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Abstract— Planning collision-free paths for multiple robots
traversing a shared space is a problem that grows combinatori-
ally with the number of robots. The naive centralised approach
soon becomes intractable for even a moderate number of robots.
Decentralised approaches, such as prioritised planning, are
much faster but lack completeness.

Previous work has demonstrated that the search can be
significantly reduced by adding a level of abstraction [1]. We
first partition the map into subgraphs of particular known
structure, such as cliques and halls, and then build abstract
plans which describe the transitions of robots between the
subgraphs. These plans are constrained by the structural
properties of the subgraphs used. When an abstract plan is
found, it can easily be resolved into a complete concrete plan
without further search.

In this paper, we show how this method of planning can
be implemented as a constraint satisfaction problem (CSP).
Constraint propagation and intelligent search ordering further
reduce the size of the search problem, allowing us to solve
large problems significantly more quickly. Empirical evaluation
on a realistic planning problem shows the clear superiority of
the constraint-based approach, but the value of abstraction is
mixed: it allows us to solve more problems at the cost of a
time-overhead on simple problems.

This implementation also opens up opportunities for the
application of a number of other search reduction and opti-
misation techniques, as we will discuss.

I. INTRODUCTION

A major aspect of solving any problem in artificial in-

telligence (AI) is knowledge engineering, that is taking

the available background knowledge about a problem and

expressing it in a way that it can be exploited by an AI

algorithm. This task is crucial to solving any realistically

large problem, including the one we address in this paper:

multi-robot path planning.

Planning for a single robot, once issues of geometry and

localisation have been addressed, becomes a simple matter

of finding a path through the road-map – the graph G

representing the connectivity of free space – between its

starting and goal locations. When planning for multiple

robots, however, we also need to take into account the

possibility for collisions en route. A decentralised approach

in which each robot simply plans its own path without

reference to the others does not work.

A logical solution is to treat the entire collection of

robots as a single entity and use a centralised planner to

co-ordinate them. If we again ignore issues of geometry,

this equates to finding a path through the composite graph

Gk = G × G × . . . × G, where k is the number of

robots. Each vertex in this graph is a k-tuple of vertices

of G representing the positions of each robot. Each edge

represents the movement of one robot between neighbouring

vertices. Vertices which represent collisions are excluded.

A plan is now a path between the vertex representing the

robots’ initial locations to the vertex representing their goals.

It is easy to see that the size of this graph grows combi-

natorially with the number of robots. Any algorithm which

performs a naive search of the graph will soon require far

too much time and memory to complete. A common solution

is prioritised planning which gives each robot a priority and

plans for them in order, with lower priority robots integrating

their plans with those of higher priority. This effectively

prunes the search space by eliminating those possibilities

in which higher priority robots go out of their way to allow

lower priority robots to pass. Searching this reduced space is

much faster, but the pruning may eliminate the only viable

solutions, making the algorithm incomplete.

In order to efficiently handle large numbers of robots

without sacrificing completeness we need some way to

incorporate more knowledge about the domain. In previous

work [1] we have shown how structural information about

the road-map can be exploited to significantly reduce search.

The map is decomposed into subgraphs of particular known

structure, cliques, halls and rings, which place constraints on

which robots can enter or leave at a particular time. Planning

is done at a level of abstraction, in terms of the configuration

of each subgraph and the robots’ transitions between them.

Once an abstract plan has been constructed the concrete

details of robots’ movement within each subgraph can be

resolved algorithmically, without the need for further search.

This approach is proven to be sound and complete, and it

takes advantage of the fact that real-world maps are not

random but contain common substructures.

In this work we extend these previous results by showing

how the subgraph planning process can be encoded as a

constraint satisfaction problem (CSP). With this formulation,

a CSP-solver can make more efficient use of the domain

knowledge to prune the search space to a much greater

degree allowing us to solve problems significantly larger than

before. It also opens up the possibility for optimisation of

plans and more complex planning tasks than simple goal

achievement.
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A. Related work

There has been little previous work in the use of ab-

stractions and modern search techniques in multi-robot path

planning. The work that bears most similarity to our own

is not explicitly in robot path planning but in solving the

Sokoban puzzle [2], [3]. Their division of a map into

rooms and tunnels matches to some degree the subgraph

decomposition we adopt here. The particular structures they

represent are different, but the general ideas of partitioning

into independent local subproblems and identifying abstract

states from strongly connected components, are the same

as those employed in this work. They have not as yet

attempted to translate these structures into a formal constraint

satisfaction problem.

