
Using Model Knowledge for Learning Inverse Dynamics

Duy Nguyen-Tuong and Jan Peters

Abstract— In recent years, learning models from data has
become an increasingly interesting tool for robotics, as it allows
straightforward and accurate model approximation. However,
in most robot learning approaches, the model is learned from
scratch disregarding all prior knowledge about the system. For
many complex robot systems, available prior knowledge from
advanced physics-based modeling techniques can entail valuable
information for model learning that may result in faster
learning speed, higher accuracy and better generalization. In
this paper, we investigate how parametric physical models (e.g.,
obtained from rigid body dynamics) can be used to improve
the learning performance, and, especially, how semiparametric
regression methods can be applied in this context. We present
two possible semiparametric regression approaches, where the
knowledge of the physical model can either become part of the
mean function or of the kernel in a nonparametric Gaussian
process regression. We compare the learning performance of
these methods first on sampled data and, subsequently, apply
the obtained inverse dynamics models in tracking control on a
real Barrett WAM. The results show that the semiparametric
models learned with rigid body dynamics as prior outperform
the standard rigid body dynamics models on real data while
generalizing better for unknown parts of the state space.

I. INTRODUCTION

Acquiring accurate models of dynamical systems is an

essential step in many technical applications. In robotics,

such models are for example required for state estimation

[1] and tracking control [2], [3]. It is well-known that the

robot dynamics can be modeled by [4]

τ (q, q̇, q̈)=M (q) q̈+C (q, q̇)+G (q)+ǫ (q, q̇, q̈) , (1)

where q, q̇, q̈ are joint angles, velocities and accelerations

of the robot, respectively, τ denotes the joint torques, M(q)
is the generalized inertia matrix of the robot, C(q, q̇) are

the Coriolis and centripetal forces and G(q) is gravity. As

shown in Equation (1), the robot dynamics equation consists

of a rigid body dynamics model (RBD), τRBD =M(q)q̈ +
C(q, q̇)+G(q), and a structured error term ǫ(q, q̇, q̈). The

model errors are caused by unmodeled dynamics (e.g., hy-

draulic tubes, actuator dynamics, flexibility and dynamics of

the cable drives), ideal-joint assumptions (e.g., no friction),

inaccuracies in the RBD model parameters, etc. The RBD

model of a manipulator is well-known to be linear in the

parameters β [4], i.e.,

τRBD =Φ(q, q̇, q̈)β , (2)

where Φ is a matrix containing nonlinear functions of joint

angles, velocities and accelerations which are often called

basis functions. Modeling the robot dynamics using the

D. Nguyen-Tuong and J. Peters are with the Max Planck Institute for
Biological Cybernetics, Spemannstraße 38, 72076 Tübingen, Germany
{duy.nguyen-tuong,jan.peters}@tuebingen.mpg.de

RBD model in Equation (2) requires the identification of the

dynamics parameters β. For our 7 degree-of-freedom (DoF)

Barrett WAM, for example, we have to identify 70 dynamics

parameters (for each DoF, we have 10 parameters that, in an

ideal world, could directly be obtained from the CAD data).

The main advantage of the RBD model is that it provides a

“global” and unique relationship between the joint trajectory

(q, q̇, q̈) and the torques τRBD. This inverse dynamics

model can be computed efficiently and is applicable in

real-time. In the past, such parametric models have been

employed within parametric learning frameworks resulting

both in system identification and adaptive control approaches

[2], [5]. In adaptive control, for example, the dynamics

parameters β are continuously adjusted while the model

is used for predicting the feedforward torques required for

achieving the desired trajectory [2]. In practice, estimating

the dynamics parameters is not always straightforward. It is

hard to create sufficiently rich data sets so that plausible

parameters can be identified, and when identified online,

additional persistent excitation issues occur. Furthermore, the

parameters that optimally fit a data set, are frequently not

physically consistent (e.g., violating the parallel axis theorem

or having physically impossible values) and, hence, physical

consistency constraints have to be imposed on the regression

problem [6], [7]. Due to the fixed basis functions, parametric

models are not capable of capturing the structured nonlinear-

ities of ǫ(q, q̇, q̈). Instead, these unmodeled components will

bias the estimation of the parameters β.

