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Abstract— This paper is concerned with the problem of
mobile robot localization using a novel compact representation
of visual landmarks. With recent progress in lifelong map-
learning as well as in information sharing networks, compact
representation of a large-size landmark database has become
crucial. In this paper, we propose a compact binary code (e.g.
32bit code) landmark representation by employing the semantic
hashing technique from web-scale image retrieval. We show
how well such a binary representation achieves compactness
of a landmark database while maintaining efficiency of the
localization system. In our contribution, we investigate the cost-
performance, the semantic gap, the saliency evaluation using the
presented techniques as well as challenge to further reduce the
resources (#bits) per landmark. Experiments using a high-speed
car-like robot show promising results.

I. INTRODUCTION

This paper is concerned with the problem of mobile robot

localization using a novel compact representation of visual

landmarks. With recent progress in lifelong map learning

[1] as well as in information sharing networks [2], it has

become crucial for mobile robots to obtain and use a large-

size database of visual landmarks [3]. Accordingly, compact

representation of landmark database attracts much interest.

The motivation of this study is to enhance compactness of a

landmark database while maintaining efficiency of the robot

localization system.

We follow the visual retrieval approach [3] [5]- [10] to

search a large-size landmark database. More formally, in our

system, a visual vocabulary module maps high dimensional

visual landmarks to fewer dimensional visual words, and

then an information retrieval module indexes and searches

relevant visual words in the landmark database. In general,

space cost of such a landmark database mainly consists of

1) cost for visual vocabulary, and

2) cost for individual visual words.

Reducing the both kinds of costs is a basic requirement for

a compact landmark database.

Our landmark representation is inspired by a (e.g. 32bit)

compact binary code representation from web-scale im-

age retrieval community. In CBIR (content-based image

retrieval), binary codes are used for searching similar images

in a database. In their approaches, a short sequence of

binary codes is assigned to each image and memorized in a

database. With such a binary code representation, similarity

search using hash tables as well as bit count operation can
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Fig. 1. How well compact binary landmark representation works in mobile
robot localization? (a) Experimental environment and robot’s trajectory. (b)
A high-speed car-like mobile robot. (c) Binary landmark representation
using the semantic hashing technique. (d) Sequences of images and binary
codes. Top, Middle: Two similar locations. Bottom: A dissimilar location.
Note that the codes are similar/dissimilar only at a few bits.

be quite fast. In this line of research, a state-of-the-art is the

semantic hashing technique developed by Salakhutdinov and

Hinton [11]. The semantic hashing learns a deep graphical

model of K-bit code vector from a huge number (e.g. 1×105)

of training images. The binary code directly points the

memory address of relevant features. Near neighbors in terms

of Hamming distance are found fast by accessing only a few

addresses in a Hamming ball. In [12], the semantic hashing

technique achieves successful information retrieval in a web-

scale image database. The visual vocabulary, deep belief

network (DBN) graphical model [13] is relatively low cost

(e.g. 5.3 MByte) logarithmic to the number of words.

This paper proposes a compact binary code representation

by employing the semantic hashing technique, as illustrated

in Figure 1. In this study, we are particularly interested in

how well such a binary landmark representation works in

standard localization frameworks such as particle filter [14].

For instance, a 1-bit binary code is a very compact visual

word compared to the cases of other type vocabularies such

as PCA (e.g. a 10-dim float vector) [4] or the vocabulary tree

(e.g. a 6-dim integer vector) [15]. In fact, individual binary

measurements are not sufficiently informative for successful

localization. Our approach is to integrate a sequence of

binary measurements in a standard framework of incremental

localization [14]. We have developed a visual localization
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system by implementing techniques from optical flow [16]

(visual odometry), GIST scene descriptor [6] (visual feature),

semantic hashing [11] (visual vocabulary) as well as particle

filter [14] (inference framework). In our system, individual

bits i of the K-dim vector output by the semantic hashing

should be viewed as K independent measurements. In the

spirit of sensor fusion [17], we employ K different binary

maps and record i-th bit measurements on i-th map. From

the viewpoint of information sharing, the number K′ < K

of binary maps shared and used for localization should be

minimized. We experimentally show how many binary maps

are actually required for successful localization.

