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Abstract— We present a novel Weighted Barrier Function
(WBF) method of efficiently computing optimal grasping force
distributions for multifingered hands. Second-order conic fric-
tion constraints are not linearized, as in many previous works.
The force distributions are smooth and rapidly computable, and
they enable flexibility in selecting between firm, stable grasps
or looser, more efficient grasps. Furthermore, fingers can be
disengaged and re-engaged in a smooth manner, which is a
critical capability for a large number of manipulation tasks.
We present efficient solution methods that do not incur the
increased computational complexity associated with solving the
Semi-Definite Programming formulations presented in previous
works. We present results from static and dynamic simulations
which demonstrate the flexibility and computational efficiency
associated with WBF force distributions.

I. INTRODUCTION

Redundantly-actuated parallel manipulators have been
widely studied for use in grasping robots [1]. Multifingered
grasping robots promise improved flexibility in performing
industrial tasks and are critical in systems such as bomb-
defusing or rescue robots, in which the uncertain nature of
interactions with the physical world requires flexibility of
manipulator systems.

In an early work on multifingered hands [2], Kerr and Roth
determined three primary problems in the design of grasping
robots: Manipulation, determination of hand workspace, and
force optimization. Force optimization is the selection of
optimal contact forces exerted by fingertips on the end-
effector given a particular grasp configuration. The contact
forces are characterized by a set of constraints:
• Fingers must act in unison to exert the desired wrench

on the end-effector.
• Fingers can only exert positive or pushing forces.
• Joint efforts must not exceed hardware limits.
• Contact forces must not be excessively shallow relative

to the contact plane.
The first three requirements represent linear constraints

on contact forces, while the final requirement is a nonlinear
Second-order Conic (SOC) constraint that guards against
slippage of fingers relative to the end-effector. The focus of
this paper is the efficient generation of optimal grasp force
distributions subject to these constraints.

This work was supported by the US National Science Foundation (NSF)
under Grants ANI-0331481 and ECCS-0725441

There is considerable prior work in force optimization for
grasping robots. In [2], Kerr and Roth linearized the nonlin-
ear friction-cone constraint and posed the force optimization
problem as a Linear Program (LP). Linear equality con-
straints were removed by decomposing grasping forces into
particular and homogeneous force vectors and optimizing
purely on these homogeneous force vectors. These statically
indeterminate components are also known as internal force
vectors. The optimization objective was to minimize the
proximity to violation of constraints in a method roughly
analogous to finding the Chebyshev approximation of the
center of the feasible polyhedron. Furthermore, Cheng and
Orin [3] described efficient methods of solving LP problems
using a compact dual method.

There are two significant shortcomings associated with the
LP approach suggested in [2] and [3]. First, the linearization
of friction-cone constraints is not particularly accurate unless
many linear constraints are used to approximate each cone.
If many inequalities are used, the associated computational
burden increases. Second, as noted by the authors, the
resulting force profiles are prone to discontinuous behavior
in response to infinitesimal changes in robot configuration.
This is particularly problematic if an end-effector is to be
held steady on the border between two different operating
regions. The resulting oscillations between force regions can
result in instability.

Buss et al. observed that the nonlinear friction-cone
constraint was equivalent to the positive definiteness of a
particular matrix P [4]. By using this property, the force
optimization problem could be formulated as a Semi-Definite
Program (SDP), which is a convex optimization problem. In
[5], a linearly constrained gradient flow solution method is
proposed. An improved solution method is presented in [6],
wherein a Dikin-type algorithm is employed. However, in
these methods (as with all SDP solvers), the computation of
descent directions is expensive, and an appropriate step-size
must be determined by a linesearch. Thus, the per-iteration
computational burden can be high unless special properties
of the bounding matrices are exploited [7]. In fact, all SOC
problems can be solved as SDP problems, but doing so is
inadvisable both on numerical grounds and due to increased
computational complexity [8].

The authors of [9] note that the SDP methods proposed
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in [6] require feasible starting points and propose a gradient
method for generating such initial points.

