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Abstract— This paper addresses a constrained motion plan-
ning problem for mobile manipulators. The constraints are
included into the system model by means of a sort of penalty
function, and then processed in accordance with the endogenous
configuration space approach. Main novelty of this paper lies
in deriving a constrained Jacobian motion planning algorithm
with the following features: inequality constraints are included
into an extended kinematics model using a smooth approxima-
tion of the plus function, the model is then regularized against
singularities, and the resulting imbalance in error equations is
handled as a perturbation of an exponentially stable linear
dynamic system. The operation of the constrained motion
planning algorithm is illustrated by a motion planning problem
of a mobile manipulator with bounds imposed on a platform
variable. Performance of the algorithm is tested by computer
simulations.

I. INTRODUCTION

A mobile manipulator is a robotic system that consists

of a nonholonomic mobile platform carrying on board a

holonomic manipulator. The kinematics of the mobile ma-

nipulator are represented by a control system with outputs.

The output function describes position and orientation of the

end effector with respect to an inertial frame. The end point

map of this control system defines the kinematics map. For

the reason that this map transforms an infinite dimensional

space of platform controls and joint positions of the on board

manipulator into a finite dimensional task space, the kine-

matic redundancy of a mobile manipulator goes to infinity.

Given the kinematics map, the motion planning problem of a

mobile manipulator amounts to determining a control of the

platform and a joint position of the on board manipulator

such that the end effector assumes a prescribed position and

orientation. Such a problem, referred to as unconstrained,

is equivalent to the inverse kinematic problem. The inverse

kinematic problem for mobile manipulators is usually solved

by means of Jacobian algorithms. A derivation procedure

of Jacobian algorithm utilizes the continuation method [1].

A systematic application of this method to mobile manip-

ulators has constituted the endogenous configuration space

approach [2]. Within this approach, basically each concept

and algorithm existing for holonomic manipulators can be

adapted to mobile manipulators. The fundamental concept of

the endogenous configuration space includes all admissible

controls of the platform, and joint positions of the on board

manipulator.
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If the mobile manipulator is supposed to accomplish tasks

in a physical environment, its motion planning needs to take

into account some motion constraints, reflecting the existence

of obstacles in the environment, the presence of singularities,

bounds on admissible values of system variables or bounds

on controls. This converts the unconstrained motion planning

problem into a problem with constraints. There are two

main methods of incorporating constraints into a Jacobian

inverse kinematics algorithm. A strategy proposed in [3]

relies on multiplying the vector fields representing the system

kinematics by a function vanishing in a ”forbidden” region

of system variables, so preventing the system trajectory from

entering there. An alternative, presented in [4], recommends

the use of exterior penalty functions. Examples of application

of this method have been dealt with in [5]. Both these strate-

gies guarantee that the constraints will be satisfied exactly. A

somewhat less demanding strategy exploits the freedom that

exists in the Jacobian kernel of a mobile manipulator. In this

way, the inverse kinematics algorithm may generate motion

in a desirable direction within the endogenous configuration

space. An application of this method to obstacle avoidance

in mobile manipulators has been shown in [6]. Its further

development results in a motion planning algorithm able to

accomplish several tasks with different priorities, applied in

[7] to the motion planning of an ocean ship respecting a

bound on the rudder angle. The construction of the motion

planning algorithm with task priorities generalizes to mobile

manipulators the ideas presented in [8]. An incorporation of

constraints into a motion planning algorithm based on an

extended Jacobian inverse kinematics algorithm is proposed

in [9]. That algorithm extends to mobile manipulators the

ideas developed in [10]. A straightforward modification of

the Jacobian pseudo inverse algorithm resulting in constrain-

ing platform control functions has been done in [11]. Last but

not least, a desirable behavior of a motion planning algorithm

can be obtained by designing an algorithm that approximates

a given pattern of behavior. Conceptual tools related to this

objective have been provided in [12] and developed in [13].

This paper addresses the constrained motion planning

problem for mobile manipulators, following the methodology

proposed recently in [14]. The constraints are included into

the system model by means of a sort of penalty function,

and then processed in accordance with the endogenous

configuration approach. Main novelty of this paper lies in

devising a constrained Jacobian motion planning algorithm

with the following features:

• the constraints are handled via a dynamic extension of

the kinematics model,
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• inclusion of constraints employs a smooth approxima-

tion of the plus function,

• the extended kinematics model is regularized against

singularities,

• an imbalance in error equations due to the regularization

is handled as a perturbation of an exponentially stable

linear dynamic system.

