
Bacteria Controller Implementation on a Physical
Platform for Pollution Monitoring

John Oyekan and Huosheng Hu
School of Computer Science and Electronic Engineering,

University of Essex, Wivenhoe Park, Colchester CO3 4SQ, United Kingdom.
Email: jooyek@essex.ac.uk; hhu@essex.ac.uk

Abstract—Inspired by the simplicity of how nature solves its
problems, we implement a bacteria controller on a physical
platform that would enable the localisation and subsequent
mapping of environmental pollution. We investigate the effects
of each parameter in the controller on the localisation and
exploration ability of the platform used. We also present how
we can tune the controller for a given environmental condition
depending on whether localisation or exploration is of a major
priority. Some experimental results are presented to show the
feasibility and performance of the proposed bacteria control.

Index Terms—Bacterium Inspired Algorithm, Environmental
Monitoring, Flocking.

I. INTRODUCTION

In order to use robotic agents to provide environmental
monitoring, two issues have to be solved. The first issue has
to do with controlling the agents in the most appropriate way
to collect data of environmental pollution being monitored.
The second issue has to deal with processing the data and
presenting it in the most appropriate way for a human user. In
this paper, we focus on the first challenge i.e. developing a
controller that would enable us to control a robotic agent
towards localising the source of environmental pollution
whilst providing environmental coverage.

In order to monitor an environmental pollutant, the initial
thought might be to make sure that every single area in the
environment is covered. This approach has led to the devel-
opment of various individual agent deterministic algorithms
that ensure that every area in the given environment is visited
at least once during the run time of the agent. For example,
[1] uses a spanning tree algorithm to provide coverage to
an area. This involves the cellular decomposition of an area
into cells and then developing a spanning tree to ensure that
every area of the cell or vertex in the given decomposed
environment is covered.

However, using this approach quickly starts losing appeal
when a large environment is to be covered by the single agent
and if the environmental pollutant changes constantly over
a short period of time. This leads to data collected being
outdated quickly. In order to solve this large environment
size problem, multiple agents could be used. By using
multiple agents, individual agents in the “system” could be

programmed to spread out in the environment and hence
collect data everywhere at once.

This has led to a development of the spanning algorithm
into a multi spanning algorithm [2] to find tree cover with
similar tree weights. However, using this approach does not
address the second issue properly. Areas in the environment
that do not contain data are still covered and loss of data can
happen if the agent is not near or in the same area as the
environmental pollutant. This approach is deterministic and
hence ensures that most or every area in the environment is
covered. However, it has been proven that the performance
of deterministic approaches get close to that of stochastic
approaches when their efficiency is reduced [3][4]. In practi-
cal situations, efficiency could be reduced by wheel slippage,
sensor inaccuracies and other platform imperfections.

Balch [3] was able to prove that using a random search
method enabled the use of less intelligent robots. Since a
stochastic algorithm can deal with changes in the dynamically
changing environment, we investigate the use of a controller
based upon the bacteria random biased walk. By using our
controller with a flocking algorithm, we aim to distribute
the agents based on the concentration distribution of the
environmental pollutant being monitored. This leads to more
efficient use of a limited number of agents.

Researchers have used various multi-agent approaches to
achieve this, including Voronoi partitions [5] [6] and Virtual
Spring Mesh approachs[7]. However, these approaches are
either computationally expensive or require a long distance
communication between agents. In addition, a prior knowl-
edge of the target is required when using Voronoi partition
and this approach can only be used in polygon derived envi-
ronments. In this paper, we shall focus on the development
and implementation of our chosen bacteria controller on a
physical robotic platform and investigate its parameters.

The rest of the paper is organised as follows: Section
II describes the implementation of a bacterial chemotaxis
controller. In Section III, experimental setting and results
are presented. Further investigations are presented in Section
IV, including the effect of noise on the bacteria controller,
the effect of using memory and how to tune the controller.
Finally, a brief conclusion and future extensions are discussed

2010 IEEE International Conference on Robotics and Automation
Anchorage Convention District
May 3-8, 2010, Anchorage, Alaska, USA

978-1-4244-5040-4/10/$26.00 ©2010 Crown 3781

in Section V.

