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 Abstract –Independent Component Analysis (ICA) 

provides a pragmatic means to perform pattern classification 

using Bayes’ Theorem.  Use of ICA with Bayes’ Theorem is 

reviewed and illustrated with examples from classification of 

images.  It is described how ICA with Bayes can create a 

pattern-classification system that is trainable merely by 

presenting examples.  A specific algorithmic approach is 

advocated, and demonstrations of its versatility and ease of use 

show how this technique offers promise for industrial 

applications. 

 
 Index Terms – pattern classification, image processing, ICA, 

industrial inspection, visual inspection, Bayes’ Theorem. 

 

I.  INTRODUCTION 

 The ability to classify images into groups is frequently 

useful, as in industrial inspection or character recognition.  

Often, it is useful to classify parts of an image into separate 

regions, such as “grass” and “road”.  Since its introduction 

(see [7]), Independent Component Analysis (ICA) has been 

the focus of much research.  The property of statistical 

independence reduces the complexity of probabilistic 

computations, making it suitable for use with Bayes’ 

Theorem (see [15]).  Furthermore, an ICA transform 

generates weights with a Gaussian probability distribution, 

which further simplifies probability calculations.  This paper 

describes the use of ICA and Bayes’ Theorem for image 

classification and presents illustrative examples, including 

application to industrial inspection. 

 One criticism of existing visual industrial inspection 

methods is their inability to easily adapt to changing 

circumstances, for example, producing a new color of a 

product.  This fear of high ongoing costs in terms of 

robustness and additional expert involvement is a barrier to 

more widespread use of automated inspection.  Use of 

ICA/Bayes holds promise of offering the ability to retrain an 

inspection system solely by presenting examples of pre-

classified training images.  Such a system would be suitable 

for shop-floor application, as illustrated herein by a specific 

industrial application: Quality Control inspection of 

cellulose kitchen sponges. 

 While ICA/Bayes is not novel in the research literature, 

there are virtually no industrial applications reported.  This 

presentation aims to spotlight the opportunity for application 

of ICA/Bayes for industrial applications, specifically 

because of its versatility, its performance, and its 

compatibility with a means for simple training by example. 

While a specialized algorithm within any narrow application 

domain will inevitably outperform a general-purpose 

algorithm, a more versatile algorithm will have greater 

applicability to industry.  Further, systems that can be used 

by shop-floor personnel are more desirable than those that 

require expert interventions to code or tune.  For these 

reasons, ICA/Bayes pattern classification should be 

exploited in industry. 

A tutorial review of ICA/Bayes is presented here, 

followed by three application examples.  Importantly, the 

same algorithm is applied to all three domains, and training 

is performed by presenting the system with examples.  Ease 

of use and generality are emphasized.    

II. BACKGROUND ON INDEPENDENT COMPONENT ANALYSIS 

AND BAYES’ THEOREM 

A. Independent Component Analysis 

 Independent Component Analysis (ICA) is a linear 

transform, similar to Principal Component Analysis (PCA) 

(See [14]).  In PCA, the objective is to find an orthogonal set 

of basis vectors to decompose a pattern and to order those 

vectors by their relative importance, thus offering a means 

for a lower-order approximate representation.  In contrast, 

the goal with ICA is to find a set of basis vectors (not 

necessarily orthogonal) that are chosen to span the pattern 

space while minimizing mutual information between any 

two basis vectors. 

 A linear ICA decomposition can be expressed as: 

 

y = Mx              (1) 

 

where x is the original image, M is the ICA transform, and y 

is the representation of x in the new ICA space.  By 

definition, an ICA transform M results in y having the 

following key property: 

 

1 2
( ) ( ) ( ) ( )

N
P P y P y P y    y         (2) 
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where the notation P(a) indicates the probability of result a 

occurring, yi is component i of vector y and N is the number 

of components in y.  Furthermore, component values of y 

have (approximately) Gaussian probability distributions 

with, by ICA convention, variance 1.  That is, 

( ) ( ,1)
i i

P Ny y            (3) 

where the notation N(a,b) indicates a Gaussian probability 

curve with mean a and variance b. 

 For a given set of vectors X, M is not guaranteed to 

exist, but if it does, it is unique to within sign differences 

and reordering of components.  That is, if ICA is run twice 

on a collection of vectors X, and ICA transforms M1 and M2 

are found, then the corresponding transformations:  

1
p = M x              (4) 

and 

2
q = M x              (5) 

result in vectors p and q that are equivalent, but for possible 

sign changes or component reordering. As a further 

constraint, ICA can only find M if no more than one 

component of the vectors of X has a Gaussian probability 

distribution. (See [9].) 

