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Abstract— The need for terrain-dependent control systems
on AGVs is evident when considering the variety of outdoor
terrains many AGVs encounter. Although the idea of using
terrain classification algorithms to identify the terrain and
then update the control modes is well-established, the problem
of how to intelligently update the control modes based on
classifications has been left relatively unaddressed. This paper
presents a simplistic rule, called the update rule, which decides
when to change control modes based on past and present
terrain classifications and is tuned using empirical data. Using
experimental data from the eXperimental Unmanned Vehicle
(XUV) mobile robot, this update rule is shown here to be
both robust to misclassifications as well as sensitive to terrain
transitions. This paper also develops and implements a sliding
horizon approach to reaction-based terrain classification for
improved sensitivity to terrain transitions. The update rule
structure presented here is applicable to reaction- and vision-
based terrain classification of individual terrains.

I. INTRODUCTION

Today’s autonomous ground vehicles (AGVs) are expected
to operate in a variety of environments including deserts,
beaches, forests, and swamps. The nature of these envi-
ronments requires implementing unique control strategies in
order to safely and efficiently traverse the environment. It
is for this reason AGV control strategies should be terrain-
dependent. In order to achieve terrain-dependent control it
is necessary to develop appropriate control settings for each
of the considered terrains as well as systems that correctly
identify the terrain. This paper develops a rule for when to
switch the control mode, termed the update rule, which is
based on past and present terrain detections. An overview
of relevant research in terrain classification and terrain-
dependent control are given below.

Terrain classification for AGVs can be performed through
what is seen visually, felt through the vehicle reactions
during traversal or a combination of both vision and vehicle
reactions. Several vision-based techniques have been used
to describe the surrounding environment. These techniques
use three dimensional maps to determine navigability [1] and
identify vegetation, shrubs and trees [2], [3], stereo imagery
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to detect unexplored terrains [4], and image processing to
detect surface characteristics such as roughness, slope and
hardness [5]. However, the works of [1], [2], [3], [4], [5]
are focused on characterizing the terrain instead of surface
identification, which is more relevant to the research pre-
sented in this paper. Key vision-based techniques in detecting
individual terrain surfaces include the work of [6], which
shows the effectiveness of color-based features and the work
of [7] which analyzes the effectiveness of several types of
visual sensing in detecting mud. The work of [8] uses a laser
line striper to classify sand, grass, gravel and asphalt terrains
using image texture and spatial frequency domain features.

Reaction-based terrain classification is most often con-
ducted using vehicle vibrations, which have been shown to
have terrain signatures in the frequency domain [9], [10],
[11]. As discussed in [12], [13], [14] the origin of vibration
terrain signatures is the terrain signatures in the spatial
frequency response of the terrain profiles. Several different
types of classifiers have been used to perform vibration-
based terrain classification [9], [10], [15], [16], [17], [18],
leading to the comparison of techniques in [19], [20]. These
comparisons indicate that support vector machines (SVMs)
most often lead to high accuracy performance while other
techniques can be shown to have advantages of SVMs such
as classification time or training time. Additionally, the works
of [12], [14], [21], [22] have sought to alleviate speed
dependency, e.g. the need to train separate classifiers based
on speed, using vehicle models or interpolation techniques.

Terrain classification that is robust to a wide variety of
terrains, environmental conditions, and vehicle operating
conditions will almost certainly require the symbiosis of
vision-based and reaction-based methods. The primary works
on fusing multiple terrain classification schemes include [23]
which seeks to classify previously unseen terrains, and [24]
which combines several vision-based schemes to classify
sand, soil, grass, gravel, wood chips, asphalt and mixed
terrains. However, current research fails to appropriately fuse
vision- and reaction-based methods in order to accurately
classify individual terrains in circumstances that would nor-
mally cause either vision- or reaction-based classification to
fail.

