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Abstract— We present a novel approach which enables a
mobile robot to estimate its trajectory in an unknown envi-
ronment with long-range passive radio-frequency identification
(RFID). The estimation is based only on odometry and RFID
measurements. The technique requires no prior observation
model and makes no assumptions on the RFID setup. In
particular, it is adaptive to the power level, the way the
RFID antennas are mounted on the robot, and environmental
characteristics, which have major impact on long-range RFID
measurements. Tag positions need not be known in advance,
and only the arbitrary, given infrastructure of RFID tags in
the environment is utilized. By a series of experiments with a
mobile robot, we show that trajectory estimation is achieved
accurately and robustly.

I. INTRODUCTION
Radio-frequency identification (RFID) is a technology that

allows for the contactless identification of goods. Its growing
use in economy makes it attractive also for robotics applica-
tions. Whenever a mobile robot is already equipped with an
on-board RFID reader, it can cost-efficiently exploit remote
RFID transponders (also called tags) as uniquely identifiable
landmarks for navigation. Long-range passive RFID (860-
915 MHz), the prevailing technology in industry with a read
range of up to 10 m, suffers from frequent nondetections of
tags in read range. Moreover, passive RFID almost entirely
lacks distance and bearing information between RFID reader
and transponders, and measurements are influenced by ma-
terials such as water and metal surrounding the tags.

In this paper, we present a novel method for trajectory
estimation that actually exploits the high degree of location-
specificity of those sometimes undesirable characteristics.
In densely tagged environments with tags on walls and
in shelves (supermarkets, for example), each single RFID
measurement can contain enough information to roughly
estimate the pose of the robot. This is although tags are only
detected, but not localized during trajectory estimation. Here,
we even treat the case that the tags are located in unknown
positions, making our approach suitable for autonomous
mapping without prior map.

In brief, our technique works as follows: We observe
RFID measurements and odometry readings while the robot
is exploring an unknown environment. The sensor readings
are used to first derive an observation model for the given
hardware configuration and the explored environment. This
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model is generated by computing similarity features of com-
bined RFID measurements, followed by training a classifier.
Second, the trajectory of the robot is estimated in a batch-
processing fashion. This step involves the recognition of
places for closing loops and a maximum-likelihood esti-
mation step, based on odometry and derived loop-closure
constraints. Although the presented solution operates offline
and estimates the trajectory of the robot afterwards, its design
potentially allows for on-line operation.

This work is structured as follows: In Sect. II, we give
a review of related work. Thereafter, graph-based SLAM
methods and RFID fingerprinting are described in Sect. III.
In Sect. IV, we present our approach in detail, followed by
experimental results in Sect. V. Finally, we summarize and
draw conclusions in Sect. VI.

II. RELATED WORK
In order to correct odometric errors in the estimated

trajectory of a robot, previously visited places have to be
recognized. This issue is known as loop closing. It has been
studied intensively for robots with laser range finders (e.g.,
by 2D or 3D scan matching [1], [2], [3] or closing large
loops on a higher level between local metrical maps [4])
and cameras (e.g., [5], [6]).

An RFID-based work close to ours is the one by
Kleiner et al. [7]: They also performed graph-based SLAM,
but with short-range RFID tags on the ground and a sensor
model that was given beforehand. Djugash et al. [8] used an
extended Kalman filter for SLAM with active radio beacons.
Such active RFID tags provide signal strength information,

Fig. 1. Overview of the steps to estimate the trajectory of the robot.