CSPs have however been applied to a different kind of

planning, that is AI task-planning. CPlan [4] directly encodes

such planning problems as constraint systems and uses a gen-

eral purpose constraint solver to find plans. Another approach

is to take the planning graph from an algorithm such as

Graphplan [5] and convert it into a CSP, as done in the work

of Do and Kambhampati [6] and Lopez and Bacchus [7]. A

related approach is the ‘planning-as-satisfiability’ technique

used in planners such as SatPlan [8].

B. Paper outline

In the next section we will describe the subgraph planning

approach in greater detail. This will be followed by a brief

introduction to constraint programming leading into the con-

straint representation of our planning problem. The efficiency

of this new approach will be evaluated on tasks using a map

of the UNSW AI Laboratory and we will conclude with

discussion of related work and future directions.

II. SUBGRAPH PLANNING

We can formalise our problem as follows. The road-map is

provided in the form of a graph G = (V,E) representing the

connectivity of free space for a single robot moving around

the world (e.g. a vertical cell decomposition or a visibility

graph [9]). We also have a set of robots R = {r1, . . . , rk}
which we shall consider to be homogeneous, so a single map

suffices for them all. All starting locations and goals lie on

this road-map.

We shall assume that the map is constructed so that colli-

sions only occur when one robot is entering a vertex v at the

same time as another robot is occupying, entering or leaving

this vertex. Robots occupying other vertices in the map or

moving on other edges do not affect this movement. With

appropriate levels of underlying control these assumptions

can be satisfied for most real-world problems. 1

The road-map is partitioned into a collection of induced

subgraphs P = {S1, . . . , Sm} of known structure. In this

paper we shall consider only two kinds of subgraph: the

clique and the hall, illustrated in Figure 1.

A clique is a complete subgraph with each vertex linked to

every other. In maps they usually represent large open spaces

1This is also known as the Pebble Motion on Graphs problem [10].

v1 v2

v4 v3

(a) A clique

vkv3v1 v2

(b) A hall

Fig. 1. Types of subgraphs.

with many entrances and exits. The configuration of a clique

can abstract the exact positions of the robots and merely

record the set of occupants at any time. So long as the clique

is not full, it is possible to rearrange the occupants arbitrarily.

When the clique is full, we need separate configurations for

each arrangement of robots.

A hall is a singly-linked chain of vertices with any number

of entrances and exits. They are commonly found in maps as

narrow corridors or roads which may contain several robots

but which prevent overtaking. Formally this is represented

as H = 〈v1, . . . , vm〉 with: (vi, vj) ∈ E iff |i − j| = 1. The

configuration of a hall must record the order of its occupants,

which cannot be changed without a robot entering or leaving.

The new configuration created when a robot enters or leaves

is based solely on the previous configuration and the position

of the vertex by which it transitions.

An abstract plan is thus an alternating sequence of sub-

graph configurations and subgraph transitions. Previous work

has restricted this to a single robot transitioning on each step.

The constraint formulation we present in this paper allows

us to relax this restriction.

III. CONSTRAINT PROGRAMMING

Constraint programming is a methodology for represent-

ing and solving combinatorial search problems through

constraint propagation and intelligent search. Problems are

represented as collections of variables over finite domains

(usually subsets of the integers) and constraints which are

relations between the variables that they are required to

satisfy. Constraint solvers are designed to represent a large

number of different constraints and use them to propagate

information from one variable to another so that their do-

mains are consistent (with some degree of strength) with the

constraints between them.

Combining constraint propagation with search, we are

able to prune the search space of a problem by alternately

assigning values to variables and propagating the change to
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restrict the domains of other unassigned variables. Informed

choice of the search order can maximise the benefits of

propagation and further reduce the search. For this project

we used the Gecode constraint solver [11].