II. IMPLEMENTING A BACTERIAL CHEMOTAXIS
CONTROLLER

A. Bacterial Chemotaxis Model

A bacterium finds food sources by executing a biased
random walk behaviour. Its motion is made up of two phases
namely a run phase and a tumble phase. The run phase
can be said to be a straight line motion in a particular
direction. When swimming up a gradient, the mean run length
is 2.19±3.43 s while if swimming down a gradient, the mean
length is 1.40 ±1.88s [8][9]. In other words, the length of the
run phase is affected by the concentration of the attractant in
the medium and was modeled by Berg and Brown as follows:

τ = τoexp(α
dPb

dt
) (1)

dPb

dt
= τ−1

m

∫
t

−∞

dPb

dt
′
exp(

(t′ − t)

τm

)dt′ , (2)

dPb

dt
=

kD

(kD + C)2
dC

dt
(3)

where τ is the mean run time and τo is the mean run time
in the absence of concentration gradients, α is a constant
of the system based on the chemotaxis sensitivity factor of
the bacteria, Pb is the fraction of the receptor bound at
concentration C. In our work, C was the present reading
taken by our Robotic agent. KD is the dissociation constant
of the the bacterial chemoreceptor. dPb

dt
is the rate of change

of Pb. dPb

dt
is the weighted rate of change of Pb. This is used

to simulate the exponentially decaying memory of an event
on a bacterium system. In our implementation, we used a
4-element memory to simulate the 4 second memory of a
bacterium [10][11]. τm is the time constant of the bacterial
system.

The above equations determine the time between tumbles
and hence the length of runs between tumbles. The tumble
phase is performed by the bacteria throwing its flagellum
clockwise in the medium. This makes it turn in a random
direction σ. This random direction is governed according to
Dahlquist et al by a probability distribution which makes the
probability of turning either right or left azimuthally symmet-
ric about the previous direction [12]. In our implementation,
our robotic agent can randomly choose a range of angles in
the set σε{0...360} by spinning on its axis.

In [13], their agent had to cover a certain distance based
upon a bias value before it took readings again. It then com-
pared the present and previous readings to decide whether
to tumble or keeping moving in a straight line. However, by
using the controller above, the system is able to react to a
dynamic environment during runs. Light sensor readings are
taken every time step and used to determine immediately

whether to keep moving in that direction or to tumble
immediately.

B. The Platform and Environmental setup

In order to investigate the effects of our algorithm on
various platforms, we implemented the algorithm on a Lego
mindstorm platform. We used Lejos (A java derivative pro-
gramming language) to program the robot. For the environ-
mental variable or pollutant, we printed a gradient of black
color on paper as shown in Fig. 1. The paper was placed
so that the simulated pollutant source was at a position of
(0,0) in the arena. We used an infra red light sensor to read
the values of the color from the paper and then responded
accordingly. The values of the reading from the infra red light
sensor was between 0 and 65. We decided against using light
as a target source as we did not have total control over the
light levels entering our robot arena. This made sure that our
results were collected in a controlled environment.

Fig. 1. Lego mindstorm platform in our arena with little background light.

Fig. 2. Lego mindstorm platform with light sensor.

We placed the light sensor at an angle as shown in Fig. 2,
which aided the robot decision making capabilities. It enabled
our control algorithm take action before it was too late. An
overhead motion camera was used to obtain position data
of the robot. In addition, the robot was placed in a bounded
environment as can be seen in Fig. 1. This made sure that the

3782

robot did not wander away from the region of interest during
the experiment when investigating the various parameters.
The arena for this experiment had a dimension of 1200mm
by 1400mm (Width by Length) while the robot had a speed
of 18cm per second.

