approach, the consensus set is generated

from randomly selected n segments from all segments within

the scale tree.

Constructed in this manner, the uncertainty in segmenta-

tion is modeled directly in the process of building consensus

sets. It is assumed that the probability of a measurement be-

longing to a segment at some scale is uniformly distributed,

which can be expressed as

p(zj,i|y) ∼ U(ℓ), ∀zj,i ∋ y (7)

where U(ℓ) denotes the uniform distribution on N
ℓ
1
, and ℓ is

the number of scales used for constructing the scale tree.
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(a) Scale tree
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(b) Threshold = 12m
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(c) Threshold = 9m
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(d) Threshold = 6m
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(e) Threshold = 3m
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(f) Threshold = 1.5m
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(g) Threshold = 0.75m

Fig. 1. Multi-scale representation. In (a), the scale tree of the range image is depicted. The segmentation result at each scale is visualized in (b), (c),
(d), (e), (f) and (g), in which the observation is shown in red dots, the segments are shown in rectangles, and segments with less than four points are not
depicted for clarity. The green rectangle indicates that a static object and a moving object are mis-merged in (b), (c) and (d), and properly segmented in
(e), (f) and (g).

A hypothesis is then generated by aligning the sampled

segments with the reference model z̄. To obtain the score sh
of a hypothesis h, the effectiveness of (z, h) is examined by

accumulating the effectiveness of each measurement in the

observation z. Thus, we can rewrite Equation 6 in a more

general form as

sh =
∑

y∈z

1h(y) (8)

where 1h(y) is an indicator function indicating whether

or not (y, h) is an inlier pair. The same as previously,

the RANSAC process then outputs the hypothesis with the

highest score as the ego-motion estimate ψ.

In the RANSAC process, the multi-scale representation

is utilized for hypothesis generation. In addition to the

assumption that at least 50% of the measurements in an

observation are static, to cope with the segmentation issue,

we further take into account the segmentation uncertainty

which is assumed uniformly distributed. We define that a

segment is consistent if and only if its measurements undergo

the same motion. Let v be the probability a measurement

is consistently segmented. Observe the segmentation results

given in Figure 1 that the objects on the top which are

mis-merged in Figures 1(b), 1(c) and 1(d), and consistently

segmented in Figures 1(e), 1(f) and 1(g). As a result, for

each measurement of an observation, there exists some scale

such that scales below yield a consistent segment whereas

thresholds above do not. Hence, according to Equation 7, we

assume v = 0.5, without loss of generality. By Equation 4,

to obtain a 99% assurance of making at least one error-free

selection, we have

k ≥ log(1− p)/ log(1− b)

= log(1− p)/ log(1− (w · v)n)

= log(1− 0.99)/ log(1− 0.0625)

≥ 72 (9)

where the probability of success on each trial b = (w · v)n

takes into account the segmentation uncertainty, as segments

at multiple scales are employed in the RANSAC process.

C. Multi-scale Segmentation

To achieve better segmentation, we further perform edge

deletion on the scale tree to remove inconsistent segments.

The tree is split in a bottom-up manner. Each segment

zj,i in the observation z is transformed into the global

coordinate with the transformation ψ. We define ω(zj,i) as

the effectiveness of the association between the segment zj,i

and the reference model z̄, which is evaluated by calculating

the percentage of measurements in zj,i within neighborhoods

of measurements in z̄. Specifically, if a segment is static, it

is probably associated with some segment in the reference

model in a relative great proportion, unless it be moving or
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(a) ICP
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(b) Multi-scale RANSAC matching

(c) Visual Image
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(d) ICP
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(e) Multi-scale RANSAC matching

(f) Visual Image

Fig. 2. Multi-scale RANSAC matching. The ICP results are shown in (a) and (d) while the corresponding RANSAC matching results are shown in (b)
and (e). Visual images for these two examples are depicted in (c) and (f), respectively. In (a), (b), (d) and (e), the observation is shown in red dots and the
reference model is shown in gray dots. In (b) and (e), the segments are shown in blue rectangles, and the uncertainty ellipse at around the origin is shown
in cyan. Regarding the segmentation results only the root vertices of scale trees are depicted for clarity.

occluded. Thus, if ω(zj,i) is less than some proportion φ, the

vertex corresponding to ω(zj,i) and its descendants are split

from the scale tree and forms a new tree. The split operation

is performed from the leaf vertices of a scale tree, and cuts

all edges connecting to the split vertex from the scale tree.

In our implementation, the value of φ is 50%, which is the

only parameter has to be chosen in this work, in addition to

RANSAC parameters.