IV. THE CONSTRAINT REPRESENTATION

To convert the planning task into a constraint satisfaction

problem we need to describe it as a finite set of integer

variables. As it stands the task is open ended: a plan can

be of any length. To make it finite we need to restrict the

plan to a fixed length. If a plan of a given length cannot be

found, then a new CSP representing a longer plan can be

constructed and the process repeated.2

To begin our representation we number each vertex, each

robot and each subgraph. Let V = {1, . . . , n} represent

the vertices, R = {1, . . . , k} represent the robots and S =
{1, . . . ,m} represent the subgraphs. Let Vi be the set of

vertices for subgraph i. It is useful, as we will see later,

to number the vertices so that each Vi contains consecutive

integers. Let E = {(a, b) | ∃va ∈ Va, vb ∈ Vb, (va, vb) ∈ E}
be the relation defining adjacency between subgraphs. Let L

be the length of the abstract plan.

A. Abstract plan steps

We can now define the variables we need. For each robot

r ∈ R and each step of the plan i ∈ {1 . . . L} we have three

variables:

Ai[r] ∈ S is the index of the subgraph occupied by r at

step i,

Fi[r] ∈ V is the index of the first vertex occupied by r at

step i,

Ti[r] ∈ V is the index of the last vertex occupied by r at

step i.

The first of these variables tells us which subgraph the robot

occupies in that step of the plan. It is also important to

know the vertices at which the robot enters and leaves the

subgraph (the second and third variables respectively) as they

will affect the possible configuration of the subgraph.

We constrain these variables as follows:

Robots can only move between neighbouring subgraphs.

Ai[r] 6= Ai+1[r] → (Ai[r], Ai+1[r]) ∈ E (1)

Fi[r] and Ti[r] must belong to the given subgraph.

Ai[r] = a → Fi[r] ∈ Va (2)

Ai[r] = a → Ti[r] ∈ Va (3)

Two robots cannot be in the same vertex at the same

time.

distinct(Fi[1], . . . , Fi[k]) (4)

distinct(Ti[1], . . . , Ti[k]) (5)

2Note that this makes the problem only semi-decideable. There is no sure
way to know when no possible plan of any length exists. In practice, this
is rarely a problem. Planning stops when a maximum length or time limit
is reached.

Consecutive sub-plans are linked by valid transitions.

(Ti[r], Fi+1[r]) ∈ E (6)

Ti[rx] 6= Fi+1[ry],∀rx 6= ry (7)

No-ops only occur at the end of the plan.

(∃r ∈ R : Ai[r] 6= Ai+1[r]) →

(∃r ∈ R : Ai−1[r] 6= Ai[r]) (8)

If a subgraph is full, its occupants cannot move.

Ai[r] = a ∧ countρ∈R(Ai[ρ] = a) = |Va| →

Fi[r] = Ti[r] (9)

These constraints apply to any abstract plan, regardless

of the structure of its subgraphs, but they fail to completely

specify the problem. They suffice to represent cliques but not

halls, as they do not guarantee that the configuration given by

(Ti[1], . . . , Ti[k]) is in the same order as (Fi[1], . . . , Fi[k]).
To ensure this we must add further constraints.

B. Hall ordering

In the case of the hall subgraph, we require that the order

of robots in the hall does not change between transitions.

If rx is on the left of ry at the beginning of a sub-plan

it must also be so at the end (and vice versa). We can

represent this more easily if we number the vertices in

the hall consecutively from one end to the other. Then for

two robots in the hall, we will require Fi[rx] < Fi[ry] ⇔
Ti[rx] < Ti[ry].

It will be useful in the search for a plan to be able to

explicitly choose an ordering between two robots without

assigning them to particular vertices. To this end, we create

a new set of variables to represent the ordering of robots in

each sub-plan: Ordi[rx, ry] ∈ {−1, 0, 1}. Conveniently we

can use one set of variables to describe the configuration of

all halls simultaneously, since the value is only important if

two robots are in the same subgraph at the same time. If

rx and ry are in different subgraphs, then Ordi[rx, ry] is

0. Otherwise it must be either -1 or 1, indicating the two

possible orderings: rx before ry or ry before rx.

