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Abstract— This paper applies geometric reduction-based con-
trol to derive a set of asymptotically stable dynamic walking
gaits for a 3-D bipedal robot, each corresponding to walking
along a nominal arc of constant curvature for a fixed number
of steps. We show that any such set of asymptotically stable gait
primitives may be composed in arbitrary order without causing
the robot to fall, so any walking path that is a sequence of
these gaits may be followed by the robot. This result enables
motion planning for bipedal dynamic walkers, which are fast
and energetically efficient, in a similar manner to what is already
possible for biped locomotion based on Zero Moment Point
(ZMP) equilibrium constraints.

I. INTRODUCTION

The step-level mechanics and high-level motion planning

of humanoid walking have been active areas of research over

the past decades. The incredible efficiency of bipedalism,

which allows humans to outwalk quadrupeds over long

distances [20], motivates its use on locomotive mechanisms.

In fact, researchers have demonstrated “passive dynamic”

walking down shallow slopes for simple planar biped models

without any actuation whatsoever [8], [23].

This energy-efficient form of locomotion, known as dy-

namic walking, is based on “controlled falling,” where each

step cycle involves a gravity-powered pendular fall towards

the ground, until foot impact transfers this natural falling mo-

tion to the other leg. In terms of a walker’s joint trajectories,

this produces attractive periodic orbits called limit cycles.

Hobbelen and Wisse offer a useful definition of this in [13]:

Limit cycle [i.e., dynamic] walking is a nominally

periodic sequence of steps that is stable as a whole

but not locally stable at every instant in time.

Many sophisticated humanoid robots, such as HRP-2 and

Honda ASIMO, have demonstrated robotic bipedal locomo-

tion. However, the motion of these robots is constrained

by “quasi-static” equilibrium conditions related to the Zero

Moment Point (ZMP), which produces walking that is not

dynamic according to the above definition. Recall that a

walking mechanism compensates for gravity by applying

forces against the ground, resulting in a reaction force acting

at a point known as the Center of Pressure (CoP). In order to

remain statically balanced, there must be zero net moment

at the CoP, and this so-called Zero Moment Point (ZMP)
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must be within the biped’s support polygon, e.g., the convex

hull of the ground contact area(s). When the Zero Moment

Point exits the support polygon, the biped rotates about

a new passive degree-of-freedom (DOF) at the edge of a

stance foot. This falling scenario is always avoided by ZMP

motion planners, whereas dynamic walking gaits are largely

composed of such pendular falling states.

In order to constrain walking trajectories for ZMP motion,

large actuators must track joint angles/velocities while ac-

tively supporting the body weight with flexed knees during

the entirety of each step cycle [13], [18]. This results in

unnatural shuffling motion that is up to an order of magnitude

less efficient than dynamic walking in terms of specific

energetic cost of transport (energy consumed per unit weight

per unit distance) [4]. Arguably, ZMP gaits may have a

closer resemblance to the inefficient postural attributes of

chimpanzee bipedalism – these hunched gaits similarly have

flexed knees that never pass beneath the hip joint, preventing

the pendular falling motion of dynamic walking gaits [27].

However, ZMP methods have proved useful in many

motion planning studies, allowing locomotion with obstacle

avoidance in three-dimensional (3-D) space [31], interaction

with the environment [15], [16], and walking and climbing

on rough terrain [12]. Although step-level motion planning

over irregular terrain has also been applied to planar dynamic

walkers [22], [24], we are unaware of any path planning

results for dynamic walking in 3-D space. This is likely

due to the difficulty in finding stable dynamic gaits for 3-D

bipedal robots, where complex dynamics must be controlled

to produce asymptotically stable limit cycles without cancel-

ing the beneficial passive dynamics that are fundamental to

efficient bipedalism.

