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Abstract—In recent years underwater survey and surveil-
lance missions with more than a single Autonomous Underwater
Vehicle (AUV) have become more common thanks to more
reliable and cheaper platforms, as well as the addition of remote
command and control communications using, for example, the
WHOI acoustic modem. However cooperative navigation of
AUVs has thus far been limited to a single AUV supported by
a dedicated surface vehicle with access to GPS. In this paper
a scalable and modular framework is presented in which any
number of vehicles can broadcast, forward and acknowledge
range, dead-reckoning, feature and GPS measurements so that
the full fleet of AUVs can navigate and cooperate in a consistent
and accurate manner. The approach is independent of the
resultant application — such as recursive state estimation or full
pose optimization. Trade-offs between the number of vehicles,
the condition of the communication channel and rate at which
updates are available are also discussed. Finally performance
is illustrated in a realistic experiment.

I. INTRODUCTION

Multiple Autonomous Underwater Vehicle (AUV) deploy-

ments are becoming more common as the technologies

upon which the individual vehicles rely become more stable

and the acoustic communications technology that they use

to share commands and information becomes standardized.

However there is a need for a navigation framework which

makes a consistent and accurate estimate of the positions of

the full fleet of AUVs available to each of the vehicles online.

This approach would allow multiple inexpensive AUVs to

share the capabilities of a single accurately instrumented

vehicle or to capitalize upon a single vehicle surfacing for

a GPS fix, so as to avoid the need for the other vehicles

to surface. Deeper cognizant capabilities such as distributed

task assignment and decision informed by these positions

estimates would then be possible.

Such a system should be both distributed and scalable —

both to vehicles entering and leaving the fleet as well as to

changes in the rate of data transmission between the vehicles.

Finally the approach should be flexible enough to allow the

resultant data be used by any multi-vehicle recursive state

estimation (e.g. Particle Filter, Extended Kalman Filter) or

pose optimization algorithms.

A major complication in any marine environment is

the communication channel. Communication using acoustic

modems (such as the WHOI Micromodem [7]) is at a very

low rate (as low as 32 bytes per 10 seconds) with a range of

several kilometers in open water. It is unreliable and typically

unacknowledged and the singl channel is shared amoungst
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Fig. 1. Left: Three SCOUT kayaks which are used in our experiments
as AUVs surrogates in testing the proposed measurement distribution
framework. Right: An illustration of the typical multi-vehicle acoustic
communication sequence with several failed tranmissions (illustrated in red)
while green lines indicate successful tranmissions. Each vehicle transmits
in turn during a 30 second TDMA (Time Division Multiple Access) cycle.
Note that due to failed tranmissions between 57.5–59.5 mins, no data from
Vehicle 2 reaches Vehicle 3. This would cause a filter reconstruction backlog
on Vehicle 3.

obviously multiple vehicles. We propose a framework which

fits these hugely demanding limitations. The framework is

tested using experimental data collected using MIT’s SCOUT

kayaks (as illustrated in Figure 1) fitted WHOI acoustic

modems but is intended to be utilized on an AUV fleet, such

as the OceanServer Iver2s or Hydroid Remus 100s.

Section II will discuss previous cooperative navigation and

localization research. Section III will discuss the specifics of

the marine environment for this application. The core idea

of the cooperative navigation algorithm — a measurement

distribution framework — is outlined in Section IV. An

experimental demonstration with 3 autonomous surface ve-

hicles (serving as AUV surrogates) is outlined in Section VI.

Finally conclusions and future work are presented in Sections

VII and VIII.

II. COOPERATIVE NAVIGATION

Our previous work approached the problem with one or

more surface vehicles employed in the role of a Communi-

cations and Navigation Aid (CNA) supporting an AUV. This

vehicle had two roles, firstly functioning as a communication

and control moderator for the underwater fleet, while sec-

2010 IEEE International Conference on Robotics and Automation
Anchorage Convention District
May 3-8, 2010, Anchorage, Alaska, USA

978-1-4244-5040-4/10/$26.00 ©2010 IEEE 4256



Fig. 2. Our previous work [5] has considered top down cooperative
navigation with communication between a surface vehicle and one or more
AUVs (left). The proposed framework is intended to allow multiple AUVs
to communicate navigation information in a distributed and scalable manner
— without either a surface craft or centralization (right).

ondly providing its own position information and an estimate

of its range so that the AUV could use that information to

better navigate.