To our knowledge, this is the first study that focuses on

binary landmark representation using the semantic hashing

technique. In our contribution, we investigate the cost-

performance, the semantic gap, the saliency evaluation using

the presented techniques, as well as challenge to further

reduce resources (#bits) per landmark. Experiments using a

high-speed car-like robot show promising results.

A. Relation to other works

Existing techniques for visual vocabulary have their own

advantages and disadvantages in terms of the space efficiency

of the vocabulary, the words and the database structure, as

well as in terms of the time efficiency of database build-

ing and retrieval. For example, PCA (principal component

analysis) [4] and LSH (locality sensitive hashing) [18] are

advantageous in terms of the lightweight vocabulary (e.g.

a few MByte) but their word is not compact (e.g. over

10 Byte). On the other hand, the vocabulary tree [15]

(hierarchical k-means) is advantageous in terms of compact

word (e.g. a few Byte) but its vocabulary is heavy weight

(e.g. 1GByte). BOF (bag of features) [19] using such as

TF-IDF (term frequency - inverse document frequency) [20]

represents an image as a word count vector and could achieve

a good trade-off between lightweight vocabulary (depending

on the vocabulary used) and compact word. An advantage

of our approach is extremely compact word (e.g. 32 bits) as

well as relatively lightweight vocabulary (e.g. 5.3 MByte).

Local features such as SIFT (scale-invariant feature trans-

form) are also used in many studies on visual localization

[7] [14] [21] as well as in our previous studies [8] [9].

In their approaches, a set of local features are extracted

from an image at either interest, random or dense points.

In contrast, an advantage of global feature approach is that

it naturally captures the semantic information of an image.

Such a semantic reasoning in the case of local feature

approach is an interesting topic of on-going research [10].

From the viewpoint of compactness, another advantage of

global feature is that instead of representing an image by

many features, it can represent an image by a single feature.

We use global features extracted by GIST scene descriptor

[6]. In [22], GIST scene descriptor has been successful in the

context of web-scale image retrieval. However, our approach

of binary landmarks is not limited to a specific feature type,

but could be applied to other type global features such as

HOG (histogram of oriented gradients) [23].

Fig. 2. Binary maps. Individual binary codes are viewed as different type
independent measurements. We employ K different binary maps for K bit
code and then record i-th bit measurements on i-th map. We also discuss
how many K′(< K) binary maps are required for successful localization.

II. BINARY LANDMARK APPROACH

In this study, an input measurement of high dimensional

visual feature is translated by a visual vocabulary to a visual

word of K-bit binary vector:

C = [c1
, ...,cK ]. (1)

Individual bits ci of the vector are assumed to be indepen-

dent binary measurements. Some examples of the translation

are shown in Figure 1 (d). In order to deal with K different

binary measurements

c1
, ...,cK

, (2)

we introduce K binary maps

B1
, ...,BK (3)

as illustrated in Figure 2 and record i-th bit measurements

on i-th map.

The space cost is linear to the number of binary maps we

use. Each landmark consumes 1-bit per binary map. As a

default setting, we use the full K bit binary maps for mapping

and localization. To further enhance the compactness, we will

also challenge localization with reduced K′ = K −∆K < K

binary maps in experimental section IV.

Many current localization approaches (e.g. particle filters

[14], multiple hypothesis tracking [21]) maintain multiple

hypotheses of the 3robot pose. In implementation, the robot

pose is represented as a 1DOF viewpoint ID on the map,

although the approach could be easily generalized to 3DOF

or 6DOF. They generate hypotheses, track each hypothesis

as the robot moves, evaluate the likelihood of each hypoth-

esis as the robot observes a landmark, and occasionally

generate some new likely hypotheses to replace old ones.

Our approach will use binary landmark measurements in the

likelihood evaluation as well as the hypothesis generation.
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A. Likelihood evaluation

The likelihood evaluation aims to evaluate how likely a

robot pose hypothesis xt is consistent with a binary land-

mark measurement ci given a landmark map. It predicts the

landmark pose conditioned on the hypothesized robot pose,

retrieves corresponding landmark poses in the map, and then

computes the observation likelihood according to the degree

of similarity between the query and such a corresponding

landmark. We obtain the observation likelihood for a binary

measurement ci as

P(ci|x) ≃

{

loc
1/K

L (ci = cmap,x)

lo (ci 6= cmap,x)
. (4)

Increase in the likelihood of relevant/irrelevant hypotheses is

controlled by the pre-defined constant cL.