Formally we add the following constraints:

Robots are ordered iff they are both in the same hall.

Ai[rx] ∈ H ∧ Ai[rx] = Ai[ry] ⇔ Ordi[rx, ry] 6= 0 (10)

Ordering variables affect concrete positions.

Ordi[rx, ry] = −1 →

Fi[rx] < Fi[ry] ∧ Ti[rx] < Ti[ry] (11)

Ordi[rx, ry] = 1 →

Fi[rx] > Fi[ry] ∧ Ti[rx] > Ti[ry] (12)

Ordering variables persist across subplan transitions.

Ai[rx] = Ai+1[rx] ∧ Ai[ry] = Ai+1[ry] →

Ordi[rx, ry] = Ordi+1[rx, ry]
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This completes our description. Any abstract plan which

satisfies these constraints can be resolved into a correct

concrete plan without further search.

V. SEARCH

Constraint propagation alone will not solve this problem;

the constraints are not powerful enough to eliminate every

wrong solution. We must also perform a search, experimen-

tally assigning values to variables until a complete plan is

found that satisfies all the constraints. By enumerating all the

variables at the outset, we are able to assign values to them in

any order we wish, unlike standard path-planning algorithms

which generally operate in forward temporal order only.

Common wisdom in constraint solving is to assign vari-

ables so that failures, if they are going to occur, happen early

at shallow levels of the search-tree so that large amounts of

backtracking are avoided. The standard heuristic is to assign

the most constrained variables first. In this particular problem

it makes sense to assign the subgraph variables Ai[r] first,

followed by the order variables Ordi[rx, ry] and finally the

transition variables Fi[r] and Ti[r], since each is strongly

constrained by the one that comes before. In each case we

choose the variable with the smallest domain.

When choosing a value for the variable there are two

things to consider: 1) choose a value which is most likely

to lead to a solution, 2) choose a value which places the

least constraint on other variables. When choosing subgraph

values for the Ai[r] variables we apply the first principle by

choosing the subgraph which is closest to the next assigned

subgraph for robot r (based on a precomputed single-robot

all-shortest-paths matrix). If there are two such options, then

the subgraph with the fewest occupants is selected, according

to the second principle.

The heuristic for selecting the ordering value for

Ordi[rx, ry] is to consider the concrete values that it im-

mediately affects Fi[rx], Ti[rx], Fi[ry] and Ti[ry]. For each

ordering we can easily compute the resulting domain sizes

for each of these variables (ignoring the effect of any other

constraints). The ordering which leaves the largest number

of alternatives is preferred, by the second principle above.

Finally, values for the concrete steps Fi[rx] and Ti[rx] are

chosen to minimise the distance between the beginning and

end of the plan step.

VI. RESOLUTION

In previous work we wrote special-purpose solvers to re-

solve the abstract plan steps into concrete plans. The highly-

constrained nature of planning within a subgraph made such

solvers possible but also makes them largely redundant. Once

the abstract plan has been determined, the concrete plans

can be represented as independent constraint problems and

solved very quickly, usually without any backtracking.

VII. EXPERIMENT

To evaluate this new planning system we have applied it

to a realistic planning problem. Figure 2 shows a map of the

AI Laboratory at UNSW. The map is an undirected graph of

113 vertices and 154 edges. The map has been decomposed

into 3 halls and 2 cliques, leaving 48 singleton vertices that

are not part of a larger subgraph. The partitioning was chosen

by hand to maximise the length of the halls, thus minimising

the diameter of the reduced graph and, as a result, the size

of our plans.

A. Approach

The map was populated with a number of robots which

varied from 2 to 20. Each robot was assigned a random initial

and final position. A single-robot shortest paths matrix was

calculated for the reduced graph and used to calculate a lower

bound on the length of the plan (equal to the length of the

longest single-robot plan).

Eight different approaches were used to solve this prob-

lem, using all combinations of the following factors:

1) Concrete vs Abstract – whether or not the subgraph

abstraction was used.

2) Forward vs Informed Search – whether the search was

in temporal order or informed by variable domains.

3) Complete vs Prioritised – whether or not prioritised

planning was used.

