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Abstract—Formation flying (FF) is a critical element in
NASA’s future deep-space missions. Terrestrial Planet Finder
(TPF), NASA’s first space-based mission to directly observe
planets outside our own solar system, will rely on FF to
achieve the functionality and benefits of a large instrument
using multiple lower cost smaller spacecraft. Many key network
design problems for such FF missions can be formulated as
optimization problems with local and global constraints.

We develop a topology control algorithm that can be used
for many network problems in the presence of local constraints,
such as collision avoidance, and global constraints, such as
network connectivity. The presence of contradictory objec-
tives in topology control problems motivated a game-theoretic
approach. We demonstrated that a game-theoretic technique
could provide a framework for design and analysis of many
topology control problems in dynamic networks. In particular,
the problem of motion planning for formation reconfiguration
in the presence of constraints on network connectivity and inter-
spacecraft collisions is studied.

I. INTRODUCTION

Formation flying (FF) has been identified as a critical,

enabling technology for future NASA space missions such

as the Terrestrial Planet Finder (TPF) and Stellar Imager.

Under the FF concept, spatially distributed spacecraft fly in

formation with the capability of interacting and collaborating

with one another, and work as a single unit, exhibiting a

system-wide capability to accomplish shared objectives.

A representative formation flying mission is TPF, where

it will use formation flying spacecraft to synthesize a large-

baseline interferometer operating in the infrared wavelength

region. JPL has studied and produced designs for TPF-

Emma mission concept that uses a rectangular layout for the

telescope spacecraft and an out-of-plane combiner spacecraft.

Figure 1 shows the concept as studied in reference [7]. Our

goal is to develop algorithms and simulation tools that can

be directly applied to formation flying missions such as TPF.

The objective of topology control problems is to modify

the underlying network topology to optimize local and global

metrics. One of the most important global properties of any

network is its connectivity. In wireless ad hoc networks,

there exists a trade-off between the connectivity and the

energy consumption in the network. Lowering the sens-

ing/communication power will have an adverse effect on the

connectivity of the network. In mobile sensor networks, there
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exist similar trade-offs between connectivity and coverage,

communication cost and agent mobility. Each spacecraft in

the formation network must use the network properties to

make local decisions that collectively guarantee the connec-

tivity in the global sense. Such trade-offs motivate posing and

addressing a network design problem to achieve a balance

interplay between local and global objectives.

The presence of contradictory objectives and trade-offs

in network design problems motivates a game-theoretic ap-

proach, where the aim is to design algorithms that optimize a

network-wide cost among decision-making locally-informed

agents. The agents are decision-makers with both local and

global objective. For instance, the desired global objective

could be constructing a connected network, with the local

objective of having small number of neighbors, or consuming

as little fuel as possible. Selfish agent behaviors could

have disruptive effect on topology control protocols, unless

adequate countermeasures are taken.

Our contribution is to demonstrate that a game-theoretic

approach could provide a framework for design and analysis

of many topology control problems in dynamic networks. In

particular, we show that the motion planning for a formation

reconfiguration can be done in a distributed fashion using a

game approach, where we model each spacecraft as a player

in the game with local and global objectives.

In the control community, the main concern in mobile

sensor networks is the problem of motion planning while

preserving connectivity of mobile networks [5], [9], [14],

[15], [20], [2], [16], [19]. The connection between two

mobile robots is lost either as a result of separation [2],

Fig. 1. TPF-Emma concept design.
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[20] or because of loss of line-of-sight [12], [16]. The

problem of generating connected networks starting from

disconnected initial conditions is addressed in [3], [12].

Spanos and Murray [14] introduced the concept of robust

connectivity which locally characterized the connectedness

of the network in terms of the relative positions of the

neighboring agents. Potential field techniques were applied in

[20], [2] for maintaining connectivity of networks of mobile

robots.

Here is the outline of the paper. The problem statement

is defined in Section II. Since the presented approach to

topology control is based on game theory, its fundamentals

are summarized in Section III. In Section IV the problem of

formation reconfiguration is solved using the game-theoretic

framework, followed by the concluding remarks in Section

V.