Initial work used two such surface vehicles so as to

estimate the full state vector of the AUV at once [13].

Subsequently the configuration was changed to a single

CNA supporting an Iver2 AUV [1], [5], which can itself

be extended in a straight forward fashion to supporting any

number of AUVs within range of the transmission.

However this approach did not utilize information trans-

mitted between the AUVs and required a surface vehicle

providing uncorrelated measurements to the underwater vehi-

cles to avoid overconfidence. An illustration of the difference

between the two scenarios is illustrated in Figure 2.

A. Distributed Cooperative Navigation

The distributed localization problem has been studied

in great depth by Roumeliotis and colleagues. Early work

by Roumeliotis and Bekey [11] pioneered the concept of

distributed localization based on recursive state estimation.

Simulation results demonstrated that a group of vehicles

measuring the distance to one another, but without access

to global location estimate, can estimate their global position

more accurately than any of the individual vehicles. Mourikis

and Roumeliotis [9] performed a detailed performance anal-

ysis of cooperative localization. More recently, Nerurkar et

al. [10] proposed a Distributed Conjugate Gradient maximum

a posteriori algorithm for distributed localization, developing

efficient methods to limit the communication cost and com-

putational complexity for large multi-robot teams. Simulation

results are presented for a team of 18 robots.

Our work targets the underwater environment, where

severe communications constraints would make such an

approach difficult to implement. Trawny et al. [12] inves-

tigated cooperative localization with limited communication

with a quantized maximum a posteriori estimator. Their

approach assumes that each robot transmits all its data to

all other robots at each time step, with reliable bi-directional

communication; it would be interesting to combine their

quantized state estimator with the measurement distribution

strategy described in this paper.

In the underwater domain, a number of authors have

developed distributed localization approaches that are com-

patible with the capabilities of acoustic modems [1], [8],

[4], [14]. In our earlier work, we proposed an approach for

distributed localization in which the multi-vehicle navigaton

filters are continually transmitted to and from each vehicle

[2]. However such an approach, while reasonable for a few

vehicles, does not scale well beyond 3–4 AUVs due to

the large covariance matrices that need to be transmitted

from vehicle to vehicle. Maczka et al. [8] approached the

problem by transmitting only a scalar function of the main

diagonal elements of the covariance matrix from one vehicle

to the other. This simplification allows two vehicles to

cooperatively navigate via a single 32–byte packet. However,

the approach neglects inter-vehicle cross covariance terms,

which as the authors acknowledge can lead to overconfidence

and perhaps divergence. Eustice et al. [4] and Webster et

al. [15] have investigated cooperative navigation between

a surface ship and a single AUV, using the same WHOI

micromodem that is utilized in our work.

Instead of trying to transmit all current covariance data to

all vehicles at once, in this paper we propose a method which

distributes the individual vehicle dead reckoning information

to each vehicle before reconstituting the tracking filter on

each vehicle. Before explaining the approach we will outline

some of the details of the equipment that will be used.

III. EQUIPMENT

While the proposed solution is designed to be independent

of the AUV platform and not to require any hardware

beyond what is typically already installed, in this section we

will outline the envisaged platform. While the experiments

presented in Section VI utilize MIT’s SCOUT kayaks, the

proposed framework is intended for used on a low-cost

platform such as the OceanServer Iver2. The Iver2’s onboard

board sensing will be limited to a compass, a depth sensor

(allowing the problem to be reduced to two dimensions) and

an acoustic modem and as such is a very low cost platform.

Our approach will utilize the WHOI Acoustic Modem [7],

which uses low-rate Frequency-Shift Keying (FSK) or Phase-

Shift Keying (PSK) to transmit small packets of information.

Previously the basic 32 byte FSK packet was transmitted,

however in future the Iver2 will use the 192 byte PSK

packet which utilizes a newer co-processor extension board.

In general for the same SNR, multipath environment and

range this PSK message can send 4–6 times the data in the

same packet length [6].