B. Hypothesis generation

The hypothesis generation aims to generate a new likely

hypothesis of robot pose according to the latest landmark

measurement. It searches a similar landmark in the landmark

database, and generates a new robot pose hypothesis as a

prediction from the similar landmark.

We can search similar landmarks in the database by a hash

table. A binary code

C = [c1
, · · · ,cK ] (5)

points an address

a =
K

∑
i

ci2i−1 mod S (6)

in the hash table. The hash table size S is set small (e.g. 8

MByte) considering available memory size. Inserting a novel

landmark to the landmark database is an incremental process

of inserting the pointer of the landmark to the corresponding

bin at the address a. Such an incremental database building

is useful and essential for incremental map learning [24].

Searching similar landmarks in the database is a process of

accessing the bins in a Hamming ball centered at the address

a corresponding to the query landmark and is fast by using

a pre-computed lookup table.

The number of similar landmarks returned by above re-

trieval technique is in proportion to the number of landmarks

in the database. This adds computational burden in the case

of a large-size map. Usually, we are only interested in a

small portion of such similar landmarks, i.e. the ones that

are visible from the viewpoints of at least one hypothesis.

Considering the fact, we also have developed an alternative

technique that simply iteratively samples a new landmark ID

until it finds a similar landmark. Finding similar landmarks

by bit count operation consumes time proportional to the

number of hypotheses and independent from map size.
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Fig. 3. Visual localization processing. (a) Input images. (b) Optical flows.
(c) Binary codes. (d) Observation likelihood over the robot pose space.
(e) Semantic hashing architecture. Left: Pre-training. Middle: Fine-tuning.
Right: Encoding. The number of nodes for each layer is also shown in the
figures.

III. VISUAL LOCALIZATION SYSTEM

This section explains an instance of our visual localiza-

tion system, which is composed of visual odometry, visual

feature, visual vocabulary and inference framework. Figure

3 shows an overview.

A. Visual odometry: optical flow

Visual odometry (e.g. [16]) aims to estimate the ego-

motion from successive images. Many visual odometry tech-

niques such as monoSLAM [7] rely on local feature tracking

technique. Unfortunately, in our application of a high-speed

car-like mobile robot, we found that local feature tracking

is unstable and often fails due to sparse sensing as well

as large vibration of robot’s body. Currently, our visual

odometry aims to acquire only a simple binary measurement

indicating whether the robot is moving (1) or not (0). We

found that optical flow [25] is reliable to obtain such a

binary measurement. Our method observes length of all the

optical flow vectors appearing in the current image pair and

if their median length exceeds a preset threshold then decides

that the robot is moving. The binary motion measurement is

simple, but in practice improves reliability of localization.
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B. Visual feature: GIST scene descriptor

The GIST scene descriptor [6] aims to develop a lower

dimensional representation of a scene image. It captures the

information of perceptual dimensions (naturalness, openness,

roughness, expansion, ruggedness) and describes the spatial

structure of the scene. The descriptor extracts such a feature

vector using spectral and coarsely localized information.

It firstly decomposes the image using a set of multi-scale

oriented filters, and then averages the output magnitude

of each vector over 4x4 grid. The GIST descriptor can

be viewed as an extension of local SIFT feature [26] to

global feature so as to describe the entire image. We use

orientation filters with 8 orientations and 4 scales and as

a result, obtain (4x4)x8x4=512 dimensional feature vectors.

Comparing GIST features and binary codes respectively are

based on L2 distance and Hamming distance.

C. Visual vocabulary: semantic hashing

The semantic hashing [11] aims to learn compact binary

codes for image retrieval. It is based on a method for training

deep graphical models one layer at a time [13]. It has a

network architecture that progressively reduces the number

of units in each layer, and by doing so, it maps a high

dimensional input vector to a far smaller binary vector (e.g.