Figure 2 demonstrates the effectiveness of the proposed

RANSAC matching algorithm and the multi-scale segmen-

tation. Figures 2(a) and 2(d) show the ICP results, Fig-

ures 2(b) and 2(e) depict the RANSAC matching results,

and Figures 2(c) and 2(c) present the corresponding visual

images. The most pressing issue of the conventional scan

matching algorithms is that they do not explicitly cope

with outliers. It can be seen that the RANSAC matching

algorithm outperforms the ICP algorithm. The ICP algorithm

can possibly converge to local minima in the presence of

moving objects, particularly in dynamic scenes. This is

typical for least squares approaches in which the quadratic

penalty allows a outlier far apart from the true solution to

bias the final result [17]. Specifically, the ICP algorithm uses

the whole observation to obtain a solution of the relative

pose, whereas the RANSAC matching algorithm samples

as few static objects within a range image as feasible, and

evaluates hypotheses by checking the consistency between

the sampled objects and the reference model. The multi-scale

segmentation can also supply a significant preprocessing step

for a variety of robotics applications, and be used as the basis

for higher level scene understanding.

V. UNCERTAINTY ESTIMATION

Covariance estimation is necessary to quantify the uncer-

tainty of a relative pose estimate. Most probabilistic pro-

cesses, such as extended Kalman filters (EKFs) and particle

filters (PFs), should be aware of the level of confidence in

the state estimates. A realistic covariance estimate is also

necessary for further combining the relative pose estimates

with additional odometric or inertial measurements [23]. For

example, in a Kalman filter framework, the contribution of

measurements from different sensors to the state estimate is

weighted by the Kalman gains whose values depend on the

covariances of all the sources of information contributing to

the filter.
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(f) Alternative methods

Fig. 3. Uncertainty estimation. The uncertainty estimates of the examples
given in Figures 2(b) and 2(e) are visualized in (a) and (d), respectively. The
projections of (a) and (d) onto the x-y coordinates are shown in (b) and (e).
The ellipse shows 99% confidence bound of the covariance estimate and
the RANSAC hypotheses are shown in gray dots. The uncertainty estimates
from other methods are shown in (c) and (f).

Let H be the set of hypotheses generated by the RANSAC

process. We calculate the weight wh for each RANSAC hy-

pothesis h ∈ H by normalizing the scores of all hypotheses,

which can be expressed as

wh =
sh∑

h∈H sh
(10)

such that wh ∈ [0, 1] and
∑

h∈H wh = 1. For clarity, let

h⋆ ∈ H denote the hypothesis selected by the RANSAC

process which yields the highest score. The covariance

matrix C is estimated by measuring the statistical dispersion

about the hypothesis h⋆ with the highest score. Specifically,

statistical dispersion is variability or spread in a variable or

a probability distribution in statistics. Each entry Ci,j of a

covariance C on row i and column j can thus be calculated

as

Ci,j =

∑
h∈H wh (ψh,i − ψh⋆,i) (ψh,j − ψh⋆,j)

1−
∑

h∈H w2

h

(11)

where ψh is the transformation generated by hypothesis h,

and ψh,i is the i-th element of ψh.

Figures 2(b) and 2(e) also visualize the mean and the co-

variance estimates. Enlargements of the uncertainty ellipses

are shown in Figures 3(a) and 3(b), and Figures 3(d) and

3(e), respectively, in which the RANSAC hypotheses are also

depicted. It can be seen that while moving forward along a

straight road, as illustrated in Figures 2(b), 3(a) and 3(b),

the estimated relative pose is more uncertain in the forward

direction. In Figures 2(e), 3(d) and 3(e), while making a left

turn, a strong correlation is evident between the forward and

sideward directions.

VI. EXPERIMENTAL RESULTS

The RANSAC matching algorithm was evaluated exten-

sively using real range data [24]. The travel distance of

the data set is approximately 5 kilometers. We compare

the relative pose estimates from the ICP algorithm and

the RANSAC matching algorithm with the ground truth,

which is provided from the onboard inertial measurement

system of the vehicle [15]. Though either the odometric

or inertial data are actually not the ground truth, they can

still provide sufficiently locally accurate information of the

vehicle’s motion to some degree within a short period of

time. In our implementation, the data are processed at around

7.5 Hz. Table I shows the performance improvements of

RANSAC matching. The ICP algorithm used is similar to the

high-speed variant introduced by Rusinkiewicz and Levoy

[6] with a point-to-plane error metric, constant-weighting,

a distance threshold for rejecting pairs, and the standard

select-match-minimize ICP iterations. As can be seen, the

improvement of segment-based matching is subject to imper-

fect segmentation. The use of the multi-scale representation

is particularly effective to simultaneously deal with objects of

significantly sizes. The soft segmentation method is robust

to errors in segmentation at any particular resolution. Our

approach yields a 20% improvement in translation and a 8%

improvement in rotation.