Transmission of a packet consists of two stages: first a

mini-packet lasting 1.5 seconds is transmitted to initiate the

communication sequence. The inter-vehicle range is a simple

function of the time-of-flight of this mini-packet and the

speed of sound in water (which is instrumented separately).

The noise range standard deviation used in what follows will

assumed to be σr = 3m. Following this, the information

packet is transmitted in a process which lasts approximately

5-6 seconds. In all, it is prudent to reserve 10 seconds per

transmission.
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The time-of-flight is determined by initiating transmissions

precisely at start of a second using a pulse-per-second

(PPS) signal. The AUV contains a low-drift temperature-

compensated timing board so as to maintain this synchro-

nization for 10’s of hours [4].

If one or more other vehicles are in the vicinity the

message packet can be received by the transmitting vehicles

and the inter-vehicle range can be estimated. However, there

are two ways in which transmission can fail. Firstly, if the

mini-packet is not properly decoded by the receiving modem,

then neither the range nor packet will be received. Secondly,

if the mini-packet is recognized properly but the longer main

packet is not properly decoded then only the range will be

successfully measured for that transmission.

One important point is that the range measurement will not

be available to the transmitting vehicle. For the transmitting

vehicle to learn of this range measurement the receiving

vehicles must re-transmit the range as part of a subsequent

packet.

Finally the control of the acoustic modem and the imple-

mentation of the distributed cooperative navigation algorithm

takes place using the MOOS-IvP platform [3] on a ‘backseat’

computer at present, while the control missions described

in Section VI are controlled separately on a ‘frontseat’

computer.

IV. MEASUREMENT DISTRIBUTION FRAMEWORK

A. Measurement Bookkeeping

In what follows we propose a measurement exchange

system which allows for a fully consistent and distributed co-

operative navigation solution. The approach remains within

the strict limits of the underwater communication problem

and remains flexible to varying communications conditions

(changing inter-vehicle range, relative orientation and the

presence of other noise sources in the vicinity) as well as

accommodating scenarios such as vehicle surfacing.

Consider a dead-reckoning filter: at each time-step k a ve-

hicle i will integrate sensor readings to form an independent

cumulative state vector, dX i
k, representing its dead-reckoned

position change (and associated increase in uncertainty)

during that time. Combining all of these vectors would allow

the entire vehicle pose and uncertainty be reconstructed.

Furthermore observations of objects with known or estimated

location (in our case via range measurements) would allow

this estimate to be improved and the uncertainty to be

reduced.

Some failed message transmissions will occur when trans-

mitting these values to other vehicles. As a result the

receiving vehicles will not be able to reconstruct the pose of

the transmitting vehicle. So as to circumvent this issue and

to ensure that all dead-reckoning and range measurements

are available to each vehicle’s own multi-vehicle navigation

filter, a ‘bookkeeping’ scheme will be used:

1) On each vehicle, all local and all received dead-

reckoning measurements as well vehicle-to-vehicle

ranges will be collated into a single database. This

Algorithm 1: Multi-Vehicle Measurement Distribution

for each vehicle do
Integrate local cumulative dead-reckoning regularly

if scheduled to surface then
Log local dead reckoning to measurement table

and reset cumulative DR filter

Measure GPS location and insert into local

measurement table

else if scheduled to transmit data then
Log local dead reckoning to measurement table

and reset cumulative DR filter

Choose useful dead reckoning data and

outstanding request markets to form a packet

Transmit packet using WHOI modem

else if packet received successfully then
Log local dead reckoning to measurement table

and reset cumulative DR filter

Measure vehicle-to-vehicle range using modem

Insert range and data into local measurement

table and update communications table

Recompute best multi-vehicle pose if possible

else if packet received unsuccessfully then
Log local dead reckoning to measurement table

and reset cumulative DR filter

Measure vehicle-to-vehicle range using modem

(if possible)

Insert range into local measurement table

will also include range measurements between vehicles

other than the local vehicle.

2) Where measurements have yet to be received by

the local vehicle they will be requested as part of

subsequently transmitted packets. The other vehicles

will keep track of such requests and retransmit the

requested messages until successful.