2010 IEEE International Conference on Robotics and Automation
Anchorage Convention District
May 3-8, 2010, Anchorage, Alaska, USA

978-1-4244-5040-4/10/$26.00 ©2010 IEEE 1867



which allows for distance estimation, contrary to passive
RFID tags of the standard used in our work. Hähnel et al.
used a similar technical setup as ours and mapped the
positions of long-range passive RFID tags with a particle
filter [9]. Their probabilistic sensor model was learned from
a series of empirical measurements. The reference path of the
robot was computed with a laser-based FastSLAM approach.
Our approach differs in that we neither require a sensor
model beforehand nor reference localization. We make
use of fingerprints, i.e., measurements characterizing their
recording positions. This choice is predicated on studies on
successful self-localization with Bluetooth and RFID finger-
prints [10], [11], [12], [13]. All these approaches require
potentially time-consuming prior training. Bolliger et al.
suggested to supersede exhaustive prior training with the
help of user interactions [14]: In their system, users can add
new GSM/Bluetooth/WiFi fingerprints to a central database
whenever a location is not yet known. The work at hand also
aims at overcoming prior training, but does not require any
user interaction.

In [15], we also presented an approach to trajectory
estimation. Loop closure was achieved by different similarity
measures for RFID fingerprints, but required the acquisition
of loop closure models by prior training. The work at hand
further extends the previous work significantly insofar as
the new approach automatically learns the current RFID
configuration in the target environment. Moreover, there are
only few parameters to be predefined by the user.

III. GRAPH-BASED SLAM, LOOP CLOSURE, AND
RFID FINGERPRINTS

Trajectory estimation is the central stage in recent graph-
based approaches to simultaneous localization and map-
ping (SLAM): The reconstruction of the path of the robot
is decoupled from map building: Observed features can
be mapped consistently once that the past positions of
the robot are known. Graph-based SLAM aims at finding
the maximum-likelihood configuration of robot positions by
nonlinear sparse optimization. A graph is constructed whose
nodes represent robot locations, and edges are given by
geometric constraints between the nodes. Constraints result
from measured displacements between consecutive robot
poses (odometry), or from observed displacements between
arbitrary robot locations. These loop-closure constraints are
derived from observations which have been associated with
each other. Loop closure is important because it enables
the robot to correct odometric errors that have accumulated
along its path. Since odometry and sensor readings are
noisy, each constraint is additionally given an error estimate.
Solving graph-based SLAM consequently turns into finding a
configuration of node locations which minimizes the overall
error of the network. The original solution dates back to
Lu and Milios [2]. Recent far more efficient algorithms
employ fast gradient descent techniques with advantageous
state space parameterizations [16], [17] or explicitly utilize
the sparse nature of the constraint graph [18].

Fig. 2. Left: The mobile robot (RWI B21) used for the experiments, with
its UHF RFID antennas (white), spanning an angle of approx. 90◦. Right:
One of the environments in which we conducted the experiments. Approx.
400 RFID tags had been placed in the hatched areas. The second test area
is very similar in size and shape.

Formally, let X0:T = (x0, . . . ,xT ) denote the path of the
robot to be estimated up to time step T , with xt = (xt, yt, θt)
the global 2D coordinates and heading of the robot at time t.
Let X comprise the poses X0:T of the robot. In graph-based
SLAM, all sensor readings are expressed as constraints in
the shape of rigid-body transformations between two nodes
i and j with expected values δij = (∆xij ,∆yij ,∆θij)
(2D translation plus rotation) and associated error covariance
matrices Σij (cf. [16], [17]). Let fij(X) generate zero-noise
observations according to the current configuration of the
nodes i and j in the pose graph. Then, computing the SLAM
solution equals the iterative minimization of1

∑
(i,j)∈X×X (fij(X)− δij))TΣ−1

ij (fij(X)− δij)) (1)

With RFID the detection of re-entering the same area is
easy, since measured tag IDs are unique. The estimation
of a metric transformation between two positions, however,
is tricky: Due to a read range of up to 10 m the position
uncertainty of RFID measurements can be even larger than
accumulated odometric errors. The solution is to recognize
similar positions at a fine resolution and to assume that
they are actually the same. Now, the chance of detecting a
single RFID tag largely depends on its distance and relative
orientation to the antenna of the RFID reader. Tag detections
are further dependant on a number of physical phenomena
such as absorption by nearby objects and multi-path effects.
From a practical point of view, it is impossible to model
such factors. Models of RFID detection rates usually accept
those factors as noise, which can result in less accurate
navigation performance. Quite the contrary, in our approach,
we make use of all influencing factors, but do not model
them explicitly: We regard local RFID measurements as
fingerprints of their recording position. These fingerprints
are highly location-specific [19]. They can be compared to
visual features in appearance-based methods used for SLAM
or self-localization.