III. EXPERIMENTAL SETTING AND RESULTS

During our experiments, we placed the robot at a distance
of approximately 1200mm from the source. We assumed that
we have reached the source when the robot’s infra red sensor
is within a 50mm by 50mm box at the source. For each
parameter change, we took twenty readings to get a good
representation of the parameter’s effect. To investigate the
effects of the parameters, we developed two metrics. The first
metric was how quickly the agent was able to localize the
source while the second metric was how well environmental
coverage was achieved in the environment.

A. Investigating the run length (τo) parameter

We casted the mean run time τ parameter into a mean run
length parameter and τo into a mean run length parameter
in the absence of concentrations. In order to investigate the
effect of the run length parameter τo, we used various values
of 5, 10, 15, and 20. For each parameter, we measured the
distance from the source every 500 milliseconds and plotted
the average of the results as shown in Fig. 3.

0 200 400 600 800 1000 1200
0

200

400

600

800

1000

1200

1400

Time (@ 500 milliseconds intervals)

D
is

ta
nc

e
in

 M
ill

im
et

er
s

fr
om

 s
ou

rc
e

run length = 5
run length = 10
run length = 15
run length = 20

Fig. 3. Graph showing the effect of using different values of run length
parameter τo. α = 1000, kd = 2

From Fig. 3, it can be seen that a smaller value of run
length resulted in faster convergence at the source with a
faster descent while a larger run length value had the opposite
effect. This is seen more clearly in Fig. 4 where we checked
for the first algorithm to reach within the 50 by 50 millimeter
box at the source.

We also discovered that a smaller value of τo results in less
environmental coverage but more resolution during searches
with little chance of overshooting the source while a larger

5 10 15 20
125

130

135

140

145

150

155

160

165

170

175

tumble length parameter

Ti
m

e
ta

ke
n

(s
ec

on
ds

)

Fig. 4. Showing the time taken for each run length parameter τo value.

value of τo results in more environmental coverage. This can
be seen in Fig. 5. Using τo = 25 resulted in a more uniform
coverage of the entire arena while using τo = 5 resulted in a
more directed search towards the source with edge positions
covered less.

B. Investigating the kd parameter

The kd parameter was investigated by using the values
of 2, 10, and 20. The effects of using the various values are
shown in Fig. 6 in which large values of kd resulted in faster
descent and convergence. We believe that this parameter is
associated with system response.

C. Investigating the alpha parameter

In order to carry out investigation into the alpha parameter,
we decided to introduce noise into the environment to see if
it would have any effect on the performance of the system.
This involved putting on the lights in the robot arena. We
initially believed that this change in condition would have an
effect on our readings because of the nature of the paper. This
is because the paper reflected light shining on it which might
reduce the effect of the infra red light sensor by introducing
noise into the readings.

We used a kd value of 2, a run length value τo of 5 and an
alpha value of 1000. The results of how quickly it localised
at the source is shown in Fig. 8, in which a change in light
conditions did not cause the gradient of the localisation curve
to change drastically when compared with the gradient of the
localisation curve of the same parameters without the light
on. This shows that a change in light conditions does not
have much effect on our algorithm performance. This robust
nature of our algorithm could be because of the nature of the
sensor we are using in that it measures infra red emissions

3783

(a)

(b)

Fig. 5. Graphs showing the positions in the arena covered using run length
τo = 5 Fig. (a) and using run length τo = 25 Fig. (b)

and not light levels. However, from preliminary observations,
we believe that the alpha parameter is useful for tuning the
controller for various environments to deal with noise. This
parameter would be adjusted dynamically in future work to
adapt to various environments in order to achieve optimal
performance.

IV. FURTHER INVESTIGATIONS

A. Using a light source

In this experiment, we used a light sensor measuring light
levels in the environment. However, testing the performance
of each parameter was very challenging as the light condition
in the arena changed as a result of outside light.

Nevertheless, we were able to discover a very interesting
behaviour. We found out that each time the robot backed
the light source, the shadow of the robot was casted onto
the light sensor path. The robot responded immediately by
rotating on its axis to get back into the light. This resulted in a
faster system response. This behaviour would be very useful
in practical situations when searching for a pollutant in a river
for example. If the robot turned around down stream, the
robot structure would cause the pollutant to miss the sensor
resulting in a low reading and an immediate response.