Learning methods that are not limited by fixed basis

functions will suffer less from many of these problems.

Especially, modern nonparametric learning techniques, such

as Gaussian process regression offer an appealing alternative

for model learning as they infer the optimal model structure

from data [8]. Therefore, nonparametric methods can be used

more flexibly and are powerful in capturing higher order

nonlinearities resulting in faster model approximation and

higher learning accuracy. When learning inverse dynamics,

for example, the nonparametric methods will approximate

a function describing the relationship q, q̇, q̈ → τ that

includes all nonlinearities encoded by the sampled data [3].

Most nonparametric methods attempt to learn the model

from scratch and, thus, do not make use of any knowl-

edge available to us from analytical robotics. Nevertheless,

many nonparametric learning methods also exhibit several

drawbacks. First, very large amounts of data are necessary

for obtaining a sufficiently accurate model (e.g., learning

an inverse dynamics model requires handling enormous

amount of data [3]). Second, the sampled data has to be

sufficiently informative, i.e., the data should contain as much

2010 IEEE International Conference on Robotics and Automation
Anchorage Convention District
May 3-8, 2010, Anchorage, Alaska, USA

978-1-4244-5040-4/10/$26.00 ©2010 IEEE 2677

information about the system dynamics as possible (in the

context of adaptive control, this problem is equivalent to

the requirement of persistent excitation). Thus, if only small

and relatively “poor” data sets are available, nonparametric

models will not be able to generalize well for unknown data.

In this paper, we want to combine the strengths of both

learning approaches, i.e., the parametric and nonparamet-

ric model learning, and obtain a semiparametric regression

framework. We identify two possible approaches to incor-

porate the parametric model from analytical robotics into

the nonparametric Gaussian process model for learning the

inverse dynamics. The first approach combines both para-

metric and nonparametric models directly by approximating

the unmodeled robot dynamics using nonparametric models.

For so doing, the robot dynamics in Equation (1) may be

described by the semiparametric model

τ (q, q̇, q̈) = Φ(q, q̇, q̈)β + ǫ(q, q̇, q̈) .
︸ ︷︷ ︸ ︸ ︷︷ ︸

parametric nonparametric

Placing a prior on the dynamics parameters β of the RBD

model additionally allows taking the uncertainty of the

estimated parameters into account. The alternative approach

employs a “rigid body dynamics” kernel for the nonparamet-

ric regression, where the kernel incorporates the information

of the parametric RBD model. As a result, τ (q, q̇, q̈) is

a nonparametric function with a RBD kernel. In order to

absorb the unmodeled dynamics ǫ which is not described by

the RBD kernel, we can combine the RBD kernel with other

appropriate kernels.

The remainder of the paper will be organized as follows,

first, we present in detail how the RBD model can be incor-

porated into the nonparametric Gaussian process regression.

In Section III, we give a brief review on inverse dynamics for

control and evaluate our semiparametric models in the setting

of learning inverse dynamics. Subsequently, we compare the

methods in the setting of low-gain robot tracking control,

where the estimated feedforward models are applied for

online torque prediction [3], [4]. The compliant tracking

task is performed on a Barrett WAM. The paper will be

summarized in Section IV.

II. SEMIPARAMETRIC REGRESSION FOR INVERSE

DYNAMICS WITH GAUSSIAN PROCESSES

Using the nonparametric Gaussian process regression

(GPR) framework [8], the robot dynamics can be modelled

by τ (x) ∼ GP(m(x), k(x,x′)), where x=[q, q̇, q̈]T is the

input, m(x) is the mean function and k(x,x′) the covariance

function of the Gaussian process (GP) (see Appendix A for

a quick review or [8] for many details). Commonly, the GP

model is assumed to have zero mean m(x)=0, i.e., no prior

knowledge, and the covariance function k(x,x′) is usually a

general kernel such as a Gaussian or Matern kernel, which

allows reproducing arbitrary functions [8]. A straightforward

way to include the RBD model shown in Equation (2) is

to set m(x) = Φ(x)β. This approach is equivalent to a

semiparametric model

τ (x)∼ Φ (x)β + GP (0, k(x,x′)) . (3)