In [10], a recurrent neural network is proposed that min-
imizes a quadratic objective function subject to nonlinear
friction-cone constraints.

The objective function proposed in [4] was composed of
a linear sum of contact wrenches and a barrier term that ap-
proaches infinity as the matrix P approaches singularity i.e.
as the friction-cone constraints are approached. By weighting
the two elements of the objective function, users could favor
low joint effort (at the cost of reduced robustness to slip)
or increased robustness to slip (at the cost of increased joint
effort). This tradeoff is critical in enabling platforms to grasp
both heavy and delicate objects.

In [11], Schlegl et al. provide experimental results on a
four-fingered hand. Forces are found using an SDP formula-
tion, and the ability to disengage and re-engage fingers in a
smooth fashion is demonstrated. This is a critical capability
for many manipulation tasks.

In this paper, we present the Weighted Barrier Func-
tion (WBF) force distribution method, which minimizes
the weighted sum of two barrier functions to efficiently
compute force distributions for redundantly-actuated parallel
manipulators subject to non-linear friction constraints. The
presented methods are characterized by:
• Smooth and continuous force profiles.
• Flexibility in selecting operating region along the grasp-

stability/joint-effort tradeoff curve.
• Smooth regrasp capabilities.
• Improved computational efficiency by avoiding the in-

creased per-iteration cost associated with SDP methods.
The remainder of this paper is structured as follows:

In Section II, we formalize the grasp force distribution
problem. In Section III, we describe two barrier functions
and introduce our novel WBF method of computing grasps.
Results are presented in Section IV, as is analysis of the
computational burden incurred by WBF and SDP solution
methods. In Section V, we conclude the paper.

II. THE GRASPING FORCE DISTRIBUTION PROBLEM

A schematic diagram of a multifingered grasping robot is
shown in Fig. 1. The primary objective of force distribution
is to exert the desired wrench, f ∈ <6, on the end-effector.
This can be expressed as follows:

Wc = f , (1)

where W is a grasp map matrix and c is the vector of contact
forces exerted by the fingers on the object. If the finger
contacts are modeled as Frictionless Point Contacts (FPC),
then c consists of only forces normal to the grasped object
and is an n-dimensional vector, where n is the number of
fingers. If Point Contact With Friction (PCWF) is assumed,
c ∈ <3n consists of one normal and two tangent forces
for each finger. For the ith finger, we define these as ci =[
cinorm cix ciy

]T . Finally, if Soft Finger Contacts (SFC) are
considered, c ∈ <4n, and each finger also applies a wrench
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Fig. 1. A three-fingered hand grasping an object. Joint torques, τij ,
contact forces, ci, and the desired wrench, f , are shown.

about the axis normal to the contact plane. In this paper, we
use the PCWF contact model, but all methods apply directly
to the FPC and SFC contacts as well. Furthermore, we define
the dimensionality of c as m.

In addition to the linear equality constraint posed by
Eqn. (1), grasp forces are also constrained by actuator and
hardware limits. In particular, each joint must not exceed its
torque limits. If τL ∈ <m and τU ∈ <m represent lower
and upper joint torque limits, then we have

τL ≤ JT c ≤ τU , (2)

where J is the hand Jacobian.
It is also critical that fingers not exert forces that are

excessively shallow relative to the normal plane, which
would result in slippage. In the SFC contact model, this is
represented by the following SOC constraint:

µicinorm ≥
√

c2
ix

+ c2
iy

, i = 1 . . . n, (3)

where µi is the coefficient of friction between the ith finger
and the grasped object. This friction-cone constraint dictates
that the forces exerted by finger i must lie within the Lorentz
cone whose radius increases at a rate of µi relative to the
height. This is shown in Fig. 2.