The new concept of constrained motion planning algorithm

is illustrated with a motion planning problem of a mobile

manipulator with bounds imposed on a platform variable. A

proof of convergence of the algorithm is sketched. Perfor-

mance of the algorithm is tested by computer simulations

involving a kinematic car-type platform endowed with an

RTR on board manipulator.

This paper is organized as follows. Section 2 develops the

basic theory, culminating in the motion planning algorithm.

Section 3 shows an application of this algorithm to a mobile

manipulator. The papers concludes with section 4.

II. BASIC CONCEPTS

We shall study the kinematics of a mobile manipulator,

represented by a driftless control system with outputs [2]
{

q̇ = G(q)u

y = k(q,x),
(1)

where q ∈ Rn, refers to platform coordinates, x ∈ Rl denotes

joint position of the on board manipulator, y ∈ Rr describes

the task coordinates, and u ∈ Rm stands for the control of the

platform. The control functions will be assumed Lebesgue

square integrable on a time interval [0,T ], and denoted as

u(·)∈ L2
m[0,T ]. Let q(t)= ϕq0,t

(

u(·)
)

be a platform trajectory

started from q0. Then, the end point map

Kq0,T

(

u(·),x
)

= k
(

q(T ),x
)

of the system (1) is identified with the kinematics of the

mobile manipulator. The pairs
(

u(·),x
)

constitute the endoge-

nous configuration space X = L2
m[0,T ]×Rl.

The following motion planning problem with state con-

straints will be addressed in the system (1): given yd ∈ Rr,

find an endogenous configuration
(

ud(·),xd

)

∈ X such that

Kq0,T

(

ud(·),xd

)

= yd , while a certain platform coordinate

remains bounded, qlb ≤ qk(t) ≤ qub. Our solution to this

problem relies on a classic application of the endogenous

configuration space approach [2], with some modifications

accounting for the constraints. First of all, to incorporate

the constraints into the system (1), we shall use the plus

function (x)+ = max{x,0}, so the inequality constraints

will be satisfied, when the functions
(

qk(t) − qub

)

+
and

(

−qk(t)+ qlb

)

+
are zero for every t ∈ [0,T ]. Because the

plus function is nonnegative, this will be satisfied, whenever

the sum of integrals over [0,T ] of these functions is zero.

Next, it is well known [15] that the plus function can be

efficiently approximated by a smooth function

(x)+ ∼= p(x,α) = x +
1

α
ln
(

1 + exp(−αx)
)

, (2)

parameterized by α . The function (2) approaches (x)+ when

α increases to +∞, furthermore, it turns out that the ap-

proximation is satisfactory even for moderate values of α .

Utilizing this approximation, we shall augment the control

system (1) with an extra state variable qn+1 by setting

q̇n+1 = p(qk −qub,α)+ p(−qk + qlb,α), qn+1(0) = 0.

We let qe = (q,qn+1) and ye = (y,qn+1). Then, the extended

system (1) will become an affine control system of the form
{

q̇e = fe(qe)+ Ge(qe)u

ye = ke(qe,x),
(3)

where

fe(qe) =

(

0

p(qk −qub,α)+ p(−qk + qlb,α)

)

,

Ge(qe) =

[

G(q)
0

]

,

and the new output function ke(qe,x) =
(

k(q,x),qn+1

)

. Con-

sequently, the extended kinematics

Ke
qe0,T

(

u(·),x
)

= ke

(

qe(T ),x
)

.

In the extended system the original motion planning problem

can be given the following formulation: find an endoge-

nous configuration
(

ud(·),xd

)

such that Ke
qe0,T

(

ud(·),xd

)

=
yed , where yed = (yd ,0). This motion planning problem is

unconstrained, so it can be solved by a Jacobian inverse

kinematics algorithm. A derivation of such an algorithm

begins with choosing an initial configuration
(

u0(·),x0

)

∈X .

If Ke
qe0,T

(

u0(·),x0

)

= yed , the problem is solved. Otherwise,

we define a smooth curve
(

uθ (·),x(θ )
)

, θ ∈ R, and compute

the error

e(θ ) = Ke
qe0,T

(

uθ (·),x(θ )
)

− yed . (4)

We want that the error decreases exponentially, with a

prescribed decay rate γ > 0, so that

de(θ )

dθ
= −γe(θ ). (5)

By differentiation of (4) we arrive at a Ważewski-Davidenko

equation

Je
qe0,T

(

uθ (·),x(θ )
)

(

duθ (·)
dθ

dx(θ)
dθ

)

= −γe(θ ), (6)

where the Jacobian operator

Je
qe0,T

(

u(·),x
)

(

v(·)
w

)

= C(T )

∫ T

0
Φ(T,t)B(t)v(t)dt +D(T )w.