The resulting dynamics model in Equation (3) consists of a

parametric part, i.e., the RBD model, and a nonparametric

term given by a zero mean GP. When comparing Equation (3)

to the robot dynamics in Equation (1), it can be observed that

the main purpose of the nonparametric term is absorbing the

unmodeled dynamics ǫ. For approximating the unmodeled

dynamics with a regular GP, any admissible kernels can be

used (e.g., a Gaussian kernel).

An alternative to including prior knowledge in the mean

function is to define a “rigid body dynamics” kernel

krbd(x,x′) containing the function class that describes the

RBD. Thus, the resulting model is now a GP regression with

a kernel embedding the parametric RBD model

τ (x)∼ GP (0, krbd(x,x′)) . (4)

The RBD kernel can be extended by an additional kernel

(e.g., a Gaussian kernel) to absorb the unmodeled dynamics

ǫ. In the following sections, we will describe the two

introduced semiparametric regression approaches in detail.

A. GPR with RBD Mean

If the GP mean is not zero but given by a fixed mean

function as in Equation (3), the GP model is biased towards

this prior information. In the following, we discuss two

approaches to incorporate the RBD mean function into the

GP regression. The first approach directly incorporates the

RBD as an independently estimated parametric model. The

second approach additionally infers the dynamics parameters

using a Gaussian prior taking the uncertainty of the estimated

parameters into account.

1) Using Estimated Dynamics Parameters: Inserting the

RBD model into Equation (11), we have for each DoF k a

torque prediction τ̄k for a query point x∗

τ̄k(x∗) = φk(x∗)
T β + kT

∗

(
K + σ2

nI
)
−1

(yk − Φk(X)β)

= φk(x∗)
T β + kT

∗
αk ,

(5)
where φT

k is the k-th row of Φ evaluated on the query point,

and Φk is the corresponding matrix evaluated on the training

input data X, and yk is the sampled torques of joint k. When

only pre-estimated parameters β are being used, they can be

obtained, for example, from data or CAD models of the robot

[6], [7]. Considering Equation (5), it can be seen that the

GP is mainly applied to absorb the errors between the RBD

model and the sampled data. If the RBD model perfectly

describes the robot dynamics, the error (yk−Φk(X)β) will

disappear and the prediction will depend only on the RBD

term. Equation (5) also shows that if the query point x∗

is far away from the training data X, the resulting kernel

value kT
∗

will tend to zero (for example, this holds for the

Gaussian kernel presented in Appendix A). In that case, the

resulting torque prediction τ̄k(x∗) will mainly depend on the

RBD term. This property is important, as we can never cover

the complete state space using finite (and possibly small)

training data sets. If the robot moves to the regions of the

state space that are not covered by the sampled data (i.e.,

the learned nonparametric models may not generalize well

to these state space regions), the torque prediction will rely

on the parametric RBD model.

2678

2) Placing a Prior on Dynamics Parameters: As the

dynamics parameters are estimated offline or even when they

are adapted online [2], they may be quite inaccurate due to

the difficulties discussed before. Taking the uncertainty of

our parameters into account, we can place a Gaussian prior

b on the dynamics parameters given by

b ∼ GP (β,B) , (6)

where we take the pre-estimated dynamics parameters β as

mean and define a diagonal variance matrix B [8]. The

variance expresses our belief about the uncertainty of the

estimated dynamics parameters. B can be estimated using

expert knowledge or from measured data. Using the prior

given in Equation (6), the resulting torque prediction for the

DoF k is given by

τ̄k(x∗) = φk(x∗)
T β̄k + kT

∗

(
K + σ2

nI
)
−1 (

yk − Φk(X)β̄k

)

= φk(x∗)
T β̄k + kT

∗
ᾱk ,

(7)
where β̄k is defined as

β̄k =(B−1+ΦT
k K̃−1Φk)−1(ΦT

k K̃−1yk+B−1β) ,

with K̃=(K + σ2
nI) (see [8] for more details). Note that

due to the probabilistic inference, we have for each DoF

different values for the dynamics parameters β̄k in this case.