Thus, the grasp optimization problem becomes:

∗
c = argmin

c
f(c)

s.t. Wc = f

τL ≤ JT c ≤ τU

µicinorm ≥
√

c2
ix

+ c2
iy

, i = 1 . . . n, (4)

where f(c) is some objective function. In order to reduce
the risk of slippage, f(c) should penalize proximity to
friction-cone constraints. This is particularly important in
real-world applications, where friction coefficients and other
grasp properties may not be precisely known. Furthermore,
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Fig. 2. A contact point showing the contact force vector, ci, its
normal and tangential components, and the Lorentz cone within
which the contact vector must reside.

to reduce joint effort and avoid excessive internal forces,
which may crush delicate objects, the magnitude of the
contact forces should also be minimized. These goals are
contrasting, as reducing contact forces generally decreases
friction margins. Therefore, a weighted sum of the two
penalty terms should be used that enables end-users to select
an operating region along the tradeoff curve between grasp
stability and joint effort. The objective functions proposed
in [4] and [12] behave in this manner, but the iterative
methods used to solve the associated SDP formulations are
characterized by a high computational burden, as is discussed
in Section IV-B.3. In the following section, we propose a
novel objective function that enables this flexibility without
incurring the increased computational burden associated with
SDP solvers.

III. WEIGHTED BARRIER FUNCTIONS FOR FORCE
DISTRIBUTION

In this section, we present a novel Weighted Barrier
Function (WBF) formulation that efficiently generates grasp-
ing force distributions that possess a number of positive
characteristics. Before doing so, it is necessary to introduce
two barrier functions that are frequently used in constrained
optimization problems. In Section III-A, we present a barrier
function that is commonly employed for Linear Programs
(LPs) and provide expressions for its gradient and Hessian
matrix. In Section III-B, we introduce a barrier function
commonly used in solving Second-Order Conic programs
(SOCPs). Thereafter, in Section III-C, we present our novel
formulation and discuss methods used to rapidly compute
optimal solutions.

A. Polyhedral Barrier Function

Consider the polyhedral set Q ∈ <u that satisfies:

Q = {x|Ax ≤ b} , (5)

where x ∈ <u, and A ∈ <v×u and b ∈ <v represent a set
of v linear inequality constraints on x. A barrier function

commonly used to represent such linear constraints is given
by

Φlin(x) = −
v∑

i=1

ln(ri), (6)

where ri is the ith element of r = b−Ax. The gradient,
∇Φlin(x) ∈ <u, and Hessian matrix, ∇2Φlin(x) ∈ <u×u,
are required for the optimization methods discussed below,
so we provide them here:

∇Φlin(x) = AT d

∇2Φlin(x) = AT (diag(d))2A, (7)

where d ∈ <v is a vector whose ith entry is given by 1
ri

[13].

B. SOC Barrier Function

If a vector y = [y0|ŷ]T satisfies µy0 ≥ ‖ŷ‖, then y lies
within the Lorentz cone defined by the parameter µ, and we
write y ºsoc 0. Using this notation and splitting the vector
y into the scalar y0 and subvector ŷ is a common practice
in SOCPs [8]. For a set of β vectors, written as

ỹ =




y1

...
yβ


 , (8)

we can define the barrier function

Φsoc(ỹ) = −
β∑

i=1

ln((µiyi0)
2 − ‖ŷi‖2), (9)

which is finite only if all vectors lie within their correspond-
ing cones.

In order to provide expressions for the gradient and
Hessian matrix of Φsoc(ỹ), we first introduce the matrix

Rµi =




−µ2
i 0 . . . 0

0 1 . . . 0
...

...
. . .