 Various algorithms for finding ICA decompositions 

exist; an excellent overview of various methods (and their 

justifications) can be found in [10].  The present work uses 

the fastICA method found in [8]. 

 

B. ICA in image processing 

 ICA requires vectors as inputs.  As images are 

inherently two-dimensional arrays of data, a first step is 

defining how to convert from the one to the other.  As it 

turns out, because order of components is not important for 

ICA (as it seeks statistical independence among all 

components), as long as the conversion from image space to 

vector space and back is consistent, component ordering is 

irrelevant. 

 There are, however, still multiple ways to apply ICA to 

image processing tasks.  In particular, the question comes up 

of how much of an image to present to ICA for processing.  

In some literature, such as [1, 5], an image of size MxN is 

treated as a single whole, fed entirely into ICA as a single 

vector of length MN.  The resulting independent components 

are also of length MN, and the resultant transform is size 

MNxMN. 

 One contrasting method, used in [2, 4, 6], is to divide 

the image into small regions, referred to here as thumbnails, 

of LxW pixels, where L<M and W<N.   Typical values of L 

and W would be 10 to 20.  These thumbnails are each treated 

as a strung-out vector of length LW.  (This process of 

generating vectors from images will be referred to as 

vectorizing.)  Classification of the collection of thumbnails 

may be further analyzed at subsequent hierarchical layers of 

processing in the resulting reduced-order space.  

Experimentally, we have found that the choice of thumbnail 

size can affect performance results, and that an optimal size 

may exist. 

 

C. Bayes’ Theorem 

 Bayes’ Theorem is a rigorous probability formula, the 

proof of which can be found in [12].  Bayes’ Theorem may 

be stated as 

( | ) ( )
( | )

( )

P b a P a
P a b

P b


            (6) 

where P(a|b) is the probability of a given b.  P(a) is often 

referred to as the a-priori probability of a, the likelihood of 

a before we know whether or not b occurred.  Use of Bayes’ 

Theorem is often problematic because of the cost in terms of 

both time and information requirements. Notably, joint 

probability distributions are typically unknown, and their use 

in Bayes’ formula is computationally unwieldy. However, in 

ICA space, the statistical independence properties of ICA 

components makes it practical to invoke Bayes’ Theorem.   

III. A METHOD FOR USING ICA AND BAYES’ THEOREM 

FOR IMAGE CLASSIFICATION 

 Returning to the problem statement, assume we wish to 

analyze an image (of MxN pixels, which may be a 

thumbnail of a larger image) by assigning it to one out of 

the P groups from group set G.  These groups are defined 

according to the problem task at hand.  For example, a 

character recognition task might have each group be 

associated with a particular letter of the alphabet, for a total 

of 27 groups, the letters plus “none”.  The proposed method 

is to first use an ICA transform to convert the image into a 

representation space where probabilities are easy to 

determine, then use Bayes’ Theorem to find to which group 

an image is most likely to belong.  This method is divided 

into a training part, which is done once, followed by the 

testing part, which is done for each image to be classified.  

The training steps are as follows: 

A. Training 

1) Assume availability of a set of training images that 

are representative of the problem domain.  (In [11], 

for example, scenes from nature are chosen as the 

problem domain.)  Each of the groups within set G 

should be represented.  Vectorize these images (see 

section II B, above) and then run ICA (i.e. derive a 

set of statistically independent basis vectors) on the 

entire set.  This will create an ICA transform for 

that particular image set.  Assuming ICA 

converges, (see II.A, above,) the resulting basis 

vectors will satisfy the properties of statistical 

independence and Gaussian component probability 

distribution.  An assumption in subsequent use is 

that these ICA properties hold for “related” images 

drawn from the same domain. 

2) Next, manually create groups of member images.  

These need not be the same as used in part 1.  For 
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example, the group “grass” would consist of 

thumbnails showing a WxH region of grass. 

3) For each group, perform the ICA transform on each 

member and find ( | )
p

P Gy x .  A variety of 

methods to do this exist, as found in [3, 13].  For 

this paper, each component of y within any group 

is assumed to have Gaussian probability density.  