Work towards 3-D dynamic walking began with models of

the sagittal and frontal planes-of-motion (without heading,

see Fig. 1), resulting in spatially 3-D dynamic gaits (e.g.,

[2], [17], [26]). However, work on fully 3-D (i.e., directional)

dynamic walking is limited, with some of the earliest theoret-

ical results presented in [9]–[11]. In these papers, geometric

reduction-based control is employed to build 3-D gaits

about arbitrary headings, based on subsystem limit cycles

in the sagittal plane-of-motion (where bilateral symmetry

yields periodic motion from step to step). Rigorous results

for underactuated 3-D bipeds are presented in [25], where

virtual constraints are enforced to restrict analysis to the

periodic motion of a reduced-order subsystem. Both methods

demonstrate steering capabilities, with the latter showing

stability for steering along paths with mild curvature.

In order to build bipedal robots that can quickly and
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Fig. 1. The transverse (or axial), frontal (or lateral), and sagittal planes-
of-motion of the human body [30]. These correspond to the yaw/heading,
lean/roll, and pitch degrees-of-freedom, respectively, at the foot.

efficiently navigate through real-world environments, the sta-

bility of dynamic walking must be considered when planning

walking paths with significant steering. This is no trivial task,

as turning motion inherently deviates from known stable limit

cycles associated with straight-ahead walking [9]. Unlike

ZMP methods, the robot state cannot be checked against

closed-form balance constraints. The hybrid nonlinear dy-

namics of a dynamic walker make it difficult to analytically

assure stability – the fate of a walking trajectory from given

initial conditions is usually computed in simulation [8].

Therefore, we present a theoretical framework for build-

ing stable walking paths for dynamic walking bipeds. We

show that straight-ahead and turning gaits form a set of

motion primitives that enable motion planning techniques,

commonly used on ZMP walkers, to be applied to dynamic

walkers. We survey related work in Section II, followed by

an overview of dynamic walking and stability in Section III.

Here we describe an example 3-D “compass-gait” biped and

its reduction-based controller. We introduce and demonstrate

the notion of gait primitives in Section IV. Our main theo-

retical result is presented in Section V, where we derive the

rules for composing gait primitives. We then formulate the

path planning problem in Section VI, followed by numerical

results in Section VII and closing remarks in Section VIII.

II. RELATED WORK

We now discuss some stability results in dynamic motion

control, followed by motivating work in humanoid path

planning based on postural ZMP constraints. Note the impor-

tant distinction that satisfying the ZMP condition does not

necessarily imply stable walking motion [29, Section 10.8].

A. Stable Dynamic Motion Control

Geometric methods are used in [11] to construct 3-D

straight-ahead walking gaits corresponding to locally expo-

nentially stable (LES) limit cycles, i.e., local asymptotic

stability (LAS) with exponentially fast convergence. This

paper’s steering results are extended in [9], [10], showing that

constant-curvature steering between steps induces LES limit

cycles corresponding to circular turning. However, walking

paths can entail an arbitrary sequence of turning motions

that may accumulate perturbations and lead to instability.

Virtual constraints are used in [25] to construct LES

straight-ahead gaits, which can be stably steered towards

nearby headings. In particular, LAS implies local input-to-

state stability: sufficiently small changes in heading result in

small changes in state between impact events. However, it is

difficult to deduce the bounds for this form of stability over

a curved walking path (i.e., what range of initial states will

recover from some bounded sequence of steering angles).

The present paper intends to show that different LAS

gaits can be sequentially composed to build stable walking

paths. This is directly related to the switching controller-

composition method of [3], where (Lyapunov) funnels show

stability for sequential paddle-and-ball batting maneuvers.

B. ZMP Motion Planners

Full-body posture planning is achieved in [16] by initially

computing a large set of statically-stable configurations. A

path between goal configurations is then found by growing

a rapidly-exploring random tree, which connects samples

only if a collision-free ZMP-constrained path exists. This is

used in [15] for locomotion planning, restricting the problem

to a discrete set of foot placements connected by valid

stepping motions. A similar method in [12] pre-computes

a small set of ZMP-constrained motion primitives, which

bias the sampling of configurations between planned foot

placements. These primitives prescribe high-quality motions

that can be shaped to match common tasks such as walking

and climbing. Instead of tracking pre-computed trajectories,

our approach is based on asymptotically stable limit cycles.