...
0 0 . . . 1


 , (10)

which is frequently used in SOCPs. The gradient of
Φsoc(yi)is given by

∇Φsoc(yi) =
2
gi

Rµiyi, (11)

where gi = µ2
i y

2
i0
−‖ŷi‖2. The gradient of Φsoc(ỹ) is given

by:

∇Φsoc(ỹ) =



∇Φsoc(y1)

...
∇Φsoc(yβ)


 . (12)

The Hessian matrix of Φsoc(yi) is given by:

787



∇2Φsoc(yi) = ∇Φsoc(yi)∇T Φsoc(yi) +
2
gi

Rµi
, (13)

and the Hessian matrix of Φsoc(ỹ) is given by:

∇2Φsoc(ỹ) = Blockdiag
i=1...β

(∇2Φsoc(yi)). (14)

C. Force Distribution by Weighted Barrier Functions

1) Weighted Barrier Function Formulation: Recall from
Eqn. (4) that the force optimization problem consisted of
minimizing an objective function, f(c), subject to linear
equality constraints, linear inequality constraints, and nonlin-
ear friction cone constraints. The linear inequality constraints
can be written as:

Ax ≤ b, where

A =
[

JT

−JT

]
, and

b =
[

τU

−τL

]
. (15)

Furthermore, the nonlinear friction-cone constraint can be
written as ci ºsoc 0, i = 1 . . . n. Thus, we propose the
following formulation for grasp force optimization:

∗
c = argmin

c
Φ̄(c)

s.t. Wc = f , (16)

where Φ̄(c) = Φsoc(c)+αΦlin(c). We call this formulation
the Weighted Barrier Function method because the objective
function consists solely of barrier terms weighted relative to
each other. The first term penalizes proximity to slippage
conditions, and the second penalizes excessive joint effort.
The effect of varying α, is to adjust the relative weight of
the two terms. For large α, large joint efforts are penalized
more severely, and lower grasp forces are expected, with the
associated cost of increased probability of slip. For small α,
proximity to slip conditions is penalized more severely, and
larger joint efforts are favored. This is discussed in greater
detail in Section IV-A.

In Eqn. (16), the objective function and inequalities in Eqn.
(4) have been replaced by a barrier funtion. The subsequent
optimization still generates optimal force distributions, in
that they are “centered” in the feasible space and thereby
minimize proximity to constraint violations. This is akin to
the work in [2], except that the notion of “centering” in [2] is
roughly analagous to the Chebyshev center of a polyhedron,
which is prone to step discontinuities.

It is noted here that interior solutions to all convex
optimization problems follow smooth trajectories in response
to smooth changes in input data [13]. For finite weights, log-
arithmic barrier functions result in strictly interior solutions.
Thus, the use of analytic centering guarantees continuous
force profiles.

2) Reduced Formulation: As noted in [2], linear equality
constraints on c can be eliminated with the additional benefit
of reducing the number of optimization variables. Any c
satisfying Wc = f can be rewritten as c = cp + ch, where
cp represents a particular solution such that Wcp = f , and
where ch lies in the nullspace of W. A particular solution
is readily found using cp = W+f , where + indicates the
pseudovinverse. Given a matrix N spanning the nullspace of
W, we can write

c = W+f + Nλ, (17)

where λ weights the vectors spanning the nullspace of W.
Eqn. (16) now becomes

∗
λ = argmin

λ
Φ̄(cp + Nλ). (18)

If W is of full row rank, as it is in all nonsingular
configurations, then N ∈ <m×(m−6) and λ ∈ <m−6.
Thus, the dimension of the optimization vector has decreased
from m to m− 6, which results in significant reductions in
computational burden. It should be noted that the gradients
and Hessian matrices will also change to reflect the change
in variables. We now have:

∇Φ̄(λ) = NT (∇Φsoc(c) + α∇Φlin(c)), and

∇2Φ̄(λ) = NT (∇2Φsoc(c) + α∇2Φlin(c))N. (19)

3) Regrasping: In many grasping applications, manipula-
tors are required to disengage and re-engage fingers in order
to execute otherwise impossible tasks. For example, Schlegl
et al. consider a four-fingered hand screwing a light bulb
into a socket [11]. It is clear that, to execute this task, a
hand must disengage fingers and regrasp the light bulb in
order to repeatedly wrench it. During regrasping, the desired
wrench, f , must still be delivered, and all joint torque and
friction cone constraints must be met. Furthermore, contact
forces must be continuous throughout, or grasp integrity may
be compromised.