The Gecode constraint solver was used for all eight ap-

proaches to ensure that the results were comparable.

To simulate forward search the variables representing the

state at time t were only created and constrained once the

variables representing time t − 1 were bound. A depth-first

search was then performed, stopping when the goal positions

were reached.3

The informed search used an iterative deepening approach.

A minimum estimate of the plan length was computed

by taking maximum shortest path distance for each robot

individually. If a plan of this length could not be found, then

the length was incremented and the search repeated, until a

solution was found.

Prioritised planning was performed by building a succes-

sion of CSPs C1, . . . , Ck, with Ci representing the plans for

robots {1, . . . , i}. In Ci+1 the plans for robots 1, . . . , i were

constrained to contain the same sequence of transitions as in

Ci.

For every approach there was an upper time limit of 10s

placed on search. If a solution could not be found within this

time then the search was deemed to have failed.

B. Results

One hundred different experiments were conducted for

each approach and each number of robots.4 Success rates are

plotted in Figure 3. It is clear that the informed search on

the complete CSP is much more successful than traditional

forward search in all categories. The forward search begins to

fail (running out of time) for only a small number of robots

while the informed search on the abstract representation

3A best-first search using a relaxed distance metric (ignoring collisions)
was also performed with comparable results.

4Experiments were run on a 2.16GhZ Intel Core Duo with 2GB of
memory.
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Fig. 3. Success rates for different approaches to the planning problem.

show a significant performance difference between easy and

hard problems. The large clusters above the diagonal on

the left hand side of each graph consist of primarily easy

problems. In these cases, the two abstract planners take

significantly longer than the concrete planner, due to the

overhead of additional constraints. The log-log scale here

is deceptive. Calculating lines of best fit, we see that the

search time of the complete abstract planner is about 22.9

times that of the concrete planner, and the prioritised planner

is worse, taking 26.6 times as long.

On the other hand, the performance on hard problems is

much better. The complete abstract planner takes only 0.29 of

the time of the concrete planner, and the prioritised planner

is even faster at 0.26 of the time.

It is apparent from these results that the abstraction offers

the ability to successfully solve more problems and to solve

difficult problems quickly, at the expense of a significant

overhead for easier problems.

VIII. CONCLUSION

We have demonstrated how the multi-robot path planning

problem can be encoded as a constraint satisfaction problem

and solved using a combination of constraint propagation

and heuristic search. These techniques allow us to solve

problems of much greater size than traditional forward-

search techniques.

For small problems, we have found that a simple CSP

representing the concrete planning problem is efficient but

robots
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Fig. 5. Problem difficulty: As the number of robots increases the complete
concrete planner backtracks more often.

as the number of robots grows, the rapid increase in

backtracking makes this representation untenable. A more

effective representation has been presented which makes use

of structural knowledge about the map, in the form of a

subgraph decomposition. This knowledge allows the planner

to focus the early stages of the search on the critical subgraph

transitions and fill in the concrete details later. This approach

has significant overheads for small problems but proves

worthwhile when dealing with large numbers of robots.

A. Future work

This constraint-based approach opens the door to a number

of new possibilities. More complex planning problems can

be expressed by adding appropriate constraints to the system.

If we add variables representing the lengths of the concrete

plans, we can begin to work on optimisation. As it stands, the

algorithm makes no guarantees that concrete plans will be

optimal. Finding perfectly optimal plans is likely to be very

time consuming, but a branch-and-bound algorithm could

provide a viable alternative, yielding the best plan found in

the available time.

This leads us to consider what other advanced CSP-

solving techniques could be useful. The most immediately

obvious is sub-problem independence [12]. Once the Ai[r]
variables have been set, the other variables in this problem

are partitioned into a number of subsets which do not affect

each other. Solving these sub-problems independently could

prevent a lot of unnecessary backtracking.

Automating the subgraph partitioning process would obvi-

ously be desirable. Work on this problem is already underway

with promising preliminary results.

In conclusion, this paper demonstrates the successful

combination of domain knowledge and intelligent problem

solving tools. It offers not just a fast planning algorithm, but

also a validation of constraint programming as an effective

knowledge engineering methodology, and one which we

should continue to improve upon.
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