Current research in terrain-dependent control settings is
significantly less developed than that of terrain classifica-
tion systems. The Land Rover LR3 and Freelander com-
mercial vehicles make use of a terrain-dependent control
system called “Terrain Response,” which has five different
terrain modes: 1) general driving for everyday driving, 2)
grass/gravel/snow, 3) mud and ruts, 4) sand and 5) rock
crawl [25]. These terrain modes change the settings on
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several vehicle systems including the anti-lock braking sys-
tem (ABS), the traction- and stability-control systems, the
locking action of the differentials, the shift schedule of the
transmission, and the throttle response of the engine in order
to improve, traction, steering and fuel efficiency. Ideally, an
AGV control system should have a higher and lower level
of control for handling changes in terrains. The higher level
of control should work in coordination with robot planning
in order to place limits on vehicle turning radius, speed, and
acceleration/deceleration in order to reduce the likelihood
of control loss through tipping, wheel slip, vehicle immobi-
lization, etc. The lower level of control is more reactive in
nature and includes systems like ABS, traction control and
stability control. In commercial vehicles these systems are
typically designed for worst-case scenarios such as wet or
icy roads [26] or the most commonly encountered slippery
terrain [27]. One work that implements both lower and
higher levels of control is [28] which shows the effectiveness
of using a dynamic model (which is terrain dependent) to
improve path planning and traction control. It should also
be noted that as the Land Rover LR3 and Freelander have
shown, platforms other than AGVs may benefit from terrain-
dependent control, such as landscaping vehicles and electric
powered wheelchairs [29].

AGVs are without a human driver and must therefore use
an automated process, or rule to switch between control
modes. This paper seeks to clearly define this automation
problem and present an appropriate solution. The most
relevant research for the creation of such a rule is presented
in [30], and applies an adaptive Bayesian filter using past
and present terrain detections in order to filter out misclas-
sifications. This work also mentions that the number of past
detections considered in the adaptive Bayesian filter will
directly affect how well and how quickly the system can
detect terrain transitions, i.e., the system sensitivity. This
method also has the ability to easily ignore falsely detected
terrain transitions between terrains that are unlikely to occur
in nature, e.g., a transition between sand and tile floors.

However, there are several key areas where the work of
[30] can be improved. Although [30] mentions the need to
consider sensitivity, the presented adaptive Bayesian filter
does not easily allow the achievement of a specific level
of sensitivity, in particular, detection of a new transition
within a specific amount of time. Additionally, the work of
[30] uses concatenated one second samples from individual
terrains in order to asses the method’s performance, whereas
the research in this paper is created and validated using
experimental data from terrain transitions.

This paper is organized as follows. The problem of control
mode switching is clearly defined in Section II. Section III
describes the robotic platform used to collect data for tuning
and validating the control mode update process. Section
IV details the tuning process, while Section V provides
experimental results based on this tuning process. Final
conclusions and future work are presented in Section VI.

Fig. 1. Comparison between normal classification and sliding horizon
classification.

II. CONTROL MODE UPDATES

The two most important considerations in determining
when to switch between control modes are sensitivity and
robustness. When an AGV traverses from one terrain to
a different terrain, a sensitive control update system is
expected to quickly switch to the appropriate control mode.
Conversely, as some misclassifications cannot be avoided,
a robust control update system should be able to ignore a
moderate number of misclassifications. The problem with
creating a system that is both robust and sensitive is the trade-
off between robustness and sensitivity. If the control system
is too sensitive to the detected terrain it will switch control
modes based on misclassifications, but a control system that
is extremely robust may switch control modes too slowly.
Therefore, the research presented in this paper will detail
how to achieve a control switching rule, called the update
rule, that balances the relationship between sensitivity and
robustness.

A. Sliding Horizon

A sliding horizon approach for classification can be used
to improve the sensitivity of the update rule without effect-
ing the robustness of the terrain classification system. As
reaction-based terrain classification requires multiple sam-
ples to classify the terrain, it typically requires 1-2 seconds
to collect the necessary samples. This approach results in
being able to detect a new terrain only every 1-2 seconds.
In this paper the approach of waiting to collect entirely
new samples before reclassifying the terrain will be referred
to as sequential horizon classification. A sliding horizon
essentially uses both new and previously collected samples
to classify the terrain, instead of waiting to collect all
new samples. This means that the time between detections,
denoted here as ∆, is decreased. This approach is illustrated
in Fig. 1.