To enable smooth regrasping, we augment the linear
inequalities given in Eqn. (15) with an additional upper
constraint on the normal contact forces of each finger. The
constraint assumes the following form:

cinorm ≤ wi(t)cmax, (20)

where cmax is a loose upper bound on the maximum normal
contact force, and 0 ≤ wi(t) ≤ 1 is a weight associated with
each finger. Under normal operating conditions, all fingers
are active, and wi = 1, i = 1 . . . n. cmax is considerably
larger than any normally occurring contact forces, so, when
wi = 1, this constraint has a minimal impact on

∗
ci . However,

if finger i is to be disengaged, wi(t) gradually shrinks from
1 to 0, causing a decrease in cinorm . When wi(t) becomes
equal to 0, finger i is entirely removed from the grasp, and
the hand is treated as an (n−1)-fingered hand. When finger
i re-engages, its corresponding constraints are placed back
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into the force optimization, and wi(t) increases gradually
from 0 to 1.

It is known that interior solutions to all convex optimiza-
tion problems vary smoothly in response to smooth changes
in input data. Smooth changes in wi(t) meet this smoothness
criteria, and adding or removing fingers whose contact force
is zero has no effect on the grasp. Thus, continuity of contact
forces during regrasping is guaranteed.

4) Computation Method: Because the gradient and Hes-
sian matrix of Φ̄(λ) are readily computable, the well-known

Newton method can be used to compute
∗
λ . The Newton

method is a globally convergent iterative algorithm that
boasts quadratic convergence near the optimum [13]. During
each iteration of the algorithm, the current guess λk is
updated as follows:

λk+1 = λk − γ∇2Φ̄−1
k ∇Φ̄k, (21)

where γ ≤ 1 is a factor used to ensure that the Newton
step does not leave the feasible region and that the new
estimate has a lower objective value than the current one.
In our implementation, γ is found using a backtracking line
search.

5) Initialization: The Newton method converges globally
from any feasible initial point, and quadratic convergence is
guaranteed near the optimum [13]. Thus, we must somehow
generate a feasible starting iterant before the optimization

can begin.
∗
λ (t) varies smoothly with smooth changes in the

input data, as is the case for interior solutions to all convex
optimization problems [13]. This property is tremendously
useful in generating near-optimal starting iterants, in that
the optima from the two previous iterations can be used to
linearize the force profile and generate a starting iterant via
extrapolation. As will be seen in Section IV-B, the proximity
of this starting iterant to the global optimum yields very high
efficiency.

For problems in which the feasible space is small, this
extrapolated initial iterant may be infeasible. In this event, a
Phase-1 solver can be used with the extrapolated starting
iterant as its initial point. Because this starting point is
generally near-feasible, in most cases only one iteration of
the Phase-1 solver is required.

Typical Phase-1 solvers find feasible starting points by
introducing a slack variable that expands the feasible space
[13]. This slack variable is subsequently reduced until either
a feasible starting point has been found or the problem
constraints are found to be infeasible. In the latter case, the
Phase-1 solver returns the solution for which the violation
of problem constraints is minimized. Thus, infeasible finger
configurations are managed gracefully.

IV. RESULTS

Simulations were performed in which a four-fingered hand
manipulated a cube with a mass of 250 g and a side length
of .075 m. Each finger is composed of two links of length
.075 m. The first joint, which connects the first link to the
rigid palm, is a two-DOF joint which can rotate about the

x

yz

(-.05,0,0) (.05,0,0)

(0,-.05,0)

(0,.05,0)

0θ
1

θ
2

θ
3

.075m

.075m

.075m
Finger 1

Finger 3

Finger 2

Finger 4

Fig. 3. The robotic grasping platform described in Section IV.

axis normal to the hand and control the angle of the finger
relative to the palm. The second joint has one DOF, namely
the retraction or extension of the finger. The fingers extend
from the sides of a .10 m square centered at the origin. All
actuators are characterized by τL = −.5 N·m and τU = .5
N·m, and all links are considered massless. The coefficient
of friction for all contact points is taken to be .5, and the
contact points occur at the centers of the vertical sides of the
cube. This is shown in Fig. 3.