1with Σ−1
ij := 0 if there is no constraint between the nodes i and j
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When comparing two non-consecutive fingerprints, the
degree of similarity can be used to detect that a position
is being visited again. With regard to Sect. III, a constraint
edge will be added to the pose graph in such a case. The next
section will treat the issues of how to recognize a position
of the robot that has been assumed earlier.

IV. APPROACH

We achieve trajectory estimation by two passes over the
recorded sensor data. The organization of the single steps
is illustrated in Fig. 1. Initially, RFID measurements are
preprocessed by combining sequenced fingerprints over short
distances. Then, we derive an observation model which
learns to classify closed loops. Since the classifier is trained
on the target data, it adapts to the current RFID setup and the
traversed environment. In the second pass over the recorded
data, the derived model is used to detect closed loops, and
finally the trajectory of the robot can be estimated by the
described graph optimization.

A. Combination of Fingerprints
Measurements of long-range passive RFID only contain

the information how often which tag has been detected. The
data are noisy insofar as even in the very same position, in-
quiries may come to quite different results [19]. That is why
we combine successive fingerprints which are sufficiently
close to each other. Formally, we represent a fingerprint Ft

at time t by the tuple Ft = (ft,xt, d
Σ
t , r

Σ
t ). Let A be the

number of antennas connected to the RFID reader on the
robot. Then, the measurement ft = (ft,1, . . . , ft,A) consists of
A single lists of detected tags, with ft,a = (f

(1)
t,a , . . . , f

(K)
t,a ),

a = 1, . . . , A, a vector of integers. In our case, the robot
possesses two pairs of antennas (Fig. 2), so A = 4. f (k)

t,a

counts how often antenna a has detected tag k. K is the
total number of tags that are observable in the environment.
xt = (xt, yt, θt) is the odometric recording position and
heading of the robot. dΣ

t and rΣ
t are the accumulated absolute

translation and rotation, respectively, from x0 up to time t.
Now, a combined fingerprint Gt = (gt,xt, d

Σ
t , r

Σ
t ) con-

tains the same robot pose xt and accumulated values dΣ
t and

rΣ
t as Ft, but a new, real-valued vector gt :=

∑t
j=0 wjfj of

averaged detection frequencies with

wj =





exp
(
− 1

2d(Ft,Fj)
)
, (dΣ

t − dΣ
j ≤ ϑd)

∧ (rΣ
t − rΣ

j ≤ ϑr)
0 else

(2)

So, if fingerprint j is close enough to fingerprint t in that
the differences in accumulated odometric forward translation
and rotation are below the thresholds ϑd and ϑr, respectively,
fj will receive non-zero weight in the combined fingerprint.
The distance measure d(Ft,Fj) must take translations and
rotations into account. We set

d(Ft,Fj) =
(dΣ
t − dΣ

j )2

ϑ2
d

+
(rΣ
t − rΣ

j )2

ϑ2
r

(3)

with ϑd = 1.0 and ϑr = 30◦.

B. Observation Model Generation
The model generation phase comprises three substages:

First, features are extracted which describe the similarity of
pairs of combined fingerprints. Then, the resulting feature
vectors are scaled appropriately, and training data with
extremal values are removed. Finally, the classifier is trained.