32-bit) at the output. The first layer of visible units are

modeled to have a Gaussian distribution so as to deal with

GIST vectors. The real value at the top layer is binarized

by a threshold learned from the entire dataset. Figure 3(e)

describes the architecture of the deep graphical model used

in this study.

The deep network is trained in two stages: pre-training

and fine-tuning. The pre-training stage trains the network

from the visible input up to the output layer in a greedy

manner using a contrastive divergence. The fine-tuning aims

to move weights of the network to local optimum by back-

propagation on labeled data. In our current system, both

the pre-training and the fine-tuning are slow, offline, batch

processing.

Once the learning is complete, mapping from a feature

vector to the states of the top-level variables (i.e. binary code)

is fast. Mapping for each layer is performed by one matrix

multiplication and by component-wise non-linearity. Each bit

of the binary code represents a set containing about half

the entire image set. Computing K-bit binary code vector is

equivalent to a fast intersection of such K sets.

D. Inference framework: particle filter

The particle filter [14] is currently a very popular approach

for probabilistic global localization as well as pose track-

ing. In the following, we summarize the characteristics of

our approach. At the beginning of the localization task, it

generates a set of robot pose samples called particles. Each

sample represents a hypothesis of the robot pose, and the

entire sample set represents the current belief of robot pose.

During the localization, the particle filter updates the state

and the likelihood (or ”weight”) of each hypothesis. As the

robot moves, it performs so-called motion update in order to

move the sample’s state by simulating the robot motion and

random noises. As the robot observes a novel landmark, it

performs so-called perception update in order to update the

likelihood of each sample according to consistency between

the landmark observation and its prediction from the map.

When effective sample size [27] becomes lower than a

preset threshold, it performs resampling in order to duplicate

samples with high weight. Occasionally, it performs sensor

resetting [28] so as to replace small portion (in implementa-

tion, 1%) of samples with new likely hypotheses according

to the latest landmark observation. In above processing,

the motion update using motion measurement zt = at , the

perception update using perception measurement zt = ci
t and

the sensor resetting using perception measurement zt = Ct

respectively are described as

P(xt |z1:t) =
∫

P(xt |xt−1)P(xt−1|z1:t−1)dxt−1, (7)

P(xt |z1:t) ∝ P(zt |xt)P(xt−1|z1:t−1), (8)

xt ∼ P(xt |zt), (9)

and implemented by the techniques described in previous

sections III-A, II-A and II-B.

IV. EVALUATION EXPERIMENTS

This section investigates several use of the binary land-

mark maps through experiments. A high-speed car-like robot

acquires experimental data in an outdoor environment as

shown in Figure 1. Such car robot localization is an im-

portant and challenging scenario due to sparse sensing as

well as large vibration of the robot’s body. The following

subsections IV-A, IV-B, IV-C report the basic performance

of the proposed techniques by using the full 32 bit binary

maps. The subsections IV-D, IV-E report the performance

by using the reduced binary maps. The subsection IV-F

compares the proposed semantic hashing approach against

the LSH approach in our previous paper [8]. The subsection

IV-G discusses resources used by our system.

In the experiments, we basically use two outdoor datasets

(denoted as ”Outdoor”), one for mapping (”mapping”) and

one for localization (”localization”). For each dataset, our car

robot drives 20km trajectories at 0-50km/h, while acquiring

images by an on-board front camera at 10fps. GPS data is

used for associating each landmark with its pose in mapping

task, while used for ground truth in localization task. As a

default setting, #samples is 10,000, the parameter cL = 2 and

#bits is 32. The vocabulary is learned by using 70K images

from LabelMe website (”LabelMe”) [29]. The robot and the

landmark poses are represented in the 1d location ID space

[30]. The entire localization system is implemented in C++

language on a Linux machine with 8 GByte memory. We

will see that only a small fraction of the memory is required

for the scale of maps considered in the current experiment.