In theory ∆ can be as small as the sampling time ts
when using a sliding horizon. However, this is not always
achievable since the time needed to perform the computa-
tions may be greater than ts. In most cases vision-based
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classification is not expected to utilize a sliding horizon
approach, as it does not utilize a time domain signal in
order to classify the terrain. Although using a sliding horizon
can increase the sensitivity when using reaction-based terrain
classification, it is still subject to misclassifications. This
means that an approach should be created that improves
robustness while sacrificing little in terms of sensitivity. The
following subsection details the development of an update
rule that is both robust to misclassifications and sensitive to
terrain transitions.

B. Problem Derivation

To formally describe the problem of determining a control
update rule consider the case in which the terrain classifica-
tion algorithm has been determined. Assume that a large set
of terrain classification data (e.g., vibration signals) has been
collected and that this data corresponds to all of the terrains
that the AGV is expected to encounter, including terrain
transition data (e.g., data that transitions between grass and
asphalt). Let R denote the set of all control update rules.
Note that R contains every rule that can be defined by one of
the infinite number of rule structures (an example of which
is given below) and hence contains an infinite number of
(possibly infinite) rule subsets.

Now, let δ ≥ 0 denote the average time between control
updates for all cases in which a terrain transition occurs
and let ρ ≥ 0 denote the average percentage of (undesirable)
control updates that occur when traversing the terrains con-
sidered by the classification system. Reducing δ corresponds
to increased sensitivity, while reducing ρ corresponds to
increased robustness with ρ = 0 corresponding to perfect
robustness for the data set under consideration. An ideal
control update rule is one that simultaneously minimizes
ρ and δ over R, the set of all rules. However, there are
two problems with this optimization problem. First, it is in
general not possible to find a rule R ∈R that simultaneously
minimizes ρ and δ due to the inherent tradeoff between
sensitivity and robustness. Second, it is virtually impossible
to formulate practical optimization approaches for the infinite
(and probably uncountable) set R. To accommodate this latter
problem, the set R may be replaced with a subset Rs ⊂ R
that leads to tractable optimization problems. The former
problem is accommodated by searching for Pareto optimal
solutions [31] over the reduced rule set Rs.

To approach finding Pareto optimal solutions, define the
two rule sets

Rρ̄

△
= {R ∈ Rs : ρ < ρ̄}, R

δ̄

△
= {R ∈ Rs : δ < δ̄}, (1)

The set of rules that simultaneously satisfy ρ < ρ̄ and δ < δ̄

is denoted by R
ρ̄,δ̄ and is given by

R
ρ̄,δ̄ = Rρ̄ ∩R

δ̄
. (2)

Now, define

ρ̄
∗ △= inf{ρ̄ : R

ρ̄,δ̄ ∕=⊘}, δ̄
∗ △= inf{δ̄ : R

ρ̄,δ̄ ∕=⊘} (3)

Then, R ∈ R
ρ̄∗,δ̄ is a Pareto optimal solution that solves

min
R∈Rs

ρ subject to δ ≤ δ̄ , (4)

while R ∈ R
ρ̄,δ̄ ∗ is a Pareto optimal solution that solves

min
R∈Rs

δ subject to ρ ≤ ρ̄. (5)

To present a possible rule structure as the basis of Rs
let the history window W be the set consisting of the
present terrain classification w0 and the n−1 previous terrain
classifications, i.e., w−i for i = 1,2, . . . ,n− 1. Hence, W
consists of n terrain classifications and is given by,

W = {w−n+1,w−n+2, . . . ,w−1,w0}. (6)

Let na denote the number of classifications of Terrain a in
W. Then the controller will switch to the control mode for
Terrain a if for some η ∈ (0.5,1]

na

n
≥ η . (7)

This rule structure has two parameters that must be deter-
mined: n and η . Section IV describes how to determine these
two parameters by essentially solving the Pareto optimization
problem of (4) or (5) using empirical data. Note that reducing
η or increasing n, increases the system sensitivity and
reduces robustness. It should also be noted that the choice
of n and η is expected to depend on the vehicle speed. This
is because the faster the speed, the further away the terrain
corresponding to the classification w−i is from the current
position.