1) Feature Extraction from Pairs of Proximate Finger-
prints: One key insight in our approach is that – although
odometric errors accumulate in the long term and make the
mapping of environments difficult – odometry is sufficiently
accurate over short distances. Hence, we compare pairs of
fingerprints which were recorded not too far away from each
other. In the work at hand, we assume that at distances of less
than 10 m, odometry is sufficiently accurate. This threshold
should be adapted to the employed robot and ground surface,
but we think that 10 m is a decent value for most indoor
platforms. For each such pair (Gi,Gj) of fingerprints, we
compute a feature vector m(gi,gj). Its columns describe
the similarity of the combined RFID measurements gi and
gj . Similarities are computed for each of the A antennas
independently, and the features are concatenated:

m(gi,gj) = (m1(gi,gj), . . . ,mA(gi,gj))

Each similarity ma(gi,gj), with a = 1, . . . , A, should ex-
press how well the lists of detection frequencies of tags (gi,a
and gj,a) match for the two fingerprints at a given antenna
a. In our implementation, we employ the cosine similarity2,
which represents the cosine of the angle spanned by the
vectors gi,a and gj,a. In order to enhance the expressiveness
of the feature vector, we additionally store the logarithm of
the number of tag IDs which appear in gi,a or gj,a:

ma(gi,gj) = ( cos(gi,a,gj,a), log(|gi,a ∪ gj,a|+ 1) ) (4)

with

cos(gi,a,gj,a) =

∑K
k=1 g

(k)
i,a g

(k)
j,a√∑K

k=1(g
(k)
i,a )2 ·

√∑K
k=1(g

(k)
j,a )2

(5)

If gi,a = gj,a = ∅, we set cos(gi,a,gj,a) = 0. The reason
for also storing the number of unified tag IDs is that the
cosine similarity may be large if in two RFID measurements
only few tags were detected and in common. The enclosing
logarithm is supposed to prevent that larger values of tag
numbers dominate the corresponding feature column.

So, for each compared pair of fingerprints, we store a
feature vector with 2×A dimensions. For the computation of
covariances (Sect. IV-B.3), we further remember the relative
distances ∆d and angles ∆θ between the recording positions
of the fingerprints. Finally, we assign one of two class labels
y ∈ {LC+, LC−} to each training vector, according to the
following simple rule:

y =

{
LC+ |∆d| < 0.5 ∧ |∆θ| ≤ 30◦

LC− else
(6)

2We tested the normalized histogram intersection and the squared distance
to compare two fingerprints, too, but the cosine similarity performed best.
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Class LC+ contains feature vectors from which loop closure
can be inferred: The recording positions of the source finger-
prints are located in distances and angles of below 0.5 m and
30◦, respectively. These small bounds describe the situation
that the robot has visited the same place again. In opposition,
LC− contains feature vectors of compared fingerprints with
distant recording positions. Hence, samples in LC− describe
situations from which loop closure should not be inferred.

2) Scaling of Feature Vectors and Outlier Removal: The
features computed in the previous section have dimensions
whose ranges differ. During classification, some dimensions
might thus dominate others. That is why we scale the feature
vectors such that the values of each dimension are mapped
to the range [−1; 1], as common in many classification tasks.

After scaling, feature vectors assigned to class LC+ are
removed if at least one of its entries equals −1. This either
means that an antenna has not detected any tag in any of
the two fingerprints, or that the tag lists of two fingerprints
are disjoint. Classification is more reliable if such obviously
undesirable training samples are filtered out.

3) Classifier Training and Computation of Covariances:
Given the generated training data, a classifier can be trained
whose task it is to recognize a previously visited place. Our
approach does not depend on a specific type of classifier.
In our implementation, we employ k-nearest neighbor (k-
NN) classification. Training is fast, since it only requires to
store new training samples (lazy learning). Furthermore, clas-
sification can be implemented efficiently. Consequently, the
classifier could also be used for on-line trajectory estimation.