II. NETWORK TOPOLOGY CONTROL PROBLEMS

Consider a network of n agents. The state (position) of

agent i is represented as a point in the agent’s configuration

space Si. The state space of all the agents, S, is defined

as S = S1 × S2 × . . . × Sn. The trajectory of agent i is

represented as a mapping si : [0, T ] → Si, which evolves

according to the state transition equation,

ṡi(t) = f(si(t), ai(t)) (1)

where ai(t) is chosen from a set of control actions. The

control action ai(t), transitions agent i from si to a subset

of its configuration set, R(si) ⊂ Si (see Figure 2).

Let d0 be the minimum safe distance between any two

agents. We define the collision region between pair (i, j) as

the following set of states:

S
ij
coll = {s ∈ S1 × . . . × Sn | ‖si − sj‖ ≤ d0} .

The collision subset is now defined as

Scoll =
⋃

i6=j

S
ij
coll .

Given the valid configuration space

Svalid = S1 × . . . × Sn − Scoll,

the action set of agent i is restricted to:

S′
i = R(si) ∩ Svalid ⊂ Si . (2)

Let Ni(si) be the neighborhood around si within which

agent i can sense/communicate with other agents. Ni(si)
depends on the limited sensor range and collision avoidance

properties of agent i. We represent the set of agents and

the sensing links between them as a graph G(s), where

s = (s1, . . . , sn) ∈ S. We define the adjacency matrix

corresponding to G(s) as a mapping A : S → M , from

the configuration space S to M, defined as the set of

n× n symmetric matrices with each entry either 0 or 1 and

the diagonal terms equal 0. The set of adjacency matrices

corresponding to connected graphs is denoted by Mc. Now,

we can define the connectivity constraint set as

Ω := {s ∈ S : A(s) ∈ Mc} .

Fig. 2. The mobility model of Restricted SAP for an agent located at si.
The search for the next best action is restricted to R(si).

A. Problem Statement

During science experiments using a formation flying of

spacecraft such as TPF-Interferometer, reconfigurations are

needed to re-target the formation between the observations,

while respecting a number of local and global constraints.

Some local constraints are avoiding inter-spacecraft colli-

sions, avoiding Sun-exposure of sensitive instruments, and

maintaining inter-spacecraft sensing/communication links.

Global constraints are typically maintaining connectivity of

the formation, and high quality of observations. Optimizing

the consumption of fuel and energy is also crucial for

maximizing the life of the spacecraft formation. Thus, recon-

figuration maneuvers for TPF-I typically involve designing

path planners that optimize some performance index such

as fuel or time while generating trajectories that satisfy the

desired local and global constraints.

The problem we consider here concerns maintaining the

connectivity of a mobile network during reconfiguration,

while generating optimal, collision-free, trajectories.

P: Given an initial and final connected configurations for

a network of n spacecraft, how should they move such that

the intermediate configurations remain connected?

There has been some prior work on optimal-fuel collision-

free motion planning [17], [13]. But the issue of maintaining

connectivity in a spacecraft formation has not been studied

thoroughly. The authors in [11] proposed to reorient the

formation as a virtual rigid body so that each spacecraft

retains its current neighbors during reconfiguration. However,

this solution may not be energy and fuel optimal. Spanos and

Murray [15] used the notion of connectivity robustness to

study the feasibility of connectivity-preserving motions, and

their approach did not address the motion-planning aspect of

the problem. Stump et al. [16] studied the problem of main-

taining connectivity during a scout mission using a multiple

mobile robots. The problem of preserving connectivity in a

multi-agent system during flocking and coordinated motion

was studied in [2], [20].

Now, here is a formal definition of the problem:

P’: Given s
initial ∈ Ω and s

final ∈ Ω we wish to find the

shortest path s(t) so that s(0) = s
initial and s(T ) = s

final
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and s(t) ∈ Ω for some T > 0 and for all 0 ≤ t ≤ T .

The above problem can be written as the following opti-

mization problem:

min
s

‖s(t) − s(T )‖ (3)

subject to s(t) ∈ Ω , ∀t ∈ (0, T )

The above problems can be formulated as multi-objective

optimization problems. Recently, game-theoretic techniques

have proved to be useful tools for solving multi-objective

optimization problems such as network design problems [4],

[10]. Komali [4] developed a game-theoretic power-based

protocol for energy minimization, while Resta et al. [10]

developed a game-theoretic MST-based protocol. However,

applications of game theory to mobile networks are still very

much under-developed. Early results are presented in [1],

[6]. Before presenting our game-theoretic solution, we review

fundamental concepts of Game Theory.