3) Only when the complete set of data up to a particular

timestep is received by the local vehicle can any

recursive state estimation or full pose optimization be

carried out for that timestep.

This will typically mean that the filter will operate in a

partly delayed fashion as the required data simply cannot

be gathered together instantaneously. Simple model based

prediction can be used if necessary to best estimate the

vehicle positions.

A general description of the method is presented in Algo-

rithm 1 while a more specific illustration is presented in the

following section.

B. Example Scenario

So as to illustrate the operation of proposed measure-

ment distribution algorithm, consider the following example

sequence of three iterations of the transmission algorithm.

Further explanation is presented in Figures 3 and 4.

A fixed cycle of vehicle transmissions is decided upon

(typically a simple repeating loop) and the vehicles begin
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Fig. 3. Evolution of the multi-vehicle ledger system for three successive
transmissions — one from each of the 3 vehicles. Vertical blocks represent
the evolution for a particular vehicle. Individual blocks show the information
available to a particular vehicle at a certain time. Red represents known
measurements, blue unknown measurements (even if in the future) while
green indicates a recent range measurement. A white box indicates the
contents of a transmitted packet and a black box indicates the measurements
from the packet received at another vehicle. As time proceeds, the individual
ledgers are filled in with incoming data until all the data from a particular
timestep becomes available to each vehicle. See Section IV-B for a fuller
explanation.

their respective missions and dive underwater. Obviously

each vehicle will learn its own cumulative deadreckoning

as time progresses, but will lack that of the other vehicles as

well as some of the range measurements. This data will be

disseminated using the proposed algorithm.

Illustrated in Figure 3 is the way that each of the three

vehicles would build up their ledger of measurements and

request data unknown to that vehicle. Each row represents

the development of a particular vehicle’s measurement ledger

from transmission time t = 1 to t = 3. As measurements are

learned the associated entries are filled in.

Initially at t = 0, the positions and associated uncertainty

of each vehicle is known to all the others. At t = 1 Vehicle

A will transmit its dead-reckoning from t = 0 to t = 1
(identified as as DRA1) as well as a markers indicating

the earliest measurements unknown to each of the vehicles

(which are DRB1, DRA1, DRA1 respectively). We suppose

in this example that Vehicle B receives the packet and enters

that data into its ledger. It will also note that Vehicle A

requires the measurements from DRB1 and thereafter. As

mentioned previously, by way of the transmission process

the range between Vehicle A and B is measured — but only

at Vehicle B. Simultaneously we suppose that Vehicle C fails

to receive the transmission, so only the range measurement

to Vehicle A (or the failure to measure the range) can be

added to Vehicle C’s ledger.

Fig. 4. Development of the system discussed in Section IV-B — from
the point of view of Vehicle B. The required dead-reckoning and range
measurements are gradually pieced together when data packets are received
(as shown by solid red lines). Note how the complete multi-vehicle data for
timestep 1 is available (at t = 3), at which time a filtering algorithm can be
used to integrate all the measurements (as indicated in bold red). Portions
of the ranging and dead-reckoning data that have yet to be received at t = 3

are indicated by dashed blue lines.

Continuing to t = 2, Vehicle B transmits all the data that

it deems to be useful to the other vehicles, as well as its

request markers (DRB1, DRC1 and DRA1). We suppose that

Vehicle A fails to receive, but that Vehicle C does receive.

Using this received data, Vehicle C now has all the dead-

reckoning and ranging measurements up to t = 1 and can use

any filtering or smoothing algorithm to estimate the multi-

vehicle positions or poses for that short segment. Note also

that its request markers have been updated to acknowledge

that Vehicle B requires only the measurement DRC1 or later

data.

Next at time t = 3, Vehicle C transmits data and we

suppose that both Vehicle A and B receive the packet. Both

vehicles can now compute the multi-vehicle trajectory up

to t = 1, while Vehicle A can do so up to t = 2. Observe
that the dead-reckoning of Vehicle B, DRB1 and DRB2, was

first received by Vehicle C and then forwarded to Vehicle A

indirectly. At this time-step DRA1 was not transmitted as

Vehicle C was aware that it was already known to Vehicles

B and A.