(7)

The fundamental matrix Φ(t,s) satisfies the evolution equa-

tion
∂Φ(t,s)

∂ t
= A(t)Φ(t,s)

with initial condition Φ(s,s) = In+1, and the matrices

A(t) = ∂
∂qe

(

fe

(

qe(t)
)

+ Ge

(

qe(t)
)

u(t)
)

, B(t) = Ge

(

qe(t)
)

,

C(t) = ∂ke(qe(t),x)
∂qe

, D(t) = ∂ke(qe(t),x)
∂x
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come from the linear approximation of (3) along the triple

(u(t),x,qe(t)). The Moore-Penrose generalized inverse of the

Jacobian (7) is defined as

(

J#e
qe0,T (u(·),x)η

)

(t) =

[

BT (t)ΦT (T,t)CT (T )
DT (T )

]

D
−1η , (8)

where

D =C(T )
∫ T

0
Φ(T,t)B(t)BT (t)ΦT (T,t)dtCT (T )+D(T )DT(T )

is called the dexterity matrix of (3). Using this inverse, we

transform the Ważewski-Davidenko equation into a dynamic

system in the endogenous configuration space

d

dθ

(

uθ (·)
x(θ )

)

= −γJ#e
qe0,T

(

uθ (·),x(θ )
)

e(θ ) (9)

whose limit trajectory

lim
θ→+∞

(

uθ (·)
x(θ )

)

=

(

ud(·)
xd

)

provides a solution to the constrained motion planning prob-

lem.

Obviously, the solution exists on condition that the dexter-

ity matrix is invertible. This appears not to be the case in the

system (3) as long as the constraints are satisfied. In order to

overcome this difficulty we propose to add to the differential

equation in (3) an extra regularizing term r(qrk) = r(qk). In

this way we obtain a regularized system
{

q̇r = fr(qr)+ Gr(qr)u

yr = kr(qr,x),
(10)

where qr = qe, Gr(qr) = Ge(qr), kr(qr,x) = ke(qr,x) =
(

k(q,x),qr n+1

)

, and

fr(qr) =

(

0

r(qrk)+ p(qrk −qub,α)+ p(−qrk + qlb,α)

)

.

In order to state the motion planning problem in the regular-

ized system (10) we need to introduce the desirable output

in the form

yrd =

(

yd,

∫ T

0
r
(

qrk(t)
)

dt

)

.

Let Kr
qr,T

(

u(·),x
)

denote the kinematics of (10). Given a

curve
(

uθ (·),x(θ )
)

∈ X , we obtain the error

er(θ ) = Kr
qr ,T

(

uθ (·),x(θ )
)

− yrd(θ ), (11)

and compute its derivative

der(θ )

dθ
= Jr

qr0,T

(

uθ (·),x(θ )
)

(

duθ (·)
dθ

dx(θ)
dθ

)

−
dyrd(θ )

dθ
=−γer(θ ),

(12)

where Jr
qr0,T

(

u(·),x
)

denotes the Jacobian of the regularized

system. The regularizing term should be chosen in such a

way that the regularized Jacobian is invertible. To proceed,

we shall skip from the middle part of (12) the term
dyrd (θ)

dθ ,

obtaining the Ważewski-Davidenko equation

Jr
qr0,T

(

uθ (·),x(θ )
)

(

duθ (·)
dθ

dx(θ)
dθ

)

= −γer(θ ), (13)

that, thanks to invertibility of the regularized Jacobian,

defines the dynamic system

(

duθ (·)
dθ

dx(θ)
dθ

)

= −γJ#r
qr0,T

(

uθ (·),x(θ )
)

er(θ ). (14)

Plugged back to the error equation (12), the solution of (14)

yields

{

deri(θ)
dθ = −γeri(θ ), for i = 1, . . . ,r, and

der r+1(θ)
dθ = −γer r+1(θ )+ π(θ ),

(15)

where

π(θ ) = −
d

dθ

∫ T

0
r
(

qrk(t)
)

dt

(

qrk(t) coming from the system (10) driven by uθ (·)
)

denotes

an imbalance term in the error equations.

Suppose that the trajectory
(

uθ (·),x(θ )
)

exists for every

θ . Then, the following consequence of a theorem by Desoer

and Vidyasagar [16] defines the behavior of the errors (15).

Theorem 1: Let π(·) ∈ L∞, and limθ→+∞ π(θ ) = 0. Then

er(·) ∈ L∞,
der(·)

dθ ∈ L∞, and limθ→+∞ er(θ ) = 0.