Although (6) and (7) present a single rule structure, future
research will also consider rule structures based on Hidden
Markov Modeling and a Bayesian temporal filter similar
to the work of [30]. Ultimately, the performance of these
other rule possibilities and the method presented here will
be compared in the hopes of choosing the most appropriate
update rule structure.

III. ROBOTIC PLATFORM AND CLASSIFICATION
APPROACH

The tuning process and results of Section IV and V
are obtained using data from the eXperimental Unmanned
Vehicle (XUV). The XUV, pictured in Fig. 2, is a four-wheel,
Ackerman steered, all wheel drive, autonomous vehicle,
weighing approximately 3000 lbs with a wheelbase of 1.88 m
and track width of 1.91 meters. The XUV is able to record
vibration measurements of vertical acceleration z̈, roll rate
ωroll , and pitch rate ωpitch at a sampling rate of 50 Hz using
the XUV’s Inertial Reference Unit (IRU). However, the XUV
is equipped with a suspension system, which can sometimes
dampen the vehicle vibrations and therefore make vibration-
based terrain classification more difficult.

Terrain data for the XUV tests consists of z̈(t), ωroll(t),
and ωpitch(t) recorded at speeds of 5.26 mph and 8.41 mph
over grass, gravel and paved terrains as well as a terrain
transition between gravel and pavement. This transition can
be seen in Fig. 2. The paved terrains consist of approximately
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Fig. 2. The eXperimental Unmanned Vehicle (XUV) on a gravel and
asphalt (pavement) transition

95% asphalt and 5% concrete. The inclusion of concrete in
this terrain is due to the limitations of the testing location.

For classification, the recorded terrain data was processed
and classified as described in [13] which utilizes a FFT, PCA
and Parzen window estimation with a radial basis function
window. This process first entails applying a FFT to 2 second
segments of the z̈(t), ωroll(t), and ωpitch(t) measurements,
resulting in the frequency responses z̈( jω), ωroll( jω), and
ωpitch( jω). These frequency responses are then rearranged
into training patterns x, defined by

x = [ z̈( jω) ωroll( jω) ωpitch( jω) ], (8)

which are said to contain the terrain signatures. Next, the
training patterns are separated into different sets based on
speed. These sets correspond to each of the aforementioned
training speeds, with an acceptable speed tolerance of ±0.75
mph. Separate tuning processes are then conducted using
each of the resulting sets to determine the 2 tuning param-
eters: the PCA energy percentage and σ the width of the
radial basis function window. By tuning the PCA energy
percentage, the dimension of the feature space is reduced
while maintaining as much of the feature variability as
possible. The tuning of σ is analogous to determining the
influence of each of the training patterns on the estimation
of the probability density functions. In order to reduce the
likelihood of over training, this tuning process is performed
using 10-fold cross validation. Testing of new terrain data
is then conducted using the PCA-Parzen window classifier
combination whose speed is closest to the speed of the test
sample. Using this classifier, the class ω j which corresponds
to the highest conditional probability p(ω j∣x) is selected as
the class of the test pattern. It should also be noted that for
testing purposes a sliding horizon with ∆= 0.04 secs is used,
which is much larger than the time required to classify a test
pattern (2.3 msecs).

Although the results based on this data obviously lead to a
classification method that is categorized as reaction-based, it
is important to emphasize that the tuning approach described

Fig. 3. The time delay, δ that results from variation of the parameters n
and η

Fig. 4. The frequency of correct control mode usage (1−ρ) that results
from variation of the parameters n and η

in Section IV can be applied to both reaction- and vision-
based techniques such as [8], [24], which were developed
for classification of terrain surfaces.