In summary using this algorithm the vehicles transmit,

forward and acknowledge measurement data and in doing

so gradually fill in the table of dead-reckoning and range

measurements until all required data is available to each of

the vehicles. This example makes a couple of simplifications

for the sake of clarity (size of packets, variable indexing) but

as presented illustrates the core algorithm concept.
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C. Avoiding Data Buildup: Keyframes

An issue with the setup as proposed above is that should

measurements be created at a rate which exceeds the rate at

which they are distributed to the other vehicles a backlog

will build.

To avoid such a backlog it is necessary to modify this

simple system to be flexible to the rate of data transmission.

We will instead focus on the reconstruction of a less detailed

estimate of the multi-vehicle pose using what we will call

‘keyframes’. Instead of attempting to reconstruct the fully

detailed pose synchronized with our transmission cycle (a

transmission every 10 seconds), we instead focus on building

a less detailed version (in the case of a keyframe rate of 4,

with poses separated by 40 seconds) and using the other

transmission slots solely to distribute and marshal that data,

as well as leaving aside bandwidth for the usual command

and control functionality unrelated to this measurement sys-

tem.

To do so requires the calculation of the rate at which

measurements are created and the effective rate at which they

are distributed. If each datapacket can contain Np numbers

and any packet transmitted by a communicating vehicle has

a probability of Pp of being received. This will give an

effective rate of data transmission of

N
p,eff = NpPp (1)

Furthermore, if for each independent update of the tracking

system Nk measurements are generated and must be dis-

tributed to the set of vehicles, to avoid a backlog of messages,

the keyframes need to be spaced so that PkeyframeNp,eff ≥
Nk.

However this estimate assumes an up-to-date and global

knowledge of which packets are required by which vehicles

at any time. As illustrated in Section IV-B, until a measure-

ment is acknowledged by the other vehicles, the transmitting

vehicle is forced to continue retransmitting messages which

perhaps have already been received, but this is unavoidable

if we require the complete pose trajectory.

An alternative probabilistic approach would be for retrans-

mission to occur for as long as it is likely that measurements

have yet to be received (using the estimated rate of successful

transmission). Thereafter transmission of that piece of data

would pause until acknowledgment can be determined (See

Section VIII).

For these reasons the above calculation instead represents

a lower bound for the keyframe spacing

Pkeyframe ≥

⌈

Nk

N
p,eff

⌉

(2)

In the experiments that follows the keyframes spacing is

determined experimentally and was found to be significantly

higher than this value. Furthermore it has been experimen-

tally observed that the probability of successful transmission,

Pp, is a complex time-varying function of depth, range,

conditions and orientation. As such the calculation of the

optimal spacing is a theoretical rather than a practical bond.

D. Typical Packet Contents

Thus far, we have avoided precisely detailing the measure-

ment data we wish to share so as to maintain generality. In

this section we will outline the specific data which will be

distributed for our envisaged application.

We assume a multi-vehicle state vector in three dimensions

per vehicle. The incremental state vector of the ith AUV of

Ni vehicles moving, at time k′, will

dXi
k′ = [dxi

k′ , dyi
k′ , dθi

k′ ]T (3)

with an associated 3x3 block of the full covariance matrix,

dPii
k′ while an accurate global estimate of the vehicle depth,

xi
k′ , will be known at all times and will allow the simpli-

fication of the problem to two dimensions in the horizontal

plane. This filter will be reinitialized at the beginning of each

keyframe.

The vehicle will integrate forward and starboard velocity

estimates, vi
k′ and wi

k′ , and a heading estimate from a

compass, θi
k′ so as to propagate this incremental estimate

as follows

dxi
k′ = dxi

k′−1
+ △k′(v̂i

k′ cos θi
k′ + ŵi

k′ sin θ̂i
k′) (4)

dyi
k′ = dyi

k′−1
+ △k′(v̂i

k′ sin θi
k′ − ŵi

k′ cos θ̂i
k′ ) (5)

dθi
k′ = θ̂i

k′ (6)

as well as updating the covariance block in a similar man-

ner. The sensors which generate these estimates will have

associated measurement uncertainties (σvi
, σwi

, σθi
), though

the quality of these estimates may vary from vehicle to

vehicle. The prediction step will be carried out at a relatively

high frame rate (△k′ = 5Hz) compared to the rate of the

transmission system (one transmission per 10 seconds) and

the keyframe rate (multiples of the transmission rate) and will

be integrated in the period between two keyframes, k−1 and

k, so as to form a cumulative dead-reckoning estimate for

the local vehicle for that block of time.