However, as it is physically more reasonable to assume that

all DoFs share the same dynamics parameters, we can also

determine for all DoFs a single β̄ given by β̄ =(nB−1+
∑n

k=1
ΦT

k K̃−1Φk)−1(
∑n

k=1
ΦT

k K̃−1yk +nB−1β), where n

denotes the number of DoFs.

B. GPR with RBD Kernel

An alternative to including prior knowledge in the mean

function are appropriate kernels which contain the infor-

mation given by the basis functions. Incorporating prior

knowledge within the kernel framework has been discussed

in the past for a few problems [9], [10]. We adopt these ideas

and define a kernel krbd that embeds the function space of

our RBD model

kk
rbd (xp,xq) = φk (xp)

T
Wkφk (xq) + σ2

kδpq . (8)

For DoF k, the corresponding kernel is a dot product between

its basis function φk scaled by the parameter Wk. A noise

term σ2

k is additionally added to the diagonal values. Using

this RBD kernel, the hyperparameters will be given by

θk
rbd = [σ2

k,Wk]. The most principled and general way

to obtain the optimal values for θk
rbd is to minimize the

corresponding marginal likelihood. Here, we optimize the

hyperparameters θk
rbd from training data using the same

marginal log likelihood as employed to estimate the hyper-

parameters of a zero mean GP [8].

The RBD kernel, as given in Equation (8), covers only

the function classes described by the RBD basis functions.

However, in order to properly model a real robot, the function

class described the RBD is too limited and more functions

might be needed. The common RBD does not model, for

example, friction or the hydraulics tube dynamics, thus,

the corresponding RBD basis functions do not described

the dynamics resulting from such elements. The unmodeled

elements can be taken in account by adding additional

kernels to the RBD kernel to enrich the function class. A

Gaussian kernel for example, as shown in the Appendix A,

allows grasping arbitrary nonlinearities. Such an additional

kernel will extend the spaces spanned by the RBD kernel

to unknown function classes [8], [11]. Thus, the complete

kernel that we used for learning is determined by

kk (xp,xq) = kk
rbd (xp,xq) + λkk (xp,xq) , (9)

with the weighting parameter λk we can control the contri-

bution of the additional kernel k(·, ·) to the learning process.

For learning the model, we combine a zero-mean GP with the

kernel defined in Equation (9), where the hyperparameters

of kk
rbd

and k are optimized independently. Thus, the torque

prediction for the k-th DoF can be given by

τ̄k(x∗) = kkT
∗

(
Kk + σ2

kI
)
−1

yk = kkT
∗

αrb

k . (10)

Note that this way of incorporating prior knowledge via ker-

nels is a general approach to include additional information

in model learning. It can not only be used in the probabilistic

framework introduced here, but in all kernel methods (e.g.,

support vector machines [9], [11]).

III. EVALUATIONS

In this section, we evaluate the presented approaches in the

context of learning inverse dynamics models for computed

torque control. First, we give a short review of computed

torque control. Subsequently, we show a comparison of the

computational complexity and present the results in learning

inverse dynamics. In Section III-D, we report the perfor-

mance of the tracking controller on our Barrett WAM shown

in Figure 2 (a), where the learned models are employed for

online torque prediction.

A. Feedforward Torque Control using Inverse Dynamics

The computed torque tracking control law determines the

joint torques u that are required for the robot to follow

a desired trajectory qd, q̇d, q̈d [4]. In general, the motor

command u consists of two parts, a feedforward term uFF

to achieve the movement and a feedback term uFB to ensure

stability of the tracking. The feedback term can be a linear

control law such as uFB =Kpe+Kvė, where e denotes the

tracking error with position gain Kp and velocity gain Kv .