IV. RULE TUNING

In Subsection II-B it was determined that by controlling n
and η , which control the sensitivity and robustness, it may
be possible to find a solution to (4) or (5) using a previously
trained classification scheme and data extracted from real
terrain transitions. This section illustrates the process of
tuning n and η using data from the XUV mobile robot on a
terrain transition between gravel and asphalt as described in
Section III.

In practice, given a (preferably large) set of experimentally
based terrain classification data that contains several terrain
transitions (e.g., from grass to asphalt), the values of ρ and
δ can be computed for various combinations of n and η in
some reasonable range. Here, this process is illustrated using
vibration data from the XUV mobile robot traveling at 8.41
mph as it transitions from gravel to asphalt and asphalt to
gravel. Varying n and η and using the update rule structure
of Subsection II-B yields Fig. 3 and Fig. 4, which show the
mean values of δ and 1−ρ .

These figures reinforce the previously stated relationships
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(a) Rho Constraint Met (b) Delta Constraint Met (c) Both Constraints Met

Fig. 5. Allowable values of n and η (shaded regions) for constraints δ ≤ 2.5 sec and ρ ≤ 0.10)

Fig. 6. Results for Terrain Classification, Sliding Horizon Classification and the Observed Update Rule on Asphalt to Gravel Transition

between n, η , sensitivity and robustness as stated in Sub-
section II-B. To show this, first consider Fig. 3. This figure
shows that reducing η or n results in a faster transition time
δ , which is analogous to increased sensitivity as previously
discussed. Fig. 4 demonstrates that increasing n and η gen-
erally improves system robustness, which is shown through a
larger value of 1−ρ . Interestingly, Fig. 3 indicates a nearly
linear relationship between n, η and sensitivity. However,
this relationship is not necessarily expected to be linear when
considering terrain transitions that are less abrupt than the
transition between asphalt and gravel.

Based on Fig. 3 and Fig. 4 reasonable constraints on ρ

and δ can be determined, which will be used as a starting
point for solving (4) or (5). In this example constraints of
δ ≤ 2.5 sec and ρ ≤ 0.10 are chosen. These choices are
based on the obtainable ρ and the impact of δ on the vehicle
stopping distance. Though for some vehicle control systems
δ > 2.5 may be acceptable, the vehicle stopping distance
benefits of a terrain-dependent control system diminish as δ

increases. Values of n and η that satisfy these constraints
are then recorded and are displayed by the shaded regions
of Figure 5. The intersection of Fig. 5(a) and Fig. 5(b)

gives several possible choices of n and η which meet the
described limits. These choices are shown in Fig. 5(c). If
desired, the sensitivity or robustness can then be improved
by incrementally reducing one of the constraints until any
further reduction results in an empty set of n and η choices.
This process essentially solves the optimization problem (4)
or (5).

V. RESULTS

By implementing the update rule derived from the de-
scribed tuning process, the vehicle control system is expected
to rarely switch control modes based on misclassifications.
Using the tuning process started in Section IV and solving
(4), that is finding the most robust update rule that satisfies
δ ≤ 2.5, results in an update rule defined by the parameters
n = 45 and η = 0.95. Fig. 6 and Fig. 7, which correspond
to transitions of gravel and asphalt in different directions,
show that the derived update rule rarely switches the control
mode based on misclassified terrains. These figures also show
the result of terrain classification using both sequential and
sliding horizons for comparison purposes. Additionally, the
dotted vertical lines in Fig. 6 and Fig. 7 represent the time
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Fig. 7. Results for Terrain Classification, Sliding Horizon Classification and the Observed Update Rule on Gravel to Asphalt Transition

and distance required for the vehicle to transition between
terrains, i.e. the transition region. While the asphalt and
gravel transition is fairly abrupt, other terrain regions may be
several feet long and therefore take several seconds to pass,
especially at slow speeds. A classification of either terrain
during the transition region is considered acceptable.