As the 3x3 block of the covariance matrix is symmetric,

only 9 numerical values will be required to represent the

movement of a vehicle between two keyframes (with the

vehicles operating at a known depth). To reconstitute the full

multi-vehicle propagation step requires sharing these values

across each of the vehicles. This means that the amount of

information to be shared increases linearly with the number

of vehicles — which allows for reasonable scaling of the

proposed solution.

In addition, inter-vehicle ranges will be measured by

receiving vehicles at each keyframe (or will note a null value

if transmission is unsuccessful). This results in a Ni−1 range

values and hence the total number of measurement values

generated for each keyframe will be

Nk = 9Ni + Ni − 1 = 10Ni − 1 (7)

As well as the raw values of the measurements, each packet

requires some overhead to explain what the measurements

correspond to, as well as the data request markers mentioned

in Section IV-B. A preliminary examination suggests that

it is necessary to assign 4-6 bits per number to this task,
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depending on the method used, although a fuller examination

will be carried out in future work.

In summary, using a suitable spacing of the keyframes, this

approach allows for a completely scalable and distributed

tracking filter — trading off the spacing of multi-vehicle

poses against the number of vehicles in the system and the

effective rate of data transmission.

V. APPLYING THE DATA: MULTI-VEHICLE EKF

Having received the required measurement data from each

of the vehicles, it can then be used as the input of a

sequential state estimator (such as a particle filter or an EKF)

or used to optimize the entire multi-vehicle pose (using a

technique such as conjugate gradient or matrix factorization).

The proposed filter is recomputed in its entirety on each

vehicle computer and as the measurement data is identical

the resultant position estimates will be identical1

In this section we will discuss a specific implementation

of a multi-vehicle Extended Kalman Filter (EKF) using

distributed measurement data. For the Ni vehicle scenario,

tracking in the X , Y and θ dimensions, the 3xNi dimensional

state vector will be as follows, at time k,

Xk = [x1

k,y1

k, θ1

k, . . . ,xNi

k ,yNi

k , θNi

k ]T (8)

with an associated 3Nix3Ni covariance matrix, Pk. This

filter will be initialized using the known position estimates of

the full set of vehicles — typically just before submerging.

Each time a complete portion of the multi-vehicle cumulative

deadreckoning is received at a vehicle, it is used to predict

the filter.
Similarly when the corresponding range measures become

available the multi-vehicle correction step is carried out. In
the three vehicle case, where vehicle 2 and 3 receive a data
packet from vehicle 1, the observation matrix would be given
by the following Jacobian, Hk:















(x1

k|k−1
− x2

k|k−1
)/d12 (x1

k|k−1
− x3

k|k−1
)/d13

(y1

k|k−1
− y2

k|k−1
)/d12 (y1

k|k−1
− y3

k|k−1
)/d13

(x2

k|k−1
− x1

k|k−1
)/d12 0

(y2

k|k−1
− y1

k|k−1
)/d12 0

0 (x3

k|k−1
− x1

k|k−1
)/d13

0 (y3

k|k−1
− y1

k|k−1
)/d13















T

(9)

where dij = ‖Xi
k|k−1

− X
j

k|k−1
‖ is the Euclidean distance

between two estimated vehicle positions i and j. If instead

a range measurement was determined between vehicle 1 and

2 but not to vehicle 3, the observation matrix would will be

modified accordingly.

A. Vehicle Surfacing

While the rate at which the multi-vehicle filter degrades

will be slower than that of the single vehicle case, with-

out access to a global landmark the multi-vehicle filter

will become increasingly uncertain. At some (typically pre-

arranged) point we propose that one of the AUVs will surface

to access the GPS.

1Using this assumption of identical distributed position information, each
individual vehicle’s mission planner can then independently follow the same
decision making process without the need to communicate.