The feedforward term uFF is determined using an inverse

dynamics model and, traditionally, using the analytical RBD

model in Equation (2). If a sufficiently precise inverse dy-

namics model can be estimated, the resulting control law u=
uFF (qd, q̇d, q̈d)+uFB will drive the robot along the desired

trajectory accurately. However, if the model is not sufficiently

precise, the tracking accuracy degrades drastically and low-

gain control may become impossible [3].

B. Prediction Speed Comparison

First, we study the computational complexity of torque

prediction for all 7 DoFs, i.e., we compare the time needed

for predicting uFF for a query point (qd, q̇d, q̈d) after having

learned the mapping q, q̇, q̈→ u. The results are shown in

Figure 1. Here, the prediction vectors α have been computed

2679

0 1000 2000 3000 4000 5000

1

2

3

4

6

Data points

C
P

U
 t

im
e

 [
m

s
]

RBD Model

standard GPR

RBD Mean

RBD Prior

RBD Kernel

Fig. 1: Average time in millisecond needed for prediction of 1
query point. For a better visualization, the computation time is
plotted logarithmic in respect of the number of training examples.
The time as stated above is the required time for prediction of all 7
DoF. For the learned models, the prediction time scales linearly with
the training sample size. Comparing the prediction time, standard
GPR is as fast as the GPR models with RBD mean. GPR with RBD
kernel has the highest computational cost while the traditional RBD
model remains the fastest.

offline for each DoF (see Equations (5), (7) and (10)). During

online prediction, we only need to compute the kernel vector

k, and, for GPR with RBD mean, the basis functions φ have

to be additionally evaluated for the query point. We compare

the prediction speed of our semiparametric models with the

“standard” GPR, i.e., a GP with zero mean and Gaussian

kernel, and the traditional RBD model on training data sets

with different sample size. As shown in Figure 1, the GPR

models using RBD mean with fixed and with Gaussian prior

on the dynamics parameter are as fast as the standard GPR

during prediction. The reason is that the computations for the

RBD mean term are very fast (see the computation time for

the RBD model in Figure 1). Therefore, the prediction speed

mostly depends on the evaluations of the dot product between

the kernel and the prediction vector, which scales linearly

in the number of training examples, i.e., O(n). Compared

to the GPR with RBD mean, the computation for the GPR

with RBD kernel is more complex, since we have to evaluate

the RBD kernel in Equation (8) and, additionally, a common

Gaussian kernel as shown in Equation (9).

C. Comparison in Learning Inverse Dynamics

In the following, we compare the performances of the

semipametric models on learning inverse dynamics with the

standard GPR and the RBD model. For this comparison, we

use two small data sets, i.e, one with simulated and one with

real Barrett WAM data, where each data set has 3000 data

points for training and 3000 different ones for testing. The

training and test trajectories are generated by superposition of

sinusoidal movements similar to the one in [3]. Furthermore,

we ensure that the test data is sufficiently different from the

training data highlighting the generalization ability of the

learned models. The results are shown in Figure 2 (b) and

(c) where the approximation errors for each robot DoF on the

test sets are given as normalized mean square error (nMSE),

i.e., nMSE = MSE / variance of the target.

For the RBD model, we estimate the dynamics parameters

β using linear regression from a large data set (130,000 data

points) which covers the same part of the state space as the

real Barrett training data. During the generation of simulated

data, we apply this estimated RBD model for computation

of the feedforward torques uFF while sampling the resulting

joint torques u and joint trajectory (q, q̇, q̈) as training data.

For so doing, we make sure that the RBD model describes the

generated simulation data well. Subsequently, the same RBD

model is also applied as mean function for the semiparamet-

ric models with RBD mean. The hyperparameters for the

Gaussian kernel used by GPR with RBD mean are estimated

from training data by optimizing the marginal log likelihood

[8]. The optimization is performed using common line search

approaches such as quasi-Newton methods [12]. We apply

the same approach for estimating the hyperparameters of the

RBD kernel as shown in Equations (8,9), where the control

parameter λ is determined by cross-validation to be 1. For

the cross-validation, the increment is chosen to be 0.5 in an

interval ranging from 0.5 to 5.