In the next section the ideas developed above will be applied

to a constrained motion planning problem for a mobile ma-

nipulator composed of a kinematic car-type mobile platform

carrying on board an RTR manipulator.

III. MOBILE MANIPULATOR

Let us consider a mobile manipulator composed of a kine-

matic car-type nonholonomic mobile platform and an RTR-

type holonomic on board manipulator, shown in figure 1.

Denote the platform coordinates by q = (x,y,ϕ ,ψ) ∈ R4,

Fig. 1. The mobile manipulator

the input vector by u = (u1,u2) ∈ R2, the vector of joint

positions of the on board manipulator by x = (x1,x2,x3)∈R3,

and the vector of the end effector Cartesian coordinates by

y = (y1,y2,y3) ∈ R3. The meaning of the notations has been

explained in the figure. The length of the car l = 1. With

these notations, the kinematics of the mobile manipulator

are represented as the following driftless control system with
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outputs






































q̇1 = u1 cosq3 cosq4,

q̇2 = u1 sinq3 cosq4,

q̇3 = u1 sinq4,

q̇4 = u2,

y = k(q,x) =





q1 +(l2 + l3 cosx3)cos(q3 + x1)
q2 +(l2 + l3 cosx3)sin(q3 + x1)

x2 + l3 sinx3



 .

(16)

Given a control time horizon T > 0, the platform controls

entering the system (16) will be chosen in the form of a

truncated Fourier series

ui(t) =
si

∑
j=0

λi jϕ j(t), i = 1,2, (17)

where ϕ j(t) are basic trigonometric functions defined on

[0,T ], and si + 1 is length of the ith control series. The

expression (17) implies that the controls can be written as

u(t) = P(t)λ , for λ ∈ Rs1+s2+2, and a suitably defined block

matrix P(t).

A. Unconstrained Motion Planning

To illustrate the performance of the unconstrained motion

planning algorithm, we examine the problem of reaching by

the system (16) the desirable taskspace point yd = (0,0,2) in

time T = 1 without any constraints on platform coordinates.

The initial state of the mobile platform q0 =
(

20,0,
π
2
,0
)

.

The platform control functions are chosen in the form (17),

where ϕ0(t) = 1, ϕ1(t) = sin2πt, ϕ2(t) = cos2πt, ϕ3(t) =
sin4πt, ϕ4(t) = cos4πt, with s1 = 2 and s2 = 4. It follows

that (λ ,x) ∈ R11. The initial endogenous configuration λ0 =
(−1,0.5,−0.5,−0.2,0.1,0.1,0.01,0.01) and x0 = (0,1,

π
2
).

The decay rate γ = 0.1. Plots representing the solution of the

motion planning problem are shown in figure 2. It follows

that the turn angle of the front wheels takes unrealistic values

greater than π
2

that causes a cusp turn on the platform path.

B. Constrained Motion Planning

In order to restrict the turn angle of the front wheels, we

shall reformulate the previous motion planning problem by

adding a constraint |q4| <
π
3

, so qub = π
3

and qlb = − π
3

. As

the regularizing function we use r(q4) = q2
4. In consequence,

the augmented and regularized system (16) will take the form

(10) by setting

q̇5 = q2
4 + p(q4 −qub,α)+ p(−q4 + qlb,α), (18)

along with q5(0) = 0, as well as by adding an output variable

y4 = q5. Thus, in the regularized system qr = (q1, . . . ,q5) and

yr = (y1, . . . ,y4). The motion planning problem will now be

defined by the desirable point

yrd =

(

yd ,

∫ T

0
q2

4(t)dt

)

.

Assuming that uθ (t) = P(t)λ (θ ), we obtain the kinematics

of the regularized system Kr
qr0,T

(

λ (θ ),x(θ )
)

, and define the

error

er(θ ) = Kr
qr0,T

(

λ (θ ),x(θ )
)

− yrd(θ ). (19)
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Fig. 2. Taskspace path, q4 trajectory and error convergence for uncon-
strained planning

The Ważewski-Davidenko equation (13) takes the form

Jr
qr0,T

(

λ (θ ),x(θ )
)

(

dλ (θ)
dθ

dx(θ)
dθ

)

= −γer(θ ).