III. GAME THEORETIC APPROACH

A. Game Theory Fundamentals

The framework of studying formation control is laid out

by defining the following three components, 〈N, S, U〉:

1) The agent set N = {1, . . . , n} where n is the number

of agents in the game.

2) The action (or strategy) set S = S1 × . . . × Sn where

Si is the set of actions of agent i. The strategy vector

s = (s1, . . . , sn) ∈ S is also denoted by s = (si, s−i)
where si is the action of agent i and s−i denotes the

actions of all other agents.

3) The utility set U = {u1, . . . , un} where ui : S → R is

the utility function representing the desirable properties

of the network and the cost associated with them

resulting from the actions of agent i.

In a spacecraft formation, the set of spacecraft consti-

tute the agent set, and the individual action sets Si are

considered the set of possible translational (or rotational)

motions of each spacecraft. The two main aspects of a

cooperative system design using a game-theoretic approach

are (a) designing the agents’ utilities that are compatible

with some global cost function (Section III-B), and (b)

developing a multi-agent learning algorithm1 and addressing

its informational and computation requirements (Section III-

C). Convergence, computational efficiency and equilibrium

selection are properties that need to be addressed (Section

III-D).

Each agent, having a distinct utility function and informa-

tion set, selects a feasible action that maximizes its utility

ui given the state of other agents in the formation. Such

a game is played in an iterative fashion. Assume that the

game is repeated at discrete times k ∈ {0, 1, 2, . . .}, and we

are interested in the asymptotic behavior of the system. For

arbitrary games, an equilibrium may not exist or multiple

equilibria may exist. However, a priory knowledge about the

equilibrium can help us design games that are more likely to

1In the game theory, learning is the process of how agents reach the
equilibrium.

converge. The equilibrium corresponding to a configuration

where each agent has no incentive to unilaterally change its

action is called Nash Equilibrium (NE).

Definition 3.1: A strategy vector s∗ is a Nash Equilibrium

if ui(s
∗) ≥ ui(si, s

∗
−i) for all i ∈ N and all si ∈ Si.

A network corresponding to a Nash equilibrium is called

stable. If the equilibrium also optimizes a (global) cost func-

tion, then the network is called optimal. A Nash equilibrium

may or may not correspond to the optimal network. There

is a trade-off between networks that are stable and those

that are optimal. The ratio of the solution quality of the best

Nash equilibrium relative to the optimal network is known

as the price of stability (POS). Similarly, the ratio of the

worst Nash equilibrium relative to the optimal network is

called the price of anarchy. We are interested in bounding

the price of anarchy and price of stability, and would like

network formation games in which these measures are small.

In general, the optimizer of the global cost function may not

be the best Nash equilibrium, thus the bound on POS is not

always tight.

The existence and convergence to a NE can be guaranteed

for a special class of games called potential games, where

each agent takes actions that constantly improve its utility,

and as a result a dynamic process emerges. For such games,

one defines a potential function that reflect how much each

agents benefits from unilateral change in its strategy.

Definition 3.2: A strategic game Γ = 〈N, S, U〉 is a

Potential Game if there exist a potential function Φ : S → R

such that for all i ∈ N

Φ(s′i, s−i) − Φ(si, s−i) = ui(s
′
i, s−i) − ui(si, s−i) (4)

for any alternative strategy s′i 6= si.

In a more general case, we have an ordinal potential game

where the equality in (4) is replaced with inequalities:

Definition 3.3: A strategic game Γ = 〈N, S, U〉 is an

Ordinal Potential Game if there exist a potential function

Φ : S → R such that for all i ∈ N

Φ(s′i, s−i)−Φ(si, s−i) > 0 ⇐⇒ ui(s
′
i, s−i)−ui(si, s−i) > 0

(5)

for any alternative strategy s′i 6= si.

In an ordinal potential game, an improvement in the utility

of each agent, when the other agents take no action, results

in an improvement of the potential function. The structure

of potential games guarantees the existence of NE [8].

Theorem 3.4: Every potential game has at least one Nash

Equilibrium, namely the strategy s that maximizes Φ(s).