A two-stage global planner is proposed in [31] that first

uses a sampling-based algorithm to find a collision-free

path for the functional decomposition of the robot body.

That is, the robot is modeled as a bounding box on a

walking surface, reducing the initial planning problem to

configuration space SE(2) (x, y, and orientation). Ran-

domly generated samples are locally connected by Dubins

curves (circular arcs with tangential line segments [6]), and

these SE(2) paths are given to a walking pattern generator

that produces constrained whole-body motions for ZMP-

constrained locomotion. We will show that the nature of

our gait primitives allows a similar functional decomposi-

tion approach for generating stable dynamic walking paths

composed of constant-curvature arc segments.

III. DYNAMIC WALKER MODEL

A bipedal robot can be modeled as a hybrid system, which

contains both continuous and discrete dynamics. We assume

full actuation at the stance ankle of flat feet, which have

instantaneous and perfectly plastic impact events. During the

continuous swing phase, the contact between stance foot and

ground is assumed flat without slipping. Note that some of

these assumptions can be relaxed as in [25], [26]. We begin

with some formalisms for hybrid systems from [2], [29].
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C. Reduction-Based Control

A geometric property of open-chain robots was introduced

in [9], [11], identifying extensive symmetries in robot dy-

namics. Reduction-based control exploits these symmetries

to decompose robot dynamics into lower-dimensional control

problems. Using control to shape the energy of an n-DOF

robot, the shaped dynamics can be projected onto the dynam-

ics of a corresponding m-DOF “subrobot”. This subsystem is

entirely decoupled from the first k = n−m coordinates and

thus behaves and can be controlled as a typical m-DOF robot.

The first k DOF evolve according to controlled momentum

equations yielding stabilized set-points or periodic orbits.

In the context of bipedal walking, controlled reduction first

separates the transverse plane-of-motion to control yaw to

desired heading ψ̄, then separates the frontal plane-of-motion

to stabilize lean about vertical. Given this controlled reduc-

tion to the sagittal-plane subsystem defined on reduced-order

phase space TQ modulo TT2, we can find limit cycles in

the dynamics of the planar biped associated with Lagrangian

Lθ(θ, θ̇) =
1
2 θ̇
TMθ(θ)θ̇ − Vθ. The control law that enables

this controlled reduction is depicted in Fig. 2, but due to

space constraints we refer the reader to [9], [11] for details.

This method allows us to build full-order 3-D dynamic

walking gaits, leading to our discussion on gait primitives.

IV. GENERATING GAIT PRIMITIVES

In this section, we discuss creating our set of asymp-

totically stable gait primitives corresponding to strategies

for both straight-ahead walking and left/right turning. These

strategies enable motion planning for the biped, which

chooses a gait from this set for every step cycle. We will later

discuss rules for stably switching between different gaits. To

begin, we formalize the notion of gait primitives.

Definition 1: An asymptotically stable gait primitive is

a pair G = (H cl, x∗), where H cl is a closed-loop hybrid

system of a controlled biped, and x∗ is an asymptotically

stable fixed-point (modulo heading change) of H cl.

Since asymptotically stable limit cycles are fundamental to

dynamic walking, we often call these dynamic gait primitives

for brevity. Recall that our example 4-DOF biped has no hip,

so we will find 1-step periodic gaits. We now derive this

biped’s gait primitives, but note that this paper’s planning

framework pertains to any set of asymptotically stable gaits

(not necessarily from our reduction-based control method).

A. Straight-Ahead Gait Primitive

The reduction-based control law of Fig. 2 yields closed-

loop hybrid system H st
4D for straight-ahead walking on flat

ground. For our example, we set ψ̄ = 0 without loss

of generality, finding the 1-fixed-point x∗st4D given in (5).

We numerically verify LES of this straight-ahead gait by

linearizing the associated Poincaré map Pst, and we denote

the basin of attraction as BoAst(x
∗st
4D). This defines the

straight-ahead gait primitive Gst
4D = (H st

4D, x
∗st
4D).