In k-NN classification, a query feature vector q is classi-
fied by retrieving those k training samples m(i1), . . . ,m(ik)

which yield the smallest distance ||q −m(ij)|| among the
training data. In our implementation, we set k = 16. Let
y(m(ij)) denote the class labels of the retrieved training
vectors. The predicted class ŷ(q) will be the one with which
the majority of the retrieved training vectors are labeled:

ŷ(q) = argmax
c

p(y(q) = c) (7)

p(y(q) = c) = |{ij | y(m(ij)) = c, j = 1, . . . , k}|/k (8)

The posterior probability p(y(q) = c) also estimates the
degree of certainty of the classification result.

We finally have to compute covariance estimates which
describe the uncertainty of a constraint in the pose graph.
That is why we group training features from the loop-closure
class, LC+, by their posterior probabilities, obtained by
feeding them to the k-NN classifier. For each group, we store
in a table the means (which are theoretically and practically
close to zero) and covariances of the stored relative positions
and relative orientations between the compared fingerprints
which produced the feature vectors.

C. Trajectory Estimation
In the first pass over the sensor data, a loop-closure model

was trained and parameterized that adapts to the target data.
The derived model can now be used to detect if fingerprints
taken at distant time steps indicate that the robot has assumed

a pose similar to an earlier one. In this stage, we proceed
as follows: We construct the pose graph, whose nodes repre-
sent positions for which RFID measurements are available.
Their odometric positions serve as initial estimates of the
poses along the trajectory. Consecutive nodes are connected
by edges whose rigid-body transformations (∆x,∆y,∆θ)
correspond to odometry. The associated uncertainties are
estimated by the motion model of the employed robot. Then,
loop-closure constraints are added to the pose graph.

1) Feature Extraction from Pairs of Distant Fingerprints:
In order to test for closed loops, feature vectors are computed
for pairs (Gi,Gj) of fingerprints with a large difference
in absolute distance traveled, that is, |dΣ

i − dΣ
j | ≥ 20.0m.

For pairs which satisfy this criterion, feature vectors are
computed and scaled in the same fashion as above.

2) Classification and Derivation of Constraint Candi-
dates: The feature vectors from the previous step are
classified, using the trained classifier of Sect. IV-B.3. If
ŷ(m(gi,gj)) = LC+ for a feature vector m(gi,gj), the
robot may have been in similar positions in time steps i and
j. Let pij = p(y(m(gi,gj)) = LC+) denote the posterior
probability that the poses at times i and j were the same.
We will add the tuple (i, j, pij) to a set of preliminary
constraint candidates if pij exceeds some threshold ϑp. ϑp
is one of the few user-supplied parameters in our approach.
As our experimental results show, the choice of ϑp is not
too crucial. ϑp = 0.8 should be a good value in most
scenarios. Compared fingerprints with posterior probabilities
below ϑp will be rejected, although they were classified as
being similar, in order to avoid false-positive loop closures.

3) Screening of Constraint Candidates: False loop clo-
sures endanger the consistency of maps and trajectories
obtained by SLAM algorithms. Many SLAM solutions there-
fore employ checks for the joint compatibility of observa-
tions (e.g., [6]). In some respects analogously, we thin the
set of constraint candidates to yield robustness to outliers:
For each constraint candidate (i, j, pij) we check if there
is another candidate (l,m, plm) in a window of ϑw meters
before or after i along the robot’s path. If yes, the candidate
with the lower posterior probability will be removed. In case
of equality, the constraint will be removed whose fingerprint
of the outgoing node (i or l) contains fewer tag IDs.

After screening, edges will be added to the pose graph
for all remaining constraint candidates. The rigid-body trans-
formation between pairs of nodes is parameterized by an
expected value of 0 for both translation along x and y, and
rotation. The covariance estimate of each constraint, depend-
ing on the posterior probability provided by the classifier, can
be looked up in the table of model covariances (Sect. IV-B.3).

4) Trajectory Optimization: The trajectory can finally
be optimized, using a graph optimization technique. Any
framework that relies on rigid-body transformations with
uncertainty estimates can be chosen, e.g., [16], [17], [18].