B. Utility Design

The individual utility functions can be designed in a

number of ways as described in [1]. If the utility of each

agent is set to the global utility we have the Identical Interest

Utility (IIU):

ui(si, s−i) = Φ(si, s−i) . (6)

In this case, continuous dissemination of global informa-

tion is required among the agents. For IIU the optimal states
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yield highest utilities, however, suboptimal Nash equilibria

may still exist.

By setting the utility of each agent to the marginal con-

tribution made by the agent to the global utility, one obtains

the Wonderful Life Utility (WLU):

ui(si, s−i) = Φ(si, s−i) − Φ(s−i) , (7)

where Φ(s−i) is the value of the potential function in the

absense of agent i.

Both IIU and WLU lead to potential games with the global

utility being the potential function. For more examples of

utility design see [1]. The agent utilities cannot be designed

independently of the negotiation mechanism employed by

the agents. Thus, next we present the negotiation algorithm

we will use for our solution.

C. Learning Algorithms

Any individual agent is cooperative with other agents only

to the extent that cooperation helps the agent to maximize

its own utility. Each agent will negotiate with other agents

without any knowledge about the utilities of the other agents.

This is because the agents may not have the same infor-

mation regarding their environment. The advantage of this

assumption is that it makes the agents truly autonomous in

the sense that each agent is individually capable of making

robust strategic decisions in uncertain environments.

Now we describe a learning algorithm that in the game-

theory literature is known as Spatially Adaptive Play (SAP).

At each time k > 0, an agent, say i, is randomly selected

(with equal probability) to take its action and update its

state si[k]. All other agents do not take any action such that

s−i[k + 1] = s−i[k].
The state transition for agent i is si[k + 1] =

f(si[k], ai[k]). If agent i chooses the strategy of selecting

the best action s+
i such that ui(s

+
i , s−i) ≥ ui(si, s−i) for

all si ∈ Si[k], then the dynamics of the potential game

evolves according to the best-response dynamics. In a best-

response dynamics, given the configuration of the formation,

each agent moves to a new state si ∈ Si[k] that maximizes

its utility, i.e.

s+
i [k + 1] = arg max

si∈Si[k]
ui

(

si, s−i[k]
)

. (8)

Such best-response dynamics implies a greedy algorithm

that always converges to a NE [4], identified by the potential

maximizers. Algorithm 1 formalizes such a greedy best-

response algorithm.

Algorithm 1 Best-Response Algorithm(s) → s
∗

while ŝ is not a NE do

for i ∈ N do

find S′
i ⊂ Si

s+
i = argmaxsi∈S′

i
ui(si, s−i)

end for

end while

Note that Algorithm 1 is a distributed algorithm. The

action of each agent is also restricted to a subset of its

configuration space as given by (2).

D. Existence, Convergence and Computation Complexity of

Equilibria

In some games, best response dynamics always converge

quickly, but in many games it does not. For potential games

we have the following result:

Theorem 3.5: [18] In any potential game, best response

dynamics always converge to a Nash equilibrium.

In some games the potential function can be optimized

in polynomial time, but in others the optimization problem

is NP-hard. The problem of finding equilibria in potential

games is closely related to the problem of finding local

optima in optimization problems. Tardos and Wexler [18]

showed that finding a Nash equilibrium in potential games

is a Polynomial Local Search (PLS) problem (i.e PLS-

complete), assuming that the best response of each agent

can be found in polynomial time.

Theorem 3.6: [18] Finding a pure Nash equilibrium in

potential games, where best response can be computed in

polynomial times, is PLS-complete.

In our scenario, the computational complexity depends on

the scale of the grid of the action space, the number of agents,

and the number of collision checkings.

Because only one agent updates its proposal at a given

negotiation step, the convergence of negotiations may be

slow when there are large number of agents. Multiple agents

can be allowed to update their strategies at a given step as

long as they do not have a common link. Allowing such

multiple updates may potentially speed up the negotiations

substantially. In summary, a restricted SAP can be a very ef-

fective negotiation mechanism in our topology game because

it would have low computational burden on each agent and it

would lead to (locally) optimal solutions in potential games.

IV. A DISTRIBUTED SOLUTION

Consider the optimization problem (3), where given con-

nected initial and final topologies, we would like to have

a motion planning algorithm that respects local and global

constraints such as collision-avoidance and connectivity. Our

goal is to find the solution to (3) in a distributed fashion. In

this work, it is assumed that agents have access to the global

knowledge regarding the connectivity of the network, but act

locally, and their cooperation is to the extend that it helps

them maximize their utilities.