The associated hybrid periodic orbit Ost
4D is illustrated in

the plots of Fig. 3, showing its periodicity over one step.

We see that this upright gait has no swaying in lean or

yaw (which is to be expected for a hipless biped), but the

sagittal plane has a periodic step length of 0.53 m and an

approximate linear velocity of 0.73 m/s.

B. Turning Gait Primitive

We create turning gaits by introducing a periodic distur-

bance into H st
4D in the form of constant steering between

steps. In particular, we augment the within-stride reduction-

based controller with an event-based (or stride-to-stride)

controller that increments desired yaw ψ̄ at each step by

steering angle s = ∆ψ̄ (positive for clockwise or negative for

counter-clockwise steering). This yields closed-loop system

H
tu(s)
4D , for which trajectories converge to 1-step periodic

turning gaits modulo heading change s, where CW and CCW

gaits are symmetric with opposite yaw/lean. We want to show

that for any sufficiently small |s|, constant-curvature turning

induces a LES 1-fixed-point modulo heading change:

(ψ∗tu(s) + s, ϕ∗tu(s), θ∗tu(s)
T

, q̇∗tu(s)
T

)T = Ptu(s)(x
∗tu(s))

with BoAtu(s)(x
∗tu(s)). We can then define CW-turning and

CCW-turning gait primitives G
tu(s)
4D and G

tu(−s)
4D .

Starting our biped’s augmented system from x∗st4D , we

observe that hybrid flows converge to a 1-fixed-point x
∗tu(s)
4D

associated with O
tu(s)
4D for any choice of s ∈ [−S, S],

S = 0.492. We densely sample steering values in [−S, S],
finding the fixed-point for each sample and confirming LES.

The evolution of the fixed-point is plotted in Fig. 4. This also

shows that periodic step length (and time duration) changes

slowly as |s| increases, which perturbs the sagittal-plane

orbits compared to O∗st
4D . Increasing |s| into the instability

region outside [−S, S], we observe period-doubling (flip)

bifurcations yielding 2- and 4-step periodic LES orbits,

ultimately leading to a chaotic strange attractor and falling.

We demonstrate a CW and CCW turning gait by choosing

ŝ = 0.483, which corresponds to the fixed-points in (6)-(7).

The CW-turning gait is illustrated in Fig. 5 (and CCW by

symmetry), which shows the gait’s natural leaning into the

turn. Finally, we emphasize that these turning gaits naturally

arise from our asymptotically stable straight-ahead system,

without changing any reference trajectories.

C. Orienting Primitives

Recall that we derived each of these primitives from

heading ψ = 0. Our closed-loop biped can be arbitrarily

oriented about the z-axis for walking along any heading:

Proposition 1: If gait primitive G = (H cl
ψ̄i
, x∗ψi

) with

initial ψi and ψ̄i has LES fixed-point (modulo s = ∆ψ̄)

x∗ψi
:=

(

q∗
T

ψi
, q̇∗

T
)T

=
(

ψi, ϕ
∗, θ∗

T

, q̇∗
T
)T

,

then G = (H cl
ψ̄j
, x∗ψj

) is the same gait primitive with initial

ψj and ψ̄j = ψ̄i + (ψj − ψi), with LES fixed-point x∗ψj
.

Each primitive’s closed-loop hybrid system is autonomous

(no reference trajectories) and thus invariant with respect

to time. Therefore, a general set of asymptotically stable
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x∗st4D ≈ (0, 0,−0.2704, 0.2704, 0, 0,−1.4896,−1.7986)T (5)

x
∗tu(ŝ)
4D ≈ (−0.0306,−0.0064,−0.2782, 0.2782,−0.0318, 0.0159,−1.5426,−2.1318)T (6)

x
∗tu(−ŝ)
4D ≈ (0.0306, 0.0064,−0.2782, 0.2782, 0.0318,−0.0159,−1.5426,−2.1318)T (7)
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Fig. 3. Straight-ahead 1-step gait: phase portrait (left), coordinate trajectories (center), and multi-step visualization (right). The phase portrait shows planar
slices of Ost

4D by plotting angular positions against angular velocities, which we use to illustrate 1-step periodicity in phase space.
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Fig. 4. Evolution of CW turning fixed-point x
∗tu(|s|)
4D angles (left), velocities (center), and associated step length (right) over steering angle s = ∆ψ̄.
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Fig. 5. Clockwise ŝ-turning 1-step gait: phase portrait (left), coordinate trajectories (center), and 13-step 360◦-turn visualization (right).

gait primitives, {Gst,Gtu(s),Gtu(−s)}, can be oriented about

arbitrary headings at arbitrary times to form walking paths.