This will obviously reduce the uncertainty of the surfacing

vehicle: by sharing its very accurate position estimate with

the other vehicles the fleet will gain a reduction in uncertainty

via a simple EKF correction. The GPS measurement will

simply be a direct observation of a portion of the state vector.

These two numbers can be shared with the other vehicles in

the same way as the range and dead reckoning.

More specifically we are interested in the scenario in

which an inexpensive AUV with cheap on-board sensors

surfaces to measure its GPS position before diving and

sharing its position with other much more expensive AUVs

with expensive dead-reckoning units — which can then

themselves become confident of their positions. In this way

the expensive vehicles need not halt their mission during

a run or surface in a potentially hostile environment. See

Section VI for an experimental simulation of this concept.

VI. EXPERIMENT

So as to demonstrate the proposed concept, a realistic

experiment was carried out on the Charles River beside MIT.

Three of the MIT SCOUT autonomous kayaks were used

(see Figure 1). Each of the vehicles had a compass, GPS

receiver and WHOI modem as well as access to common

timeserver and a precise pulse-per-second trigger (via GPS)

which allowed us to establish fully synchronized clocks on

each vehicle and to carry out one-way-ranging between the

vehicles.

Having synchronized the clocks, a (de-centralized) TDMA

cycle was established. Each vehicle was assigned a one-

packet ten-second transmit slot in a repeating 30 second cycle

and listened for messages during the other two slots.
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Fig. 5. Paths travelled by each vehicle (6 minutes of the 70 minute
mission). The smooth line represents the GPS position of each vehicle,
with the current location indicated by a circle. The dashed line segments
illustrate the estimated path as reconstructed using a multi-vehicle EKF as
described in Section V. The covariance of the estimated path is omitted for
clarity. With a data transmission every 10 seconds and keyframes spaced
every 4 transmissions, each multi-vehicle pose update is spaced 40 seconds
apart. Note also that the reconstructed pose lags the current position by
approximately 30-40 seconds in this figure. See Section VI-A.

During the experiment, modem messages were transmitted

between each vehicle so as to determine package transmis-

sion statistics: (1) was a particular message received (2)
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at which vehicle (3) what was the measured inter-vehicle

range. Furthermore when a modem transmitted, the precise

transmission time was recorded by the transmitting vehicle.

When a modem packet was received, the precise receiving

time was recorded by the local vehicle. This times were used

to establish the start and end points of the dead-reckoning

integrations, as discussed in Section IV-C. In total over 420

messages were transmitted between the vehicles, at the lower

FSK rate (due to a lack of availability of the higher rate

modems).

For the 70 minute experiment 93% of transmissions re-

sulted in successful range estimation while in 80% of cases

the data packet was also successful transferred, averaging

across all vehicles. This performance, better than in our

previous experiments, was aided perhaps by calm weather

conditions and little river traffic.

Each vehicle carried out a series of pre-planned over-

lapping loops of approximately 800-1000 meters in length

(Figure 5). In total the vehicles carried out 7, 5 and 4 of

their respective loops, thus travelling several kilometers each.

Towards the end of the experiment the loops of Vehicles 1

and 2 were lengthened while Vehicle 3 floated in the center

of the location. With increased range between the vehicles,

a greater proportion of message transmissions failed. The

effect this had on the performance of the message distribution

algorithm is discussed in the following section.

While the experiment was obviously not carried out on

underwater vehicles, we believe that the approach taken does

not in any way modify the constraints of the communication

and navigation systems. An advantage of using the kayaks

is that GPS ground truth was available at all times.

A. Results

Having collected the experimental data, the algorithms

discussed in this paper were applied to the data log. This

allows us to experiment with different packet encoding

techniques, priority systems, measurement quantization level

and to compare the effect on the reconstructed vehicle poses.

For the scenario presented in Figures 6 and 7, vehi-

cle transmissions were every 10 seconds while keyframes

occurred every 4 transmissions, thus spacing multi-vehicle

poses/keyframes 40 seconds apart. Each transmission cy-

cle, the transmitting vehicle’s message distribution system

encoded 24 numbers — either cumulative dead-reckoning,

range or GPS measurements. Assuming the PSK packet size

of 192 bytes, this allows 6 bytes per number and 48 for

message indexing and the request of unknown data.