As shown in the results in Figure 2 (b) and (c), the

semiparametric models are able to combine the strengths of

both models, i.e., the parametric RBD model and the non-

parametric GP model. If the parametric RBD model explains

the sampled data well as in the case of simulated data, the

semiparametric models rely mostly on the parametric term

resulting in learning performances close to the RBD model.

If the RBD model does not match the sampled data in case

of real robot data, the semiparametric models either attempt

to learn the errors made by the parametric model as done

by GPR with RBD mean, or use the additional kernel to

fit the missing function classes. It can also be seen by the

results that pure nonparametric models such as standard GPR

may have generalization difficulty, if the training data is

not sufficiently large and rich. In that case, the prediction

performance of pure nonparametric models degrades for the

unknown parts of the state space. Considering the experi-

ments with real robot data in Figure 2 (c), semiparametric

models are competitive to pure nonparametric models even

in the case when the parametric models are not precise. The

results in Figure 2 (c) can be improved for the semipara-

metric models, if the applied RBD model is estimated more

accurately using more sophisticated estimation approaches

[6]. However, Figure 2 (b) also shows that GPR with RBD

mean function might tend to overfit the data, if the deviations

between the RBD model and training data are small (e.g.,

for 1st DoF). Careful optimization of the hyperparameters

for the semiparametric models may alleviate this problem.

Comparing the GP models with fixed RBD mean and with

additional prior on the dynamics parameters, the differences

in learning performance are relatively small. One explanation

for this result is that the uncertainty of the dynamics parame-

ters, as encoded by the variance B in Equation (6), is already

taken in account by the nonparametric term for learning the

error between the RBD model and observed data. Therefore,

2680

(a) Anthropomorphic Barrett WAM

1 2 3 4 5 6 7
0

0.01

0.02

0.03

0.04

0.05

0.06

Degree of Freedom

n
M

S
E

RBD Model

standard GPR

RBD Mean

RBD Prior

RBD Kernel

(b) Error on simulation data

1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

1.2

Degree of Freedom

n
M

S
E

RBD Model

standard GPR

RBD Mean

RBD Prior

RBD Kernel

(c) Error on real WAM data

Fig. 2: (a) The 7-DoF Barrett WAM used in the evaluations. (b) Error (nMSE) on simulated data from a robot model for every DoF.
Generating the simulation data, the RBD model is used to compute the feedforward torques uFF, while the joint torques u and joint
trajectory (q, q̇, q̈) are sampled for model learning. (c) Error (nMSE) on real robot data for every DoF. For simulation data, the error of
the RBD model is very small, as the model describes the data well. Using this RBD model, the semiparametric models (with RB mean
and RBD kernel) show very good learning results similar to the performance of the RBD model. If the RBD model does not explain the
data well, such as for the real Barrett WAM data in (c), the semiparametric models can improve the performance by learning the error
between sampled data and RBD model. As shown by the results, the standard GPR model is sometimes not able to generalize well for
sufficiently different test data due to the small size of the training data sets.

1 2 3 4 5 6 7
0

0.02

0.04

0.06

0.08

0.1

0.12

Degree of Freedom

R
M

S
E

RBD Model

standard GPR

RBD Mean

RBD Prior

RBD Kernel

Fig. 3: Tracking error on the real Barrett WAM computed as RMSE
for all 7 DoF. The semiparametric models outperform the RBD
model and also the standard GPR model in most cases. Especially,
for the robot elbow and wrist (4., 5. and 6. DoF) there is a significant
improvement compared to the parametric RBD model, as these DoF
suffer from many nonlinearities which are not described by the
analytical RBD model.

the variance B may not present sufficient new information

for improving the model. However, it provides additional

robustness and may be very valuable in that way.

D. Application in Robot Computed Torque Control

In this section, we apply the learned models from Section

III-C for a robot tracking control task on the Barrett WAM,

while the models are used to predict the feedforward torques

uFF as described in Section III-A. The tracking results are

reported in Figure 3, where the tracking error is computed

as root mean square error (RMSE). The error is evaluated

after a tracking duration of 60 sec on the robot. For the

tracking task, we set the tracking gains Kp and Kv to very

low values taking in account the requirement of compliance.