V. EXPERIMENTAL RESULTS
We conducted several experiments with the RWI B21

robot depicted in Fig. 2. The robot possesses a synchronous
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Fig. 3. (a) A sample trajectory (labeled “EST”) obtained at full power
level and with a posterior threshold of ϑp = 0.8. “GT” (ground truth)
is the actual path of the robot. “ODO” denotes odometry. In this case, a
residual Cartesian error of 0.376 m was achieved, based on 3 selected loop-
closure constraints that remained after the screening stage. 34,646 training
samples contributed to the observation model. (b) The estimated trajectory
over time (vertical axis) with the inferred constraints before screening.

drive and an Alien Technology ALR-8780 UHF RFID reader.
The reader is connected to two pairs of antennas, which span
an angle of approx. 90◦. A 240◦ laser range finder provides
ground truth positions.

The experiments were performed in two different en-
vironments, in each of which we distributed about 400
passive UHF RFID tags. Both environments have sizes of
approx. 195 m2. They contain loops, and tags were spread in
corridor-alike shapes (see Fig. 2), similarly to the arrange-
ment of shelves in storehouses and supermarkets. The robot
was steered manually through these environments while it
was recording RFID measurements and odometry. Laser-
based pose estimates were additionally logged as ground
truth data. The resulting trajectories have different shapes
and lengths of 68-295 m, corresponding to durations of 4-14
minutes and 313-1213 RFID measurements. Every RFID
measurement detected 11.5 tags on average and at most
37 tags. Some paths contain several loops and significant
overlaps, others only few potential loop-closure positions.

The different trajectories of the robot were estimated as
described in Sect. IV. For graph optimization, we pursued the
sparse-matrix approach by Takeuchi et al. [18]. Table I lists
the estimation errors of the resulting trajectories depending
on the posterior probability threshold, ϑp, for 13 trajectories

TABLE I
RESIDUAL CARTESIAN ERRORS (IN METERS) OF TRAJECTORY

ESTIMATION AT FULL RFID TRANSMITTING POWER LEVEL

(1 W AT EACH ANTENNA)

Posterior
Threshold (ϑp) Mean ± Std. Dev. Median Maximum

0.5 0.403 ± 0.194 0.350 0.917
0.6 0.419 ± 0.190 0.364 0.838
0.7 0.408 ± 0.173 0.350 0.840
0.8 0.397 ± 0.105 0.412 0.568
0.9 0.417 ± 0.166 0.436 0.661
1.0 0.436 ± 0.197 0.401 0.858

TABLE II
MEAN TRANSLATIONAL AND ROTATIONAL ERRORS AND MEAN

NUMBERS OF LOOP-CLOSURE CONSTRAINTS

Posterior Distance error (m) Angular error (rad) Number of
Threshold Mean ± Std. Dev. Mean ± Std. Dev. Constraints

(ϑp)
0.5 0.700 ± 0.352 0.258 ± 0.140 37.8 ± 20.2
0.6 0.691 ± 0.365 0.253 ± 0.150 31.7 ± 18.1
0.7 0.626 ± 0.301 0.233 ± 0.152 24.2 ± 14.4
0.8 0.597 ± 0.285 0.212 ± 0.152 20.4 ± 13.0
0.9 0.551 ± 0.349 0.203 ± 0.142 11.7 ± 8.5
1.0 0.528 ± 0.378 0.182 ± 0.164 7.8 ± 6.0

on which RFID measurements were performed at full power
level. We set ϑw = 1.0, that is, for the optimization of
the graph, the best constraints were selected within a one-
meter window, as described in Sect. IV-C.3. Depending on
the trajectory, 13,233 to 54,970 training feature vectors were
obtained for classification. This shows that, although we trust
odometry only in the short term, a lot of training data is
available to learn the observation model on the fly.