TABLE I

IMPROVEMENT OVER ICP

Threshold 12m 9m 6m 3m 1.5m 0.75m multi

Translation 6% 9% 15% 12% 13% 13% 20%
Rotation -11% -11% 0% 8% 8% 8% 8%

Furthermore, we show the effectiveness and convergency

of RANSAC matching. In Figure 3, the uncertainty estimates

using different methods are shown. Figures 3(a), 3(b), 3(d),

and 3(e) show the uncertainty estimates using our method,

and Figures 3(c) and 3(f) show the uncertainty estimates

using alternative methods [13–15]. It can be seen that the

uncertainty estimates from Bengtsson and Baerveldt’s and Lu

and Milios’ methods are too optimistic and do not correspond

to reality, in which covariance matrices are estimated from

the residuals of the corresponding points. Wang and Thorpe’s

method can provide reasonable estimates as it takes into

account the uncertainty in data association, which perform

scan matching repetitively using random initial estimates.

Figure 4 demonstrates the effectiveness and convergency of

RANSAC matching. The RANSAC matching algorithm is

performed on the same data with varying number of samples

to estimate the distribution of the relative pose estimate.
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Fig. 4. Effectiveness and convergency. The x-axis denotes the number of samples used in the RANSAC process. The red line and the blue dashed line
show the mean and the 99% confidence bound, respectively, of a relative pose estimate. The green line shows the ground truth obtained from the inertial
measurement system. The uncertainty estimate of the example given in Figure 2(b) is shown in (a), (b) and (c), and the uncertainty estimate of the example
given in Figure 2(e) is shown in (d), (e) and (f). Note that the vertical scales of (c) and (f) are considerably different.

In both of the examples, there are about 100 segments at

multiple scales in total. Enumerating all combinations of

segments at multiple scales is computationally infeasible

for realtime applications. It can be seen that the significant

property of RANSAC matching is the trade-off between

increased representation power and computational overhead.

Initially, the accuracy of the method increases with the

number of samples. As increased number of samples, the

estimate tends to converge to a specific steady state within

a neighborhood of the ground truth. The property ensures

the convergency and efficiency of our algorithm. Figure 5

shows an empirical analysis of accuracy and convergency for

RANSAC matching. We assumed that an estimate is accurate

if it differs by at most 0.1 meter in forward and sideward

directions, and 1 degree in rotation from the ground truth, and

an uncertainty estimate is converged if it differs by at most

0.1 meter in forward and sideward directions, and 1 degree

in rotation from the estimate obtained from using 1024

samples. The ample experimental results in consequence

are consistent with the theoretical derivation of multi-scale

RANSAC matching given in Equation 9. Along with the

processing rate, the feasibility of RANSAC matching for

realtime estimation is also confirmed.

In summary, the experiments indicate that our algorithm

provides robust relative pose estimates in terms of ego-

motion estimation and uncertainty estimation. In comparison

with the alternative approaches [13–15], our algorithm yields

more accurate relative pose estimates and also provides more

consistent uncertainty estimates.

VII. CONCLUSION AND FUTURE WORK

We introduced a novel approach to solve the problem of

registration and segmentation of range images. RANSAC

matching solves the problem at the object level of abstraction
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Fig. 5. Success rate. The x-axis denotes the number of samples used in
the RANSAC process.

by exploiting a multi-scale representation to model objects

of varying sizes. The main contribution of this paper is

to propose a robust realtime algorithm which takes into

account data association uncertainty and segmentation un-

certainty simultaneously in the RANSAC paradigm. Instead

of applying random initial estimates, the RANSAC process

can investigate initial estimates systematically and score

hypotheses statistically. By representing a range image as

segments at multiple scales, our approach overcomes a range

of limitations possessed by least squares approaches, such

as the inability to consistently estimate the uncertainty of

a relative pose estimate, and poor degradation to outliers.

RANSAC matching does not employ any geometric features

which are often environment dependent. It also inherits the

computational efficiency and probabilistic robustness from

the RANSAC paradigm. The feasibility and effectiveness of

the proposed approach have been demonstrated using real

data collected in urban environments without incorporating

odometry. Experimental results show that our approach out-

performs alternative approaches.

In the future, we plan to integrate spatial and temporal
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information into a unified theoretical framework to deal

with the occlusion problem. Furthermore, theoretically, the

proposed approach can be extended to the matching problem

for 3D point clouds without much difficulty. Practically, the

computation time perhaps can be far from realtime due to the

explosion of data points and the multi-scale tree nodes. We

are investigating possibilities to integrate additional informa-

tion from a 3D laser range finder or a stereo camera, such

as intensity and color. Future investigation will also include

applying the framework of RANSAC matching to a broader

range of problems.
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