Furthermore, the generated desired test trajectory is different

than the training and test trajectories used in Section III-C,

highlighting the generalization ability of the learned models.

As shown by the results in Figure 3, the semiparametric

models largely outperform the RBD model and the standard

GPR in compliant tracking performance. Especially, for the

robot elbow (4th DoF) and the robot wrist (5th and 6th

DoF) we observe a significant improvement compared to the

RBD model. The reason is that these DoFs suffer from many

unknown nonlinearities which can not be explained by the

analytical RBD model, such as complex friction, stiction and

backlash due to the gear drive etc. The tracking performance

for these DoFs is additionally shown in Figure 4. Here, one

can see that the Barrett WAM using the RBD model fails to

follow the rhythmical movements of the desired trajectory in

the compliant mode (for example, due to suboptimal friction

compensation). While the semiparametric models enable the

robot to follow the desired trajectory well, the standard

nonparametric GPR exhibits several problems in prediction

of the feedforward torques resulting in instantaneous jumps

in joint trajectory as shown by Figure 4 (b) and (c).

In this experiment, the sampling time of the Barrett WAM

is 500 Hz (,2 ms). For the real-time online torque prediction,

we compute the prediction in parallel to the robot controller

in a separate process. Thus, we update the feedforward

torques uFF according to the computational speed of the

prediction models, while maintaining the feedback torques

uFB for every sampling step ensuring the tracking stability

of the robot.

IV. CONCLUSION

In this paper, we have introduced two semiparametric

approaches to learning the inverse dynamics models while

combining the strengths of parametric RBD model and

nonparametric GP models. The knowledge of the parametric

RBD model is incorporated into the nonparametric GP

2681

0 2 4 6 8 10
1.2

1.3

1.4

1.5

1.6

1.7

Time [sec]

J
o

in
t

P
o

s
it

io
n

 [
ra

d
]

Desired

RBD Model

standard GPR

RBD Mean

RBD Prior

RBD Kernel

(a) Tracking on WAM for the 4th DoF

0 2 4 6 8 10
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Time [sec]

J
o

in
t

P
o

s
it

io
n

 [
ra

d
]

(b) Tracking on WAM for the 5th DoF

0 2 4 6 8 10
−0.5

0

0.5

Time [sec]

J
o

in
t

P
o

s
it

io
n

 [
ra

d
]

Desired

RBD Model

standard GPR

RBD Mean

RBD Prior

RBD Kernel

(c) Tracking on WAM for the 6th DoF

Fig. 4: Tracking performance in joint space on the Barrett WAM for the first 10 sec. (a) Performance for the 4th DoF (elbow). (b)
Performance for the 5th DoF (wrist rotation). (c) Performance for the 6th DoF (wrist flexion extension). The RBD model does not provide
a satisfying performance while the learned models exhibit good tracking results. Standard nonparametric GPR have some problems in
generalization for unknown test trajectory as small training data sets are used, resulting in a deteriorated tracking performance (green
dashed line).

model either as a RBD mean function or as a RBD kernel.

We evaluate the semiparametric models in learning inverse

dynamics for robot tracking control. The results on the

Barrett WAM show that the semiparametric models provide a

higher model accuracy and better generalization for unknown

trajectories compared to RBD and standard GPR. The gist

of semiparametric models is that they exhibit a competitive

learning performance even on small and poor data sets,

overcoming the limitation of pure nonparametric learning

methods while exploiting the prior information encoded in

parametric models.

APPENDIX

A. Gaussian Process Model for Regression

Given a set of n training data points {xi, yi}
n
i=1

, we intend

to discover the latent function f(xi) which transforms the

input vector xi into a target value yi given by the model

yi= f(xi)+ǫi , where ǫi is Gaussian noise with zero mean

and variance σ2
n [8]. A Gaussian Process (GP) is determined

by its mean function m(x) and its covariance function

k(xp,xq) given by m(x) = E [f(x)] and k(xp,xq) =
E [(f(xp) − m(xp))(f(xq) − m(xq))].