The Jacobian is represented by a matrix

Jr
qr0,T (λ ,x) =

[

C(T,x)
∫ T

0 Φ(T,t)B(t)P(t)dt, D(T,x)
]

,

where the Φ(t,s) satisfies the evolution equation
∂Φ(t,s)

∂ t
=

A(t)Φ(t,s), and the matrices defining the linear approxima-

tion of the regularized system along
(

uθ (t),x(θ ),qrθ (t)
)

are

the following

A(t) =













0 0 −u1 sinq3 cosq4 −u1 cosq3 sinq4 0

0 0 u1 cosq3 cosq4 −u1 sinq3 sinq4 0

0 0 0 u1 cosq4 0

0 0 0 0 0

0 0 0 2q4 + a(q4) 0













,
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where

a(q4) =
exp
(

−α(−q4+qlb)
)

−exp
(

−α(q4−qub)
)

(

1+exp
(

−α(−q4+qlb)
)

)(

1+exp
(

−α(q4−qub)
)

) ,

B(t) =













cosq3 cosq4 0

sinq3 cosq4 0

sinq4 0

0 1

0 0













,

C(t,x) =









1 0 −(l2 + l3 cosx3)sin(q3 + x1) 0 0

0 1 (l2 + l3 cosx3)cos(q3 + x1) 0 0

0 0 0 0 0

0 0 0 0 1









,

D(t,x) =








−(l2 + l3 cosx3)sin(q3 + x1) 0 −l3 sin x3 cos(q3 + x1)
(l2 + l3 cosx3)cos(q3 + x1) 0 −l3 sinx3 sin(q3 + x1)

0 1 l3 cosx3

0 0 0









.

Having computed the Jacobian pseudo inverse J#r
qr0,T (λ ,x),

we obtain the dynamic system (14) determining the motion

planning algorithm
(

dλ (θ)
dθ

dx(θ)
dθ

)

= −γJ#r
qr0,T

(

λ (θ ),x(θ )
)

er(θ ). (20)

Outside singular configurations, the solution of the mo-

tion planning problem is defined as the limit (λd ,xd) =
limθ→+∞

(

λ (θ ),x(θ )
)

.

Using the form of the controls, it can be shown that the

imbalance term appearing in the last error equation in (15)

assumes the form

π(θ ) = vT dλ (θ )

dθ
+ 2λ T (θ )Q

dλ (θ )

dθ
,

where v is a constant vector depending on q4(0), and Q

denotes a constant symmetric matrix. Now, assuming that a

solution of (20) exists for every θ , we get the boundedness

of (λ (θ ),x(θ )) as well as of the derivative
(

dλ (θ)
dθ ,

dx(θ)
dθ

)

,

and deduce immediately that π(·) ∈ L∞. Furthermore, it

turns out that outside singular configurations the second

order derivative
d2λ (θ)

dθ 2 is also bounded, because of the

boundedness of




d2λ (θ)
dθ 2

d2x(θ)

dθ 2



= −γ

(

D
(

J#r
qr0,T

(

λ (θ ),x(θ )
)

er(θ )
)

+ I11

)

×

(

dλ (θ)
dθ

dx(θ)
dθ

)

− γJ#r
qr0,T

(

λ (θ ),x(θ )
)

(

0

π(θ )

)

,

D denoting the derivative with respect to (λ ,x). We conclude

that limθ→+∞
dλ (θ)

dθ = 0, using the Barbalat’s lemma [17]. By

virtue of Theorem 1, the error (19) vanishes to zero, so the

motion planning algorithm has solved the constrained motion

planning problem.

Performance of this algorithm has been illustrated by

computer simulations. The same motion planning problem

as in subsection III-A has been solved for identical initial

conditions, except that the following bounds have been

imposed on q4 variable: q4 ∈ [− π
3
,

π
3
], and q4 ∈ [− π

6
,

π
6
]. In

simulations the value of α = 50. The results are demon-

strated, respectively, in the figures 3 and 4.
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Fig. 3. Taskspace path, q4 trajectory and error convergence for the
constraint q4 ∈ [− π

3
,

π
3
]

IV. CONCLUSIONS AND FUTURE WORKS

The paper has introduced a new constrained motion plan-

ning algorithm for mobile manipulators. Computer simula-

tions have demonstrated that the quality of motion produced

by the algorithm as well as the resulting error convergence

are satisfactory. Future research will be directed toward

handling more involved constraints and developing rigorous

proofs of error convergence. Another focus of future work

could be a merge of motion planning and predictive control.
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In the domain of Jacobian motion planning algorithms ideas

of predictive control have already been used in order to make

the algorithm more ”closed loop” [18] or more efficient at

long distances between the starting and terminal endoge-

nous configurations [19]. However, in both these cases the

problem of constraints has not been of primary significance.

A challenging alternative to the approach presented in this

paper is to formulate the motion planning problem as an

optimal control problem with constraints that can be solved

by modern nonlinear model predictive control strategies [20],

[21], [22].
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