Each gait has a nominal steering angle and arclength on

the walking surface, but switching will result in transient

variations. We must consider the stability of such transitions.

V. SEQUENTIAL COMPOSITION OF PRIMITIVES

We present the sequential composition of gait primitives

in a manner analogous to the funneling approach of [3]

and [29, Section 4.6.1]. We consider a set of dynamic gait

primitives for a general biped, where we do not have an

analytical/closed-form expression for the map between steps.

A biped employs1 gait primitive Gi = (H i, x∗i ) during

step cycle i by implementing the controller yielding closed-

loop hybrid system H i. Gait primitives are selected at every

impact event, so every step has an associated gait transition.

Definition 2: The gait transition of step i is defined by

pair Ti = (xi,G
i+1), where xi is the state at the ith impact

event and Gi+1 is the gait primitive during step cycle i+ 1.

1Turning gaits are implicity understood to be modulo steering angle s, and
we assume that each gait primitive is oriented coincident with the biped’s
heading at the preceding gait transition.
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Moreover, Ti is said to be switching if Gi+1 6= Gi.

Hence, Ti+1 is related to Ti by xi+1 = PH i+1(xi). And,

in the case of 2-step periodic gaits, switching may only occur

ever other step, implying Gi+1 = Gi for even i.

Definition 3: A gait transition Ti = (xi,G
i+1) is stable

if xi ∈ BoAH i+1(x∗i+1), where H i+1 and LES fixed-point

x∗i+1 are from gait primitive Gi+1 of step cycle i+ 1.

State xi may be the result of any gait primitive. Clearly,

if Gi+1 = Gi and Ti−1 is stable, then Ti is also stable.

In order to determine stability for switching transitions, we

first establish some properties of “nearby” gait primitives by

providing numerical evidence of the following assumptions.

Assumption 1: For every s ∈ [−S, S], there exists

LES fixed-point x∗tu(s) of Ptu(s) with corresponding

BoAtu(s)(x
∗tu(s)). Then, by definition there exists a non-

empty open ball of radius rs > 0 about x∗tu(s) such that

B(x∗tu(s), rs) ⊂ BoAtu(s)(x
∗tu(s)).

Moreover, assume x∗tu(s), rs are continuous functions of s.

This is suggested by the previously discussed sampling of

[−S, S], shown in Fig. 4. For a sufficiently dense set of sam-

ples, input-to-state stability guarantees that state trajectories

will remain nearby for steering values s between samples

(arguably, such choices of s also result in unique attractive

fixed-points). Furthermore, this turning motion more closely

resembles straight-ahead motion for smaller steering angles:

Assumption 2: The turning fixed-point x∗tu(s) converges

to straight-ahead fixed-point x∗st = x∗tu(0) in metric space

(R2n, d) as |s| → 0, where d is Euclidean distance. I.e., if

r∗s := d(x∗tu(s), x∗st), then lim|s|→0 r
∗
s = 0.

Clearly, turning curvature κ = ±1/R converges to

straight-line curvature κ = 0 as turning radius R → ∞ ⇔
|s| → 0. Thus, Assumption 2 follows from Assumption 1

by continuity. Loosely speaking, Assumption 2 implies the

basins of attraction also converge, which we exploit next.