0 100 200 300 400 500 600
0

200

400

600

800

1000

1200

1400

Time at 500 milliseconds intervals

A
ve

ra
ge

 D
is

ta
nc

e
fro

m
 s

ou
rc

e
in

 M
ill

im
et

er
s

kd = 2
kd = 10
kd = 20

(a)

0 2 4 6 8 10 12 14 16 18 20
180

190

200

210

220

230

240

250

260

kd parameter values

Ti
m

e
in

 S
ec

on
ds

(b)

Fig. 6. Showing the rate of descent to the source 6(a) and Showing the
time taken for each kd parameter value 6(b).

Fig. 7. Showing the arena with lights on. Notice the reflections on the
paper

B. Investigating memory

We also investigated the effects of changing the expo-
nential parameter in equation 2. However, we did this in

3784

0 100 200 300 400 500 600
0

200

400

600

800

1000

1200

1400

Time at 500 milliseconds intervals

A
ve

ra
ge

 D
is

ta
nc

e
fro

m
 s

ou
rc

e
in

 m
ill

im
et

er
s

Without Light
With Light

Fig. 8. Showing the system response with light and no light.

simulation. We used a 4 element memory which is similar
to the 4 second memory of a bacteria. The exponential
function of equation 2 works by weighting the value of
the read concentrations by values of 1, 0.367879, 0.135335
and 0.049787 so that present concentration readings are
weighted with a value of 1 while readings taken 4 seconds
ago are weighted with 0.049787. As a result, this resembles
a decaying memory effect. These values are stored in 4 data
points respectively in Fig. 9. We investigated the effect of
changing the value of data points 2 and 3 of the exponential
function in Fig. 9 on a pollutant profile shown in Fig. 11
without changing data points 1 and 4. Our performance
matrix in this case was to find out how many agents were
able to localise at the source in 30 seconds. Each of the
agent had a kinematic model of movement. The results of
our experiment is shown in Fig. 10.

1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Function points

V
al

ue

Normal Exponential Function
Newly discovered Function

Fig. 9. Showing the normal exponential function and the discovered new
function.

From our results, we discovered that using data points

60

70

80

90

00.20.40.60.81
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

No of Robots
function point 2

fu
nc

tio
n

po
in

t 1

Fig. 10. Showing the no of robots localising with each data point.

Fig. 11. Showing the pollutant profile.

similar to that of an exponential function resulted in a greater
number of robots at the source. However, the function having
data values of 0.1 and 0.1 for data points 2 and 3 resulted
in more agents localising than other points. This is shown in
Fig. 9.Nevertheless, other data points might result in more
exploration of the given environment. Investigation into this
is still on going.

C. A way of tuning the controller

After studying the effects of the above parameters, we
can come to a way of tuning the controller to achieve
faster localization or exploration. Firstly, for the particular
environment, the alpha value should be increased until there
is no increase in the performance of the system. This is
because based upon our work in [14], there is a saturation
point over which there will be no dramatic increase in system
performance. Then kd should be increased until there is
no increase in system performance. Finally, the run length
parameter τo can be increase or reduced to either achieve
faster convergence or more exploration. This can be seen in
Fig. 12.

V. CONCLUSION AND FUTURE WORK

We have shown how to use a physical robot to achieve
localization at a source using a bacteria controller. We have
also shown how to use the controller to achieve either

3785

0 10 20 30 40 50 60 70
10

20

30

40

50

60

70

80

90

100
no

 o
f r

ob
ot

s

run lenght values

(a)

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
89

90

91

92

93

94

95

96

97

98

99

100

no
 o

f r
ob

ot
s

kd value

(b)

1 2 3 4 5 6 7 8
30

40

50

60

70

80

90

100

no
 o

f r
ob

ot
s

alpha value

(c)

Fig. 12. Number of Robots with adjusting: the run length τo -Fig. (a); the
kd parameter-Fig. (b); the α parameter-Fig. (c)

more exploration or faster localisation. Both effects are
contradicting and a tradeoff is needed. In other words, we
can not achieve more exploration while performing to faster
localisation.