Thus each group can be characterized by 

identifying vector y containing the mean of the j 

training data vectors, jg  

 1

1
S

j

jS 

 y g           (7) 

 where S is the number of training samples.  The 

variance of each group is given by:  

 

2

1

var( )
1

( )
i

S

i i

iS 

 y y y       (8) 

 If the ICA members of any one group do not have 

approximately Gaussian distribution, this may 

often be addressed by subdividing that group into 

subgroups whose members form a more Gaussian 

distribution. 

 If the group membership distribution is truly 

representative of actual population densities, then 

an a-priori estimate of group membership 

probability ( ( )
p

P Gx ) can be estimated from the 

training data classifications.  If the training data 

does not provide credible a-priori categorization 

probabilities, then a default a-priori assumption is 

that an image is equally likely to be a member of 

each of the category groups.  

This concludes the training process.  Next is described how 

to exploit ICA decomposition in Bayes’ Theorem to classify 

patterns. 

B. ICA-based classification 

Given a means to decompose patterns in terms of 

statistically independent vectors, one can easily utilize such 

decomposition in Bayes’ Theorem to perform pattern 

classification, as follows. 

1) For each pattern to be classified, represent this 

pattern in terms of ICA decomposition.  This can 

be performed on the entire collection of X 

(vectorized) images as a single matrix multiply,  

 Y = MX,            (9) 

 resulting in Y, the transformed images.  Each 

column vector within Y is the ICA-space 

representation of the corresponding column vector 

in X. 

 For each y Y , determine the probability that its 

corresponding x is in group Gp . 

 

( | ) ( )
( | )

( )

p p

p

P G P G
P G

P

  
 

y x x
x y

y
 (10) 

2) Repeat the above computation for each p P, the 

number of groups.  Evaluation of (10) is typically 

problematic.  However, the value of ICA 

decomposition, for which each component is 

statistically independent of all other components, is 

that (10) becomes computable. Using (2), (10) can 

be written as  

 1 2
( | ) ( | ) ( | )

p p p
P G P y G P y G       x y x x

2

( )
( | )

( ) ( ) ( )

p

n p

n

P G
P y G

P y P y P y


 

   
1

x
x .  (11) 

 Image x most likely belongs to the group with the 

highest probability P(x Gp|y). 

  IV. APPLICATIONS 

Use of ICA and Bayes’ Theorem for image classification is 

demonstrated in three examples: a simplified character-

recognition task, scene preprocessing in the context of 

mobile robots, and an industrial inspection task. 

A. ICA for character recognition 

 An example pattern-classification application is 

illustrated here using a simplified character-recognition task.   

Theintent here is to illustrate the use and versatility of ICA-

based pattern classification.  (We note that, within the 

particular domain of OCR, specialized algorithms would be 

expected to outperform ICA.  However, it is irrelevant in 

this illustration that the patterns of interest happen to be 

characters).   The present example consists of recognizing 

whether a given pattern is A, B, C, D, E or blank.  The 

letters are fixed in font (10 point Arial/Western as created in 

MS Paint) and have known location and (zero) rotation 

within a 20x20 image.  Salt and pepper noise was then 

added, where some fraction (between 10% and 30%) of the 

pixels, chosen at random, were replaced with either a black 

or a white pixel, with equal probability of each.    The 

algorithm was trained using full-sized thumbnails (20x20) 

on correctly-classified training data for each of the groups.  

The algorithm presumed no a priori information regarding 

knowledge of characters, but was merely trained on the 

examples. 

 To test performance, conditions ranged from 0 to 100% 

of the pixels being corrupted with noise, tested in 5% 

increments of 36 examples each.  This task was then given 

to the algorithm and to 10 test subjects.  The test images are 
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shown in Fig. 1, and the classification results are summarized in Fig. 2. 

Figure 1: Examples of the fixed-location characters with noise added

 

 Figure 2: Comparison between ICA-Bayes classification algorithm 

and human performance on an example character recognition task.  

Also graphed is human performance +1 and -1 standard deviation. 

 As shown in Fig 2, the ICA/Bayes algorithm 

dramatically outperformed humans in this pattern-

recognition task.  While alternative algorithms may perform 

comparably, it is important to note the generality and the 

ease of use of the ICA/Bayes approach.  No a priori 

knowledge was required, and user interaction with the 

pattern-classification system only required presenting the 

system with training examples. 

 

B. ICA for Scene Preprocessing 

 A second illustration of the algorithm is a mobile-

robotics application. The challenge is to identify key features 

in the environment.  In particular, it is desired to identify 

white lines that bound where the robot can and cannot drive.  