Lemma 1: Given Assumptions 1-2, there exists positive

steering angle S̃ ≤ S such that for all s ∈ [−S̃, S̃]:

1) x∗st ∈ BoAtu(s)(x
∗tu(s))

2) x∗tu(s) ∈ BoAst(x
∗st)

3) x∗tu(−s) ∈ BoAtu(s)(x
∗tu(s))

Proof: [1.1] We first define minimal ball radius r :=
mins∈[−S,S](rs), positive by compactness of [−S, S], so

B(x∗tu(s), r) ⊂ B(x∗tu(s), rs) ⊂ BoAtu(s)(x
∗tu(s)),

for all s ∈ [−S, S]. Now, since r > 0 and lim|s|→0 r
∗
s = 0,

∃ S̃ ≤ S such that r∗s < r for all s ∈ [−S̃, S̃]. Then, x∗st ∈
B(x∗tu(s), r) for all s ∈ [−S̃, S̃], and the claim follows.

[1.2] First, by definition of LES, ∃ r∞ > 0 such that

B(x∗st, r∞) ⊂ BoAst(x
∗st). Then, again ∃ S̃ such that r∗s <

r∞ for all s ∈ [−S̃, S̃]. Hence, x∗tu(s) ∈ B(x∗st, r∞) for all

s ∈ [−S̃, S̃], and the claim follows.

[1.3] Recall x∗tu(s) → x∗st as |s| → 0, which means that

for each ǫ/2 > 0, ∃ δ > 0 such that for all s ∈ [−δ, δ],

d(x∗tu(s), x∗st) < ǫ/2. Then, the triangle inequality shows

d(x∗tu(s), x∗tu(-s)) ≤ d(x∗tu(s), x∗st) + d(x∗tu(-s), x∗st)

< ǫ

Hence, if r∗tus := d(x∗tu(s), x∗tu(−s)), then lims→0 r
∗tu
s = 0.

Now, denoting each turning ball as B(x∗tu(s), rs), we can

define minimal ball radius r := mins∈[−S,S](rs) > 0. As we

saw in 1.1, ∃ S̃ such that r∗tus < r for all s ∈ [−S̃, S̃]. Then,

x∗tu(−s) ∈ B(x∗tu(s), r) for all s ∈ [−S̃, S̃], and the claim

follows. Equivalently, x∗tu(s) ∈ BoAtu(−s)(x
∗tu(−s)).

Finally, we can take the minimum of S̃ from each proof

to find S̃ for the overall Lemma.

Recall that asymptotically stability implies convergence

to fixed-points in infinite time, so we show that trajectories

eventually converge “close enough” to stably switch gaits.

Remark 1: Note that in Lemma 1.1, B(x∗tu(s), r) is

an open ball so x∗st cannot be on the boundary of

BoAtu(s)(x
∗tu(s)). Therefore, points sufficiently close to

x∗st are also contained in BoAtu(s)(x
∗tu(s)). The same holds

for the other three claims in Lemma 1.

Fortunately, we also have exponentially fast convergence

to such neighborhoods around fixed-points. Given enough

time along a given primitive, the biped’s state will be

“funneled” into the basin of attraction of the next primitive

upon switching. This is called the dwell time, since the

biped can be interpreted as a discrete-time switched system

x(i + 1) = Pσ(i)(x(i)), where switching signal σ : Z+ →
{st, tu(s), tu(−s)} chooses the primitive from step-to-step.

A “supervisory” control could then constrain this signal σ(·)
to stably compose gait primitives, using the following result

for our switched system (cf. [1], [21] for analogous results).

Theorem 1: For any s ∈ [−S̃, S̃] from Lemma 1, there

exists a minimum number of steps N ≥ 1, i.e., a lower bound

on dwell time, such that for all integers k ≥ N :

1) If x ∈ BoAst(x
∗st), then P kst(x) ∈ BoAtu(s)(x

∗tu(s)).
2) If x ∈ BoAtu(s)(x

∗tu(s)), then

P ktu(s)(x) ∈ BoAst(x
∗st).

3) If x ∈ BoAtu(s)(x
∗tu(s)), then

P ktu(s)(x) ∈ BoAtu(−s)(x
∗tu(−s)).