While the intention of this experiment was to illustrate

the measurement distribution concept, nonetheless Figure

6 illustrates that having reassembled the measurements at

the remote vehicle, the data values successfully represented

the multi-vehicle navigation. Again we emphasize that each

vehicle has access to the identical multi-pose online, allowing

distributed decision making.

Figure 7 illustrates the performance of some of the

statistics of the experiment. The upper figure shows that

distributing 24 numbers per transmission was sufficient to
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Fig. 6. Navigation of each vehicle in X and Y dimensions. The solid lines
represent the GPS locations of each vehicle in the X (west) and Y (north)
dimensions. Each dot represents the multi-vehicle pose, as reconstructed
via the measurement distribution framework. It is emphasized that this
information was available to each vehicle online. Note the 3 minute gap
at the end of the mission is illustrative of the reconstruction lag that occurs
while recent messages are distributed throughout the fleet.

keep pace with the rate of measurement creation, except for

the portion at the end of the experiment when a backlog

formed. This issue will be studied as part of future work.

Directly related to this backlog is the amount of lag time

between the current time and most recently available update

of the EKF. The system typically operated with a lag of 50-

60 seconds while the data was distributed and marshalled.

The first 12 minutes of the lower figure illustrates the core

benefit of cooperative navigation. The sensor noise of the

overall cooperating vehicle fleet is reduced below what of

the individual vehicles and the rate of uncertainty grows at

a shorter rate as a result.

Secondly, the error and uncertainty of Vehicle 2 was

reduced by a simulated GPS fix occurring with a 20 minute

period. The fix position was shared to each vehicle, just

as any another measurement, and causes the uncertainty of

Vehicle 1 and 3 to be reduced — thus sharing the quality

navigation filter of Vehicle 2 with all present vehicles.

Regular surfaces of only Vehicle 2 can allow the uncer-

tainty of the entire vehicle fleet to be bounded. This allows

Vehicles 1 and 3 to remain ‘submerged’ and to continue

theirs missions in situ for as long as their battery life permits.

VII. CONCLUSIONS

In this paper we presented a framework for a distributed

measurement communication system for an extremely low-

data rate multi-vehicle system suitable for deployment on

a fleet of Autonomous Underwater Vehicles. The proposed

system is flexible to different fleet sizes, communication rates

and communication environments, as well as harmonizing

with the usual command and control communication cur-

rently used.

An application of the system was then outlined and

experimentally tested in which the distributed measurements
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Fig. 7. Performance Statistics of the experiment discussed in Section
VI. In the first portion of experiment, despite occasional transmission
failures each vehicle maintain a fixed backlog of navigation messages (top
figure). Each vehicle reconstructs the multi-vehicle pose a consistent 50-
70 seconds behind the current time (center figure). Using an EKF, the
reconstructed measurement set combines dead-reckoning and inter-vehicle
ranges to reduce the rate of uncertainty growth (dotted lines) below that of
the vehicles functioning individually (crosses). Finally Vehicle 2 ‘surfaces’
every 20 mins, which allows the full vehicle fleet to bound their uncertainty
to 10 meters (lower figure).

were integrated, as part of a multi-vehicle Extended Kalman

Vehicle, to allow each vehicle to estimate the full multi-

vehicle pose in real-time during the mission. It is emphasized

again that any filtering or smoothing algorithm could be

applied to the distributed data.

VIII. FUTURE WORK

The proposed framework has not considered flexibility to

allow vehicles to enter and leave the network. We propose

that a single cycle in the cycle be continually left open —

either for emergency external commands, for a new vehicle to

join the network or a vehicle to indicate that it will depart the

network. Future work will examine this circumstance more

closely.

In the static keyframe scenario proposed, it would be

required to choose the keyframe spacing in advance which

in turn would require an accurate and stable estimate of

the transmission channel. If the quality of the transmission

channel were to deteriorate during the mission, each vehicle

would gradually build up a backlog of data. Future work will

investigate how the spacing can be dynamically determined.

From an experimental view point, steps will continue

towards implementing the framework within the MOOS-IvP

platform, [3], and its testing on a number platforms and in

a number of different concept scenarios.
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