The ICA-Bayes algorithm was evaluated in terms of four 

categories- (“white line”, “barrel”, “light grass” and “dark 

grass”).  Results are shown in Fig.3.   

 Training was performed by manually classifying 

thumbnails within example images as belonging to one of 

the available classifications.  For this purpose, 200 (7x7 

pixel) thumbnails were manually classified from 12 

(640x480 pixel) scenes.  These thumbnails were used to 

identify ICA components.  Scenes were then analyzed in 

terms of thumbnails, and each thumbnail was assigned to 

one of the pre-established groups.  The result of classifying 

each thumbnail can be interpreted as a coarse image with 

49x fewer pixels and which is suitable for subsequent 

higher-level processing (e.g. identification of continuous 

lines). 

 With conventional image-processing techniques, 

substantial tuning by trial and error would be required to 

obtain sufficiently robust recognition of what constitutes part 

of a white line.  Simple thresholding is inadequate, color 

matching is unreliable, and edge detection is too noisy to 

identify white-line membership.  In contrast, the ICA/Bayes 

classification approach implicitly incorporates all linear 

image processing options as well as use of color.  

Importantly, no expertise is required in using this algorithm.  

It is only necessary for the user to create training examples 

(in this case, using “Paint” to select example regions of line, 

grass and barrel).   
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 The results shown benefitted from subdividing the 

category of “grass” into two sub-categories—light grass and 

dark grass.  In the present case, this was done manually.  In 

continuing work, identification of useful subcategories is 

being performed automatically by recognition of non-

Gaussian distributions of training examples within a 

category.  Such automation would be important in the 

creation of a system intended for use by non-experts. 

C. ICA for Industrial Inspection 

 A third example shows the potential for application of 

the present algorithm to industrial inspection.  In this 

example, the task is to classify cellulose kitchen sponges as 

either “first quality” or “other”.  This classification is to be 

performed in real time, in-line with the production line. 

 According to the manufacturer, this task has not been 

automated in the past due to a variety of related 

complications.  One, the color of sponge changes frequently, 

so the inspection system must be able to adapt to this.  This 

can occur both from run to run (variation in dye quality), but 

also when color is intentionally changed (for example, from 

blue to yellow.)  Two, individual sponges are textured, with 

both a repetitive texture and random hole sizes and locations.  

This means individual examples of “first quality” are not 

consistent in appearance, something that thwarts many 

vision algorithms.  Third, the variety of failure modes is 

huge and poorly defined.  For example, some batches might 

have “rawness” while others might have “white cotton spots.”  

Adaptability in the vision system is important to catch these 

continuously changing circumstances. 

 One common category is that the sponge has regions in 

which it is “undercooked” in the manufacturing process.  

Training data was obtained by acquiring images (752x480 

pixels) from a variety of sponges that had been pre-sorted as 

either first quality or flawed due to “raw” regions.  Full 

images were subdivided into thumbnails (20x20 pixels), and 

these thumbnails were manually classified as “good” or 

“raw.”  These pre-sorted thumbnails comprised the training 

set. 

 
Figure 4: ICA-Bayes performance on the Sponge Inspection Task.  (a) 

shows the original image, (b) shows the Two-Group result (White- Bad 

Sponge, Black-Other 

 

 

 

 

Fig 3: original scenes (left) and resulting coarse-scene 

classifications (right) for mobile-robotics application. 
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Figure 5: ICA-Bayes performance on the Sponge Inspection Task.  (a) 

shows the original image, (b) shows the Two-Group result (White- Bad 

Sponge, Black-Other 

 

 After training, new images were introduced and the 

algorithm categorized thumbnails within these images as 

“good” or “raw.”  Figures 4 and 5 show representative 

images and the corresponding sub-image classifications into 

categories of “good” (black) or “raw” (white). 

 

For the sponge-inspection task, most-likely classification of 

thumbnails into categories does not, in itself, optimize the 

inspection solution.  An additional consideration is the cost 

associated with a particular type of error (false positive vs. 

false negative).  A convenient means to incorporate 

consideration of misclassification penalty weights is to alter 

the a-priori probability.  Instead of using the a-priori 

probability of “member of group”, we can instead define an 

a-priori probability of “other”, such that a cost metric is 

optimized.  This can be determined by defining a cost 

function and then finding the a-priori value that minimizes 

that function over the training set of sponges. 