Due to the gradient based method of searching, the bacte-
rial controller might fail in a high turbulent environment. We
believe that using this controller with a flocking controller

performance might be improved due to the advantage of co
operative foraging. We also believe that by investigating the
parameters of the bacterial controller closely, we can adapt
it to work in a high turbulent environment.

In future, we plan to use neural networks and adaptive
learning to configure these parameters as every environment
the robot encounters might be different from the last one it
encountered. We also plan to use our algorithm for boundary
detection of water pollution and subsequent efficient cleaning
of the pollutant using multiple agents.

VI. ACKNOWLEDGEMENT

This research has been financially supported by European
Union FP7 program, ICT-231646, SHOAL.

REFERENCES

[1] Y. Gabriely and E. Rimon, Spanning-tree based coverage of
continuous areas by a mobile robot,Annals of Mathematics and
Artificial Intelligence, 32:77-98, 2001.

[2] X. Zheng, S. Jain, S. Koenig, D. Kempe, Multi-Robot Forest
Coverage, pp 3852-3857, IROS , August 2005.

[3] T. Balch, The case for randomized search, Workshop on Sensors
and Motion, IEEE International Conference on Robotics and
Automation, San Francisco, CA , May 2000.

[4] D. Gage, Randomized search strategies with imperfect sensors,
pp270-279, Proc. SPIE Mobile Robots VIII, Boston, MA, Sep
1993.

[5] J. Cortes, S. Martinez, T. Karatas, F. Bullo , Coverage Control
for Mobile Sensing networks , IEEE Transactions on Robotics
and Automation, vol. 20, no. 2, pp. 243-255, April 2004.

[6] M. Schwager, F. Bullo, D. Skelly and D. Rus, A Ladybug
Exploration Strategy for Distributed Adaptive Coverage Control,
Proceddings of International Conference on Rbotics an Automa-
tion, Pasadena, CA, May 2008.

[7] B. Shucker, T. Murphey, and J.K. Bennett, Convergence Pre-
serving Switching for Topology Dependent Decentralized Sys-
tems, IEEE Transactions on Robotics, Vol. 24, No. 6, December
2008.

[8] H.C. Berg and D.A. Brown, Chemotaxis in Escherichia coli
analysed by Three dimensional tracking, Nature vol.239, October
1972.

[9] D.A. Brown and H.C. Berg, Temporal Stimulation of Chemo-
taxis in Escherichia coli, Proc. Nat. Acad, Sci. USA Vol. 71, No.
4, pp. 1388-1392, April 1974.

[10] K.M. Passino, Biomimicry of bacterial Foraging for distributed
Optimization and Control, IEEE Control Systems Magazine,
Vol.22, June 2002.

[11] J.O. Oyekan and H. Hu, Toward Bacterial Swarm for Envi-
ronmental Monitoring, IEEE ICAL, pp. 399-404, Aug 2009.

[12] A.Dhariwal, G. S. Sukhatme and A.A. G. Requicha,
bacterium-inspired robots for Environmental Monitoring, Pro-
ceedings of the 2004 IEEE International Conference on robotics
and Automation, New Orleans, LA, April 2004.

[13] F. W. Dahlquist, R. A. Elwell, and P. S. Lovely, Studies of
bacterial chemotaxis in defined concentration gradients-A model
for chemotaxis toward l-serine, J. Supramolecular Structure, vol.
4, pp. 329(289)-342(302), 1976.

[14] J.O. Oyekan and H. Hu, Exploiting Bacteria Swarms for
Pollution Mapping, Proceedings of the 2009 IEEE International
Conference on Robotics and Biomimetics, pp. 39-44, December
19 -23, 2009, Guilin, China.

3786