Fig. 6 and Fig. 7 show that using sequential horizon
classification, the detected terrain could only be updated
every 2 seconds, whereas sliding horizon classification can
detect the terrain in near real-time. However, using a sliding
horizon does not address the issue of updating the control
mode based on misclassifications. This means that using a
sliding horizon without an update rule could result in several
erroneous switches of the control system. In fact, when using
sliding horizon classification the terrain is often misclassified
based on Fig. 6 and Fig. 7, with these stretches lasting
from approximately 0.1 seconds to 4 seconds. However,
most stretches of misclassifications seem to last less than
2 seconds. It is these short segments of misclassifications
which the update rule is designed to ignore. From Fig.
6 and Fig. 7 it can be seen that the update rule is able
to achieve this goal with minimal change in the average
delay in switching the control mode δ over sliding horizon
classification. Although the update rule also causes a small
start-up delay (approx. 2 secs), in order to populate W. These
delays are considered allowable based on the previously
enforced constraint δ ≤ 2.5 secs. And as there is only one
undesired control mode switch in each of these trials, the
update rule is shown here to be both robust and sensitive.
Interestingly, the stretch of terrain where the wrong control
mode is chosen corresponds to rut-like features in the gravel
that resulted from the AGV traversing this path multiple
times. This means that this stretch may benefit from control
settings closer to the asphalt control mode (the mode chosen
to implement) due to the absence of loose rocks in the gravel
surface. Fig. 6 and Fig. 7 also show that the update rule is

effective regardless of the travel direction. That is, the update
rule works well for transitions from asphalt to gravel as well
as gravel to asphalt.

In order to obtain an update rule for when the vehicle
is traveling at a speed of approximately 5.26 mph, the
tuning process of (4) with δ ≤ 2.5 is applied to the gravel
and asphalt transition data at 5.26 mph. The update rule
parameters n and η as well as the performance characteristics
δ and 1−ρ , for the 5.26 mph and 8.41 mph update rules
are presented in Table I.

TABLE I
XUV UPDATE RULES GRAVEL AND ASPHALT TRANSITIONS

Speed (mph) n η δ (sec) 1−ρ Change in ρ

5.26 55 1.00 2.24 92.2% 9.0%
8.41 45 0.95 2.11 93.6% 9.8%

Table I shows the potential of using an update rule to
conduct online switching of vehicle control modes. The
update rules at 5.26 mph and 8.41 mph were shown to use the
best control mode 92.2% and 93.6% of the time respectively.
These accuracies respectively correspond to improvements
of 9.0% and 9.8% over switching the control mode based
on sliding horizon terrain classification. This change in ρ

clearly shows the potential robustness improvement that is
obtainable using a well designed update rule. Additionally,
the delay in switching the control system δ is found to be
around 2.2 seconds at each speed. When considering that
terrain classification without the use of a sliding horizon
approach is only able to update the terrain every 2 secs on
the XUV, a 2.2 second delay is not considered significantly
different than what would be achieved using a typical clas-
sification approach. However, the update rule is obviously
substantially more robust.

It was previously theorized that the update rule would be
dependent on the vehicle speed. Table I seems to enforce
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this theory, as n and η are somewhat different based on
speed. However, these results consist of the compiled results
for only two trials on the same terrain transition. As n and
η are not very different, additional trials and a variety of
terrains should be considered before concluding that separate
update rules will be needed based on vehicle speed. Data
for additional trials and other terrain transitions is currently
unavailable, but will be considered in future research.

VI. CONCLUSIONS AND FUTURE WORKS

One area of terrain-dependent control that has seen little
discussion and research is in how to use a terrain classi-
fication system to update the control modes on an AGV.
This paper presents research in this area and demonstrates
how to achieve an update rule that balances robustness with
respect to misclassifications and sensitivity to changes in
the traversed terrain. Using experimental data from a large
mobile robot and a reaction-based classification scheme, this
method of determining an update rule is shown to have the
ability to achieve the desired balance.

As previously mentioned, future work on development of
an update rule should consider the use of data from multiple
terrain transitions, both abrupt and gradual in nature. This
should help to prove or disprove the theory that separate
update rules should be used based on vehicle speed, a theory
which the results of this paper seem to validate. As some
terrain transitions are unlikely to exist in nature, future
research should consider how to incorporate this information
within the update rule framework.
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