This allows plenty of room for scalability.
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A. Localization using full 32 binary maps

Figure 4 illustrates typical examples of successful and

failure localization tasks. Successful task is defined as such

tasks where the localization error finally becomes smaller

than 200m, about 1% of the entire trajectory length. It is

common to use such final localization error as a measure to

quantitatively evaluate the quality of an entire localization

task. The length of localization trajectory corresponds to

100 viewpoints. At the beginning of localization tasks, the

localization error is very large as the robot pose is completely

unknown. In success examples, the error gradually reduces

and finally converges to near zero. In these cases, hypotheses

and their weights are gradually updated as the robot moves

and observes landmarks, and as a result of resampling, the

ratio of correct hypotheses increases. In failure examples,

we can see two distinguishable cases, one is case where

the estimate either does not converge at all or converges to

some wrong robot pose, the other is case where the estimate

globally converges to the true robot pose but the resulted

error exceeds the pre-defined threshold of 200m. In many

cases, the primary source of errors is failure in landmark

recognition as well as duplicate visual words.

We conducted 100 similar localization tasks iteratively for

100 different robot trajectories randomly sampled from the

”localization” dataset. We report those results where estimate

by the particle filter converges during the last 20 of the 100

viewpoint trajectories. We denote as success ratio the ratio of

successful tasks. Figure 5 summarizes average success ratio

over 100 different localization tasks. It can be seen that high

success ratio of around 0.7 is obtained when #samples is

set 10,000 or larger. We have also tested different setting of

the semantic hashing. For instance, Figure 5 reports success

ratio against #bits of visual word. It can be seen that stable

results are obtained when #bits is set to 32. It could be

concluded that localization is mostly successful even though

we use compact 32 bit landmarks.

Overall, the proposed approach has proven to be ad-

vantageous in the ability of global localization as well as

compactness of landmark maps. Of course, there remains

room for further improvement. For instance, success ratio of

around 0.7 means that the robot still often gets lost. Also,

localization error that is smaller than 200m in outdoor is not

so accurate, for instance, can easily be achieved with any

low-cost GPS receiver. They might raise the question for the

practicability of the proposed approach. However, in many

cases, we are not obligated to find the best hypotheses with

only a single localization system. In recent years, integrating

advantages of multiple different localization systems has

become quite common. We believe that in such an integrated

system, our advantages of global localization as well as

compact maps would play an important role.

B. Semantic gap

In general, a pre-learned vocabulary suffers from semantic

gap between the dataset used for vocabulary learning (i.e.

”LabelMe”) and the dataset used for localization (i.e. ”Out-

door”). As can be seen from Figure 6, there is a large gap
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examples (bottom), randomly sampled from the 100 localization tasks.
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Fig. 7. Frequency of visual words. Top: Average number of landmarks per
word. Words are sorted in terms of the number of landmarks they contain
and then grouped into 7 groups. Each datapoint from left to right respectively
corresponds to the word as well as their near neighbors in terms of Hamming
distance 1, 2 and 3. Bottom: Images corresponding to the central words (ID:
1, 5, 50 and 500) of each group.

between the two datasets in terms of word frequency. For

instance, none of the top 10 most frequent visual words from

”Outdoor” appear in ”LabelMe”. Bridging the semantic gap

using such as incremental learning is our future research [9].

It is noteworthy that our localization system is still successful

despite of such a large semantic gap.

C. Saliency evaluation

Saliency of individual landmarks is important especially in

the context of landmark selection as well as visual attention.

In general, all the visual words are not equally important. In

a sense, frequent words tend to be more important. Figure

7 shows the frequency of individual visual words as well as

their near neighbors. There is a large difference of frequency

between individual visual words. For instance, the top 100

most frequent words are 10-100 times more frequent than

the other words. Small number of such frequent words

correspond to the most useful landmarks in our system.
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D. How many binary maps are necessary?

We now turn to the problem of localization using reduced

number of K′ = 32−∆K of binary maps, as mentioned in

section II. We firstly test a random sampling strategy that

randomly selects ∆K binary maps and remove them from the

memory (i.e. forgets them). The robot simply ignores those

binary code measurements that correspond to the removed

∆K bits. Figure 8 (”random”) reports the results with reduced

binary map. It can be seen that although the localization is

still successful to some extent, success ratio becomes low

when ∆K is 12 or larger. It is concluded that with the random

sampling strategy, map reduction is not an effective way to

achieve high localization performance.