Corollary 1: Consider primitive set {Gst,Gtu(s),Gtu(−s)}
as in Theorem 1. For any s ∈ [−S̃, S̃], there exists a

minimum dwell time N ≥ 1 such that for any integer

k ≥ N the following holds: any switching transition Ti+k
that follows a stable transition Ti is also stable.

Hence, we can piece together straight and curved gait

segments, as long as the turns are not too sharp or the

primitive switches too fast. The steering sharpness must be

bounded by steering angle S̃, a condition that can be verified

in simulation (checking convergence from all fixed-points).

However, minimum dwell time N depends explicitly on each

gait primitive’s basin of attraction and rate of exponential

convergence, both of which can only be characterized numer-

ically. It may be possible to use sum-of-squares programming
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to find invariant subsets of the basins of attraction [28], which

would enable expressions for lower bounds on dwell time as

in [1]. For the purposes of this paper, we examine our lower

bound using exhaustive simulation in Section VII. We first

must discuss building walking paths from gait primitives.

VI. PATH PLANNING FORMULATION

Given these transition rules, we can define stable walking

over a path of sequentially composed gait primitives.

Definition 4: A w-step walking path execution from ini-

tial condition x(0) = x0 is defined by the ordered set

E(x0) = (T0,T1, . . . ,Tw−1), where T0 = (x0,G
1).

Definition 5: A walking path execution E(x0) is robust if

all gait transitions Ti are stable.

In other words, the biped is guaranteed not to fall over.

Recall that state x describes the robot’s motion with respect

to its joints. In the context of path planning, we need to

consider the robot’s coordinates with respect to a world

frame, i.e., it’s Euclidean coordinates on the walking surface.

Assuming a flat surface, we need only model the biped’s

(x, y)-position (e.g., measured at the stance foot w.r.t. some

world frame) along with heading ψ as the global orientation.

Hence, every step i has an associated world configuration

ci = (xipos, y
i
pos, ψi)

T ∈ SE(2). The extension of a biped’s

discrete dynamics to coordinates xei = (xipos, y
i
pos, x

T
i )
T is

trivial, as the new coordinates are easily updated according

to link angles. Through a slight abuse of notation, we denote

a boundary-constrained w-step walking path execution as

Ecwc0 (x
e
0), where c0 is given by xe0 = (cT0 , ϕ0, θ

T
0 , q̇

T
0 )
T and

cw is given by xew = PH w(xew−1) = (cTw, ϕw, θ
T
w, q̇

T
w)
T .

We now have the framework to form paths that stably con-

nect initial and final world configurations c0, cf . We can use

Corollary 1 to define a class C
cf
c0 =

{

Ecwc0 |cw = cf , w ≥ 1
}

of robust walking paths between reachable configurations c0
and cf . Moreover, our finite set of gait primitives is con-

tinuously parameterized by s to allow a (large) continuous

reachable set. After encoding the transition rules into a regu-

lar language [7], walking paths can be constructed by a finite-

state machine that outputs a constrained switching signal

σ(·) to the biped switched system. This allows concerns of

stability to be abstracted away from the planning problem.

As the biped switches between gaits, step cycle trajectories

converge back and forth between attractive orbits, so we

generally do not have a fixed mapping from gait transitions

to path arcs. Kinodynamic planning methods (e.g., [19])

can account for these transient effects to reach precise

ground configurations. Alternatively, arc characteristics can

be closely estimated for each gait primitive, providing a

nominal set of constant-curvature arcs for kinematic planning

in SE(2). The nominal walking paths can therefore be

locally planned much like trivial Dubins curves [6]. Although

ZMP biped planners often use Dubins curves as a local

planning heuristic [31], our results affirm this choice from

the perspective of stability. We defer the algorithmic and

reachability details for such planning methods to future work.
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Fig. 6. Biped’s random walk with gait dwell time k = 2 over 100 steps.