A. Static Simulations

In order to demonstrate the effect that the weighting factor
α, described in Section III-C.1, has on grasps, we considered
a static grasp of the cube, which was held with its center
at [.025 − .05 .1] m with a rotation of .1 radians about
its vertical axis. α was varied from .01 to 100, and the
corresponding optimal grasps were recorded. Fig. 4 shows
the resulting normal forces of all fingers as a function of α.
It is apparent that increasing α results in significant decreases
in normal forces and a much lighter grip.

We define the torque residual rτ as the minimum differ-
ence between the vector of joint torques and their limits.
Further, we define the friction residual, rf , as follows:

rf = min
i=1:n

(µ2
i c

2
inorm

− (c2
ix

+ c2
iy

)). (22)

Thus, rf is a measure of proximity to violation of the friction
cone constraints.

In Fig. 5, the normalized torque and friction residuals are
plotted against α. For small α, large rf and small rτ are
observed. The reduced weighting of Φlin relative to Φsoc

yields high torques and a firm grasp. Thus, rf is large, and
the grasp is resistant to slippage. For large α, rτ increases
at the cost of a decrease in rf , as the high weight of Φlin

relative to Φsoc forces joint torques away from their limits.
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Fig. 4. Normal contact forces shown as a function of α.

10
−2

10
−1

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

a

N
o

rm
a

liz
e

d
 R

e
s
id

u
a

ls

 

 

Friction Resid

Torque Resid

Fig. 5. Torque and friction residuals shown against α.

It is also evident that most of the variation occurs between
α = .1 and α = 10 and that significant flexibility is enabled
by moderate values of α.

B. Dynamic Simulations

In order to demonstrate the numerical efficiency of com-
puting WBF solutions, we simulated the execution of a
dynamic trajectory on the same grasping mechanism as
considered above. In a two-second span, the cube executes
a horizontal circle with a radius of .025 m centered at
[.025 0 .05] m, while θz varies sinusoidally with an amplitude
of π/8 and a frequency of 1 Hz. We consider α=5 and a servo
rate of 250 Hz.

1) Four-fingered Simulations: Execution of the trajec-
tory was simulated, and WBF forces were computed and
recorded. Fig. 6 shows normal contact forces, and Fig. 7
shows maximum joint torques. It is apparent that all joints
remain well below their torque limits. A plot of rf (t), shown
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Fig. 6. Normal forces during four-fingered simulations described
in Section IV-B.1.
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Fig. 7. Maximum joint torque during four-fingered simulations
described in Section IV-B.1.

in Fig. 8, indicates that the friction residual remains safely
above 0 and that slippage conditions are avoided. During
this simulation, each computation of WBF forces required
only a single iteration of the Newton method, and the mean
computation time was roughly 700 µs on an Intel Pentium M
processor running at 1.5GHz. It should be noted that these
results were generated using code written in an interpretive
language and that significant reductions in computation time
are expected for compiled versions. While this computational
burden is expected to rise in real systems, where measure-
ment errors and control inputs may cause more fluctuation in
f , we still expect the extrapolation method to produce near-
optimal starting iterates well within the region of quadratic
convergence of Newton’s method. Thus, the increase in
computational burden would be moderate.

2) Regrasping Simulations: In order to demonstrate re-
grasping capabilities, we consider the simulated execution

790



0 0.5 1 1.5 2
0.5

1

1.5

2

2.5

3
Friction Cone Residual

Time (sec)

R
e

s
id

u
a

l 
(N

2
)

Fig. 8. Friction residual during four-fingered simulations described
in Section IV-B.1.