For each trajectory, we computed the mean residual Carte-
sian error per node in the pose graph after aligning the esti-
mated trajectory at the ground truth positions. We obtained a
mean error of approx. 0.4 m in all cases, independent of the
posterior threshold. (By comparison, the residual error for
odometry only was 1.27 m ± 0.65 m, maximum 2.40 m.) As
can be seen, however, both variance and maximum residual
error are lowest for ϑp = 0.8. The reason for this is that
this value is (also intuitively) a good trade-off between a
sufficient number of inferred loop-closure constraints on the
one hand and the accuracy of inferred constraints on the
other hand, which is indicated by a high posterior probability
of the classification result.

This explanation is underlined by Table II. There, it is
shown that the larger ϑp, the smaller the error of inferred
constraints. The inferred constraints, for which we set both
the expected distance and angle between two positions zero,
introduce small errors (below 0.6 m and 12◦ for ϑp ≥ 0.8).
In comparison with the reader’s read range of up to 10 m,
the inaccuracies are rather negligible. They still permit to
compensate for accumulated odometry errors, which are
tackled in all SLAM-related applications. Yet, the trajectory
has to be corrected continuously, and thus it is important to
ensure a decent number of inferred edges. In this respect,
purely RFID-based trajectory estimation does differ from
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TABLE III
RESIDUAL CARTESIAN ERRORS (IN METERS) OF ESTIMATED

TRAJECTORIES AT DIFFERENT POWER LEVELS

Power Level Mean Median Max. ∅ number
± Std. Dev. of tags

Full 0.446 ± 0.091 0.415 0.568 11.5
Reduced by 4 dB∗ 0.296 ± 0.093 0.301 0.424 9.4
Reduced by 8 dB∗ 0.260 ± 0.157 0.226 0.491 4.8
Reduced by 12 dB 0.259 ± 0.115 0.256 0.467 3.2
∗ Sample results, obtained only on four test trajectories

SLAM based on highly accurate laser scanners.
On a subset of seven trajectories, we also reduced the

transmission power level of the RFID reader to examine how
well our method adapts to different hardware configurations.
Tags can then be detected only at shorter ranges, which
decreases the position uncertainty of a single tag detection,
but fewer transponders are identified. Table III shows that
the accuracy of estimated trajectories improves. On the test
dataset, the estimation error was reduced significantly from
approx. 0.45 m at full power to approx. 0.26 m at a power
level that corresponds to a read range of 1-2 m.

The mean position errors in this work are larger than in
other previous studies where we examined self-localization
with RFID fingerprints and particle filters [12], [20]. There,
we achieved mean absolute localization errors of approx.
0.25 m at full transmission power. The difference is that
the density of provided reference fingerprints was larger,
which considerably improves the positioning accuracy. The
approach in the paper at hand, however, redundantizes both
a training phase and a reference positioning system, which
were still required in the previous works.

VI. CONCLUSION
In this paper we have presented a novel approach which

interleaves the estimation of the trajectory of the robot with
the learning of an RFID observation model. It is purely
based on passive RFID and odometry and overcomes the
prior semi-automatic calibration stages of previous related
works. Our technique does not make any assumptions about
the distribution of RFID tags in the environment. It rather
learns characteristics of RFID measurements. The approach
achieves a satisfactory accuracy of the estimated trajectory,
at approx. 0.4 m. Several integrated mechanisms enable the
robot to robustly detect revisited places. It is well-suited for
environments with higher tag densities, that is, scenarios
in which given tag infrastructures allow for several tag
detections per inquiry on average. Moreover, surroundings
with corridors are beneficial, because we rely on frequent
revisiting of places with similar orientations of the robot.
Although this appears to be a limitation at first glance,
corridors are typical in the target applications involving RFID
such as supermarkets.

The derived trajectory can be used to map the positions
of RFID transponders in another pass over the sensor data,
using RFID mapping approaches [9]. Alternatively, RFID
measurements plus the corrected poses could serve as a ref-
erence for self-localization with RFID fingerprints [12], [20].

In our experiments, new measurements could be processed
in real-time on a 3 GHz PC. Hence, the presented solution
could be turned into an on-line approach. Future extensions
will also take non-static, relocated tags into account.
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