VII. SIMULATION RESULTS

Although it is computationally difficult to find the exact

region [S̃, S̃], we can easily verify containment of a particular

s through simulation. Therefore, we can confirm the condi-

tions of Lemma 1 for primitive set {Gst
4D,G

tu(ŝ)
4D ,G

tu(−ŝ)
4D },

i.e., ŝ = 0.4833 ∈ [S̃, S̃]. This corresponds to

x∗st4D , x
∗tu(ŝ)
4D , x

∗tu(−ŝ)
4D ∈ BoAst

⋂

BoAtu(ŝ)

⋂

BoAtu(−ŝ).

This overlapping attractive region influences the minimum

dwell time N along gaits for Theorem 1. We simulate worst-

case gait switching tests to deduce N for this primitive set.

Based on the intuition provided by Theorem 1, worst-case

walking scenarios are those with the highest frequencies of

switching gait transitions (i.e., dwell time k < N ). The more

often a biped switches between gait primitives, the more

likely it will accumulate transient perturbations that cannot

be attenuated during the short duration of each primitive.

Eventually, the impact-event state from one gait primitive

will be outside the basin of attraction of the next.

We first simulate switching between two fixed gaits at

every step (i.e., k = 1). Both the CW-to-CCW and CW-

to-Straight cases eventually converge to 2- and 4-periodic

cycles, respectively, showing that the biped is robust for

periodic switching transitions. We next try a “random walk,”

randomly picking a gait primitive from a uniform distribution

at every step. Here, we observe occasional falls, e.g., the se-

quence (CW,S,S,S,CW,S,S,S), implying that N > 1. Setting

k = 2 (switching allowed every other step), we are unable to

produce falls after several lengthy simulations (100+ steps,

e.g., Fig. 6), suggesting that minimum dwell time N = 2.

This is evidence that the overlapping attractive region of

our primitive set is large. This is due to the close proximity of

the set’s fixed-points, e.g., d(x
∗tu(ŝ)
4D , x

∗tu(−ŝ)
4D ) < 0.064, as

well as the large size of each gait’s basin of attraction. This

shows that our primitive set is capable of building a large

class of robust walking paths, enabling path planning through

3-D space as in the obstacle avoidance example of Fig. 7.

Integrating q̇Tu to obtain net work per step, the specific

mechanical cost of transport for each gait is c∗stmt = 0.052

and c
∗tu(±ŝ)
mt = 0.06, which compares favorably against the

Cornell biped at cmt = 0.055 and ASIMO at cmt = 1.6 [4].
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Fig. 7. Example of a planned path using gait primitives for a torso biped.
The sequence of primitives is (S, CCW, CCW, S, S, S, S, CW, CW, S, S, S,
S), where switching transitions are signified by circles at the impact events.

VIII. CONCLUSIONS

The planning framework of dynamic gait primitives can be

used with any control method that produces asymptotic stable

walking (e.g., [11], [25]). Each gait primitive is characterized

by its hybrid system dynamics and stable fixed-point, thus

corresponding to a nominal hybrid periodic orbit. In our

compass-gait example, these orbits are naturally attractive by

the (pseudo-passive) robot dynamics after controlled reduc-

tion. Simulations show that the biped stably switches gaits for

dwell times k ≥ 2, which affords significant maneuverability.

This motion is not prescribed by full-state trajectories [7]

or subjected to any postural constraints to ensure stability

[12], [15], yet we have deduced robustness over a large

class of paths composed of gait primitives. This allows

decomposed kinematic planning for fast and efficient bipedal

locomotion based on human-like passive walking principles,

which is fundamentally different from ZMP methods. Future

work will detail high-level planning algorithms that can

integrate a suite of other motion control tools for dynamic

walkers, such as step-level planning over rough terrain [22],

[24] and time-scaling for variable walking speeds [14]. Ex-

perimental results have been achieved for planar limit cycle

walking (cf. [29]), and 3-D results may soon be possible with

advances in actuator and biped mechanical design.

The turning gaits in this paper exhibit the sagittal-plane

periodicity of straight-ahead gaits with slight step length and

velocity adjustments, as in the human turning studies of [5].

This begs interesting questions about the existence of motion

primitives in human locomotor control based on the spinal

cord’s central pattern generator, which we leave to the reader.
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