0 0.5 1 1.5 2
0

1

2

3

4

5

Time (sec)

N
o

rm
a

l 
F

o
rc

e
 (

N
)

Normal Forces

 

 

Finger1

Finger2

Finger3

Finger4

Fig. 9. Normal forces during regrasping simulations described in
Section IV-B.2.

of the same trajectory described above. However, in this
simulation, finger 1 is removed between t = .5 s and t = 1.5
s. Because the removal of finger 1 can not occur instantly,
w1(t) begins to decrease from 1 at t = .25 s. Similarly, the
regrasping phase occurs over a period of .25 s.

Fig. 9 shows the normal contact forces during execution of
the trajectory. Continuous grasping forces are observed, even
during the removal and re-engaging of finger 1. When finger
1 is disengaged, finger 3, which otherwise provides much of
the force opposing finger 1, reduces its normal force. The
other two fingers increase their grasping forces in order to
maintain grasp stability. The plot of maximum joint torque
in Fig. 10 shows that the removal of finger 1 results in an
increase in maximum joint torque from t = .5 s to t = 1.5
s.

Fig. 11 shows the friction residual, rf (t), during execution
of the trajectory. Despite the efforts of fingers 2-4 to stabilize
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Fig. 10. Maximum joint torque during regrasping simulations
described in Section IV-B.2.
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Fig. 11. Friction residual during regrasping simulations described
in Section IV-B.2.

the grasped object, the absence of finger 1 significantly
reduces the robustness of the grasp. In Fig. 12, the number
of Newton iterations required to compute

∗
c is shown along

w1(t). During typical operation, only one Newton iteration
is required to converge to the optimum. However, when w1

is very close to 0, the feasible region is small, and the
problem becomes ill-conditioned. As a result, the number of
required iterations increases. To mitigate this, finger i could
be removed from the grasping formulation when wi becomes
sufficiently small. During four-fingered operation, typical
computation times were roughly 700 µs, and, during three-
fingered operation, computation times shrank to roughly 600
µs.

3) Analysis of Computational Complexity: In computing
WBF grasping forces, the Newton step must be computed us-
ing Eqn. (21) during each iteration. The number of floating-
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Fig. 12. Newton iterations required for convergence shown with
w1(t) during simulated execution of a test trajectory.

point operations (flops) required to compute the gradient and
Hessian and then solve the linear system for the four-fingered
robot considered in Section IV-B.1 is roughly 12 kflops. In
our trials, only one iteration of the Newton method was
required during each servo-loop, so we expect the cost of
computing WBF force distributions to be on the order of 12
kflops.

SDP formulations, such as those presented in [5], are
typically solved using iterative projection methods, in which
much of the computational effort is dedicated to computing
the solution to a particular least-squares problem [7]. If no
special matrix structures are exploited, then each Linear Ma-
trix Inequality (LMI) contributes p6

4 flops, where p is the row
dimension of the matrix used to represent the LMI. For the
four-fingered case considered above, using the formulation in
[12], there are four LMIs with p = 3 (to represent the friction
cone constraints), and two LMIs with p = 6 (to represent
the force equality and torque constraints). This results in
roughly 24kflops, twice the burden of computing a Newton
step. It should be noted that this burden represents only a
fraction of the per-iteration cost of the SDP solver. In [12],
convergence typically occurs in roughly 5 iterations for a
four-finger grasper slightly simpler than ours, resulting in a
computational burden of over 120kflops. Thus, the cost of
computing grasp forces using our WBM method is at least an
order of magnitude lower than that incurred by SDP solvers.

V. CONCLUSION

In this paper, we have presented the Weighted Barrier
Function (WBF) method of computing grasping force dis-
tributions. WBF distributions are continuous and rapidly
computable, and they enable flexibility in selecting between
firm, stable grasps or looser, more efficient grasps. Further-
more, fingers can be disengaged and re-engaged in a smooth
manner, which is a critical capability for a large number

of manipulation tasks. Previous methods with similar capa-
bilities [4], [12], have been elegantly formulated as SDPs,
but the computational burden posed by SDP solvers vastly
exceeds that required of the SOCP formulation presented in
this paper.
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