 With a training set of 800 sponges (434 sellable, 366 

other), using this method resulted in overall sponge 

classification accuracy of 95% for “sellable” sponge and 

95% “other” sponge.  This outperformed the human 

accuracy levels of 93% “sellable” and 87% “other”. 

V.  SUMMARY AND CONCLUSIONS 

 This paper describes the application of ICA and Bayes’ 

Theorem to image classification tasks.  This method was 

illustrated in three problem domains, each of which showed 

good performance.  In particular, in both the synthetic 

problem domain of simple character recognition and the 

industrial domain of sponge-manufacturing inspection, the 

ICA-Bayes’ Theorem algorithm was shown to outperform 

humans.  Additionally, potential for application to image 

processing for mobile robotics was demonstrated. 

 In utilizing this algorithm, one should appreciate where 

the primary effort lies.  Computationally, identifying ICA 

basis vectors can be slow.  However, suitable algorithms 

exist, and their application can be automated within a user-

friendly system.  Further, it should be appreciated that the 

computationally-intensive steps occur in preprocessing.  

Subsequent use of an identified ICA transform is quite fast, 

and thus it is suitable for real-time pattern classification. 

 Training the system can be tedious, since it is necessary 

to provide a sufficiently rich set of pre-categorized 

examples.  However, many pattern-classification and 

industrial-inspection applications are not defined in terms of 

analytic specifications; often, classifications are inferred 

only by examples.  In such cases, training examples can be 

obtained by domain experts (e.g. shop-floor inspectors), and 

subsequent use of the ICA/Bayes classification system 

would not require intervention by an expert programmer.  

This attribute makes the ICA/Bayes technique attractive for 

future shop-floor use. 

  
 

REFERENCES 

[1] Beckmann, C. F., & Smith, S. M. (2004). Probablistic Independent 

 Component Analysis for Functional Magnetic Resonance Imaging. 
 IEEE Transactions of Medical Imaging , 23, 137-152. 

[2] Bell, A. J., & Sejnowski, T. J. (1997). The 'Independent Components' 

 of Natural Scenes are Natural Filters. Vision Research , 37, 3327-
 3338. 

[3] Bishop, C. M. (2006). Pattern Recognition and Machine Learning. 

 Springer. 
[4] Celik, T., & Tjahjadi, T. (2009). Multiscale texture classification using 

 dual-tree complex wavelet transform. Pattern Recognition Letters , 30, 

 331-339. 

[5] Choi, S. (2006). Differential learning algorithms for decorrelation and 

 independent component analysis. Neural Networks , 19, 1558-1567. 

[6] Christoyianni, I., Koutras, A., Dermatas, E., & Kokkinakis, G. (2002). 
 Computer aided diagnosis of breast cancer in digitized mammograms. 

 Computertized Medical Imaging and Graphics , 26, 309-319. 

[7] Comon, P. (1994). Independent Component Analysis, A new concept? 
 Signal Processing , 36, 287-314. 

[8] Hyvarinen, A. (1999). Fast and Robust Fixed-Point Algorithms for 

 Independent Component Analysis. IEEE Transactions on Neural 
 Networks, 10, pp. 626-634. 

[9] Hyvarinen, A. (1999). Survey on Independent Component Analysis. 
 Neural Computing Surveys , 2, 94-128. 

[10] Hyvarinen, A., & Oja, E. (2000). Independent Component Analysis: 

 Algorithms and Applications. Neural Networks , 13 (4-5), 411-430. 
[11] Karklin, Y., & Lewicki, M. S. (2003). Learning higher-order structures 

 in natural images. Network:Computation in Neural Systems , 14, 483-

 499. 

[12] Mack, D. R. (1993). Reverend Bayes' Useful Contribution. IEEE 

 Potentials , 12 (1), 41-42. 

 [13] Rasmussen, C. E. (2000). The Infinite Gaussian Mixture Model. 
 Advances in Neural Information Processing Systems , 12, 554-560. 

[14] Shlens, J. (2005, December 10). A Tutorial on Principal Component 

 Analysis, 2. Retrieved September 14, 2009, from 
 www.snl.salk.edu/~chlens/notes.html 

[15] Vitria, J., Bressan, M., & Radeva, P. (2007). Bayesian Classification 

 of Cork Stoppers Using Class-Conditional Independent Component 
 Analysis. IEEE Transactions on Systems, Man and Cybernetics- Part 

 C: Applications and Reviews, 37.  

 

3875