A GP is then denoted as f(x) ∼ GP(m(x), k(xp,xq)).
In practice, the mean function and the covariance function

can be chosen by the users. One common choice is a zero

mean and a Gaussian kernel as covariance function, i.e.,

k(xp,xq) = σ2
sexp(− 1

2
(xp −xq)

T W(xp −xq)), where σ2
s

denotes the signal variance and W the width of the Gaussian

kernel [8]. The hyperparameters of the resulting Gaussian

process are θ = [σ2
n, σ2

s ,W] and their optimal value for a

particular data set can be derived by maximizing the log

marginal likelihood using common optimization procedures,

e.g., quasi-Newton methods [8], [12]. For the prediction

f̄(x∗) of a query input vector x∗, a joint probability of

training data and query point has to be defined, which is

also a GP and is given by
[

y

f̄(x∗)

]

∼ GP

([
m(X)
m(x∗)

]

,

[
K(X,X) + σ2

nI k(X,x∗)
k(x∗,X) k(x∗,x∗)

])

.

Here, K(X,X) denotes the covariance matrix evaluated on

the training input data X, and k(X,x∗) the covariance vector

evaluated on X and the query point x∗. Conditioning the

joint probability yields the predicted mean value f̄ and the

variance V for the query point

f̄(x∗) = m(x∗) + k∗

T
(
K + σ2

nI
)
−1

(y − m(X))

= m(x∗) + k∗

T α ,

V(x∗) = k(x∗,x∗) − k∗

T
(
K + σ2

nI
)
−1

k∗ ,

(11)

with k∗ = k(X,x∗), K = K(X,X) and α denotes the so-

called prediction vector.

REFERENCES

[1] J. Ko and D. Fox, “Gp-bayes filters: Bayesian filtering using gaussian
process prediction and observation models,” Autonomous Robot, 2009.

[2] E. Burdet and A. Codourey, “Evaluation of parametric and nonpara-
metric nonlinear adaptive controllers,” Robotica, vol. 16, no. 1, pp.
59–73, 1998.

[3] D. Nguyen-Tuong, J. Peters, and M. Seeger, “Computed torque control
with nonparametric regression models,” in Proceedings of the 2008

American Control Conference (ACC 2008), Seattle, Washington, USA,
2008.

[4] M. W. Spong, S. Hutchinson, and M. Vidyasagar, Robot Dynamics

and Control. New York: John Wiley and Sons, 2006.
[5] W. Li, “Adaptive control of robot motion,” Ph.D. dissertation, Mas-

sachusetts Institute of Technology (MIT), 1990.
[6] J. Ting, A. D’Souza, and S. Schaal, “A bayesian approach to nonlinear

parameter identification for rigid-body dynamics (submitted),” Neural

Networks, 2009.
[7] J. Nakanishi, R. Cory, M. Mistry, J. Peters, and S. Schaal, “Operational

space control: A theoretical and empirical comparison,” ResearchThe

International Journal of Robotics, 2008.
[8] C. E. Rasmussen and C. K. Williams, Gaussian Processes for Machine

Learning. Massachusetts Institute of Technology: MIT-Press, 2006.
[9] B. Schoelkopf, P. Simard, A. Smola, and V. Vapnik, “Prior knowl-

edge in support vector kernel,” in Advances in Neural Information

Processing Systems, Denver,CO, USA, 1997.
[10] S. Vijayakumar, “Computational theory of incremental and active

learning for optimal generalization,” Ph.D. dissertation, Tokyo Institute
of Technology, 1990.

[11] B. Schölkopf and A. Smola, Learning with Kernels: Support Vector

Machines, Regularization, Optimization and Beyond. Cambridge,
MA: MIT-Press, 2002.

[12] C. Zhu, R. H. Byrd, P. Lu, and J. Nocedal, “L-bfgs-b: Fortran
subroutines for large-scale bound-constrained optimization,” ACM

Transactions on Mathematical Software, 1997.

2682