E. How useful each binary map is?

Landmark selection techniques (e.g. [31]) evaluate useful-

ness of a landmark set through simulated experiences, a set

of virtual localization tasks using a validation dataset in a

computer simulation environment. We next test a planned

sampling strategy that selects binary maps to be removed

not randomly but according to the usefulness score evaluated

through simulated experiences. For the purpose, we use

additional ”validation” dataset that corresponds to 20km

driving in the same environment and independent from either

the ”mapping” and the ”localization” dataset. The planned

sampling strategy evaluates each candidate of the reduced

binary map through 100 virtual localization tasks using 100

trajectories randomly sampled from the ”validation” dataset.

As a result, we obtain a database of simulated experiences.

Given such an experience database, it computes the average

success ratio over the 100 virtual tasks as the usefulness

score, and selects as the best map the one with the highest

usefulness score.

Figure 8 (”selection”) illustrates the success ratio against

the number ∆K of reduced binary maps. In contrast to the

random sampling strategy, the decrease of success ratio is

slow even when ∆K is 12-15. Moreover, the success ratio

when ∆K is 5-15 is even better than the case of full 32 bit

binary maps. In this sense, the planned sampling strategy

is effective to remove redundant or unnecessary information

existing in the original 32 binary maps, as well as to bridge

the semantic gap existing in the orginal vocabulary or dialect.

Our map selection reduces #bits per landmark. For example,

when the number of reduced bits is 12 then each landmark

is represented by 32-12=20 bits.

F. Comparison against LSH localization [9]

We also compared the proposed semantic hashing ap-

proach against LSH approach presented in our previous paper

[9]. As an advantage, LSH vocabulary does not suffer from

the semantic gap since it can be learned in online during the

mapping task. As a downside, this requires a large amount

of memory when the number of landmarks is large. The

LSH localization approach used here is almost equivalent

to the LSH particle filter [9] except for that it uses global

features instead of local features. Figure 8(b) summarizes the
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Fig. 8. Localization performance. (a) The semantic hashing localization.
Left: The random sampling strategy. Right: The planned sampling strategy.
Vertical axis: success ratio. Horizontal axis: the number ∆K of removed
binary maps. (b) The LSH-based localization [9]. In some settings (e.g.
{∆K:22,”random”}, {L:20,K:20}), the success ratio is unreliable (due to
low convergence rate) and omitted.

comparison results. In the figure, K and L are parameters of

LSH and represents the dimensionality and the number of

hash tables used in LSH. It can be seen that the semantic

hashing localization is comparable to the LSH localization

for a wide range of the parameter values. A drawback of

LSH is that its visual word is not compact (e.g. 40 Byte) even

when K is small. It could be said that the proposed technique

achieves extremely compact word while maintaining the

efficiency of the localization system.

G. Computational costs

The resource used by our system mainly consists of the

visual vocabulary (DBN) and the visual words. The cost for

visual words is proportional to the number of landmarks as

well as #bits per landmark. The cost for visual vocabulary is

strongly dependent on the cost for DBN and quadratic in the

dimensionality of input vector. The above costs respectively

are 8 KB in total and 5.3 MB in this experiment. The latter

cost is constant and independent of the map size. The time

cost is 8.3×10−2 sec per viewpoint for the default setting.

The result is a quite low cost visual retrieval and could scale

to much larger environments and maps.

V. CONCLUSIONS & FUTURE WORKS

We have studied the mobile robot localization from a

perspective of compact binary landmarks. To our knowledge,

this is the first study that focuses on binary landmark

representation using the semantic hashing technique. The

proposed technique maps the input high dimensional visual

features to far lower dimensional binary codes and as a

result, achieves compact word as well as vocabulary. In the

spirit of sensor fusion, our approach treats individual bit

measurements as independent measurements and employs

K different binary maps. In our contribution, visual robot

localization using the full 32 binary maps as well as reduced

(e.g. 20-bit) binary maps are successful. In future, we plan

to study our approach in the context of long-term multi-

robot scenarios such as lifelong map learning [1] as well as

information sharing networks [2] where compact landmark

representation should play an important role.
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