Let f(s) : S → R be the connectivity indicator function:

f(s) =

{

1 if s ∈ Ω
0 otherwise.

(9)

Function f(s) can be computed using the k-connectivity

matrix defined as:

Ck(s) = I + A(s) + A(s)2 + . . . + A(s)k , (10)

The (i, j) entry of Ck(s) can be interpreted as the number

of communication paths of k-hop or less that connect agent
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i to agent j. Therefore (n − 1)-hop connectivity matrix,

Cn−1(s), can be used for evaluation of connectivity, because

the maximum possible length of a path between pair (i, j)
is n − 1.

A nonzero entry (i, j) of Cn−1(s) represents that there

is a path from agent i to j. Thus, agent i can check the

connectivity of G(s) by checking the number of nonzero

entries of the ith row of Cn−1(s), which is denoted by its

l0-norm:

f(s) =

{

1 if ‖[Cn−1(s)]i‖0

0 otherwise.
(11)

Let di(t) = ‖si(t)−si(T )‖ represent the distance between
the position of agent i at time t to its desired final position.

Optimization (3) is equivalent to:

min
s

n
∑

i=1

di(t) (12)

subject to f(s) = 1

Now one can solve optimization (12) in a distributed

fashion as a potential game where the utility function of

each agent is

ui(s) = κi · (f(s) − 1) − di(t) . (13)

By setting κi = ‖si(0)−si(T )‖ = di(0) one can guarantee
that the utility of each agent monotonically increases by

moving towards its desired final position, as long as G(s)
remains connected.

Then, the game Γ = 〈N, S, U〉 is a potential game with

the potential function:

Φ(s) =

n
∑

i=1

ui(s) . (14)

It is easy to see that the utility function is a Wonderful

Life Utility (WLU) defined by (7). The greedy best-response

algorithm 1, presented in Section III-C, can now drives the

agents to a NE characterized by the state that maximizes

(14).

Figure 3 shows the simulation results from a reconfig-

uration maneuver between two configurations for TPF-I

mission. If each spacecraft takes the shortest path (straight

line) between its initial position, Fig. 3(a), and its desired

final position, Fig. 3(b), the network becomes disconnected.

However, the network topology game, defined in this section,

generates a set of collision-free trajectories that preserve the

connectivity of the network, as the algebraic connectivity2 of

the network remains positive during the entire maneuver (see

Fig. 3(d)). The NE corresponds to the state that maximizes

the potential function (14), i.e. the desired final configuration.

Note that the performance and convergence of the learning

algorithms depend on the choice of the utility and potential

functions.

2Algebraic connectivity is the second smallest eigenvalue of the Laplacian
matrix corresponding to graph G(s).

V. SUMMARY AND FUTURE WORK

In this paper, the problem of formation reconfiguration is

formulated as a constraint optimization problem with both

local constraints - such as collision avoidance - and global

constraints - such as network connectivity. We demonstrated

that game-theoretic techniques could provide a framework

for design and analysis of such topology control problems

in a dynamic network. The game-theoretic framework allows

us to obtain distributed solutions, where the agents use global

information and make decisions locally.

The game-theoretic approach can be classified as either

a potential function method or as a randomized algorithm.

In the deterministic case, when the decision of each agent

is a pure strategy, it involves the minimization of a local

utility function - as such, it can be considered as a local

potential function method. In the case, when the strategy

of the agent is “mixed”, that is, based on randomization and

maximizing the utility in expected value, it can be considered

as a randomized algorithm. Development of a randomized

algorithm is the subject of future work. There are advantages

to using a game-theoretic approach such as the existence

of pure equilibria, and the fact that best-response dynamics

are guaranteed to converge. Also, the “price of stability”

can be bounded using the potential function method. Other

coordination and motion planning task such as coverage and

rendezvous can be framed as multi-player games [6].

The computation time is a critical parameter for the

success of a reconfiguration mission when fast formation

changes are needs. Possible directions for future work would

be studying the learning algorithm’s complexity and reducing

the computation time. The extension of the results to more

complicated dynamics in the presence of other constraints,

such as limited field-of-view, is essential to the transfer of the

technology to actual deep-space missions, and is an ongoing

work.
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