
  

  

Abstract—This paper investigates the Centralized Multi-
vehicle Simultaneous Localization and Mapping (CMSLAM) 
problem in the context of the nonlinear observability. Theory is 
first developed for the nonlinear observability of CMSLAM 
using the relatively simple unicycle vehicle model, which gives 
rise to a CMSLAM problem in control affine form. Conditions 
required for nonlinear observability of CMSLAM when 
estimating 1. One landmark and 2. More than one landmark 
are detailed. The theory developed is then extended for more 
practical car-like vehicle models. CMSLAM simulations and 
experiments are demonstrated showing the effects of nonlinear 
observability. 

Index Terms—SLAM, observability, multi-vehicle 

I. INTRODUCTION 
UTONOMOUS vehicle positioning applications [1] often 
rely on GPS or knowledge of a priori known maps. 
However, constructing maps from scratch for 

localization is a difficult task. GPS systems on the other 
hand are affected by signal blockages resulting from 
interference, multi-path reflections off the ground and/or 
surrounding structures and partial satellite occlusion. The 
Simultaneous Localization and Mapping (SLAM) solution 
[2] has been introduced with the intention of overcoming 
most of the above problems in autonomous vehicle 
positioning. Mapping from a large number of vehicles is 
useful in several applications such as autonomous surveying, 
surveillance, mining, cargo handling, underwater missions, 
space exploration and military. Gathering, processing and 
utilizing maps and localization information from a large 
number of vehicles is particularly useful where centralized 
fleet monitoring and control is used. This is typical of 
applications such as mining, exploration and surveying. In 
this context the CMSLAM problem ([9] and [10]) or 
centralized simultaneous localization and mapping using 
multiple vehicles is considered in this paper. However, 
CMSLAM is computationally very demanding in 
maintaining map vehicle correlations [5] and in data 
association [6] unless the size of the map is efficiently 
managed. Therefore, understanding the observability and 
solving computational and memory constraints of the highly 
nonlinear CMSLAM is beneficial in many aspects. 
Nonlinear observability theory [3] has been applied for the 
analysis of the observability of SLAM in [7], [4] and [12] 
and in multi-vehicle SLAM in [8]. [12] investigates the 
nonlinear observability of single vehicle localization 
problem using unicycle vehicle model and bearing only 
observations with known and unknown landmarks. [7] 
analyzes the nonlinear local weak observability of one 
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landmark single vehicle SLAM problem using a car-like 
vehicle model, range bearing sensors and the nonlinear 
observability theory. [4] extends [7] into single vehicle 
SLAM with any number of landmarks. [8] in particular 
analyses the nonlinear observability of 2 vehicle SLAM 
using unicycle vehicle models. However, neither of these 
works generalizes to estimating any number of unknown 
landmarks and vehicles or discusses any other important 
properties and implications of the nonlinear observability of 
SLAM and multi-vehicle SLAM in detail.  
In this work we develop theory on the nonlinear 
observability [3] properties of CMSLAM involving any 
number of vehicles and landmarks. It is interesting to know 
that nonlinear observability properties of CMSLAM are 
different depending on the number of estimated landmarks 
in the map is equal to one or grater than one. The CMSLAM 
problem, in contrast to many independent single vehicle 
SLAM problems, represents dependencies among all 
vehicles and landmarks consistently and allows inclusion of 
observations of vehicles by other vehicles also into the 
problem. It is also argued that there is no requirement for 
maintaining a very large number of landmarks and 
correlations among them if the CMSLAM problem satisfies 
full nonlinear observability conditions. Therefore, it is 
suggested that estimated landmarks which violate the 
conditions necessary for the full nonlinear observability of 
CMSLAM be removed from the estimation algorithm and 
stored for future use 

The paper is organized as follows. Section II introduces 
the CMSLAM problem. Section III describes the theory of 
nonlinear observability. Section IV provides rigorous proofs 
on the nonlinear observability properties of the CMSLAM 
problem using unicycle vehicle models. Section V then 
extends the results of Section IV to the use of the bicycle 
model. Section VI provides simulations and experiments to 
substantiate the theoretical results claimed. Section VII 
discusses the results and concludes the work.  

II. CENTRALIZED MULTI-VEHICLE SLAM PROBLEM 

A. Centralized Multi-vehicle SLAM Problem 
Let there be n vehicles moving on a 2D flat surface 

estimating their poses and the location states of m 
landmarks. Let 

, , , ,( ) ( ) ( ) ( )
T

v i v i v i v it x t y t θ tx È ˘= Î ˚                     (1) 

where , ( ),v ix t  , ( )v iy t  and , ( )v iθ t  are the longitudinal and 
lateral coordinates and the heading of the ith vehicle. , ( )v i tx  
is the pose state of the ith vehicle. The map state ( )tm  is;  

[ ]1 1( ) ( ) ( ) ... ( ) ( ) T
m mt x t y t x t y tm =               (2) 

where ( )ix t  and ( )iy t  are the longitudinal and lateral 
coordinates of the ith estimated landmark. The combined 
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map vehicle state , ( )n m tx  and the process model without 
noise terms of the CMSLAM are given by; 

, ,1 ,2 ,( ) ( ) ( ) .... ( ) ( )
TT T T T

n m v v v nt t t t t⎡ ⎤= ⎣ ⎦x x x x m     (3) 

, ,( ) ( ( ),  )n m n mt t=x f x u                             (4) 
where u  is the control inputs to all the vehicles and f  is the 
nonlinear process model. The map model is;  

( ) 0tm =                                          (5) 
The structure and the complexity of (.)f  therefore mostly 
depend on the vehicle model used in CMSLAM. The 
measurement model of the CMSLAM problem assuming 
range and bearing sensors in all vehicles and excluding 
additive noise for simplicity is given by ,( ) ( ( ))n mt t=z h x ;  

1 2(.) [ ... ]T T T T
n=h h h h                   (6) 

Assuming all the vehicles observe all the estimated 
landmarks, ih  for any i is given by; 

,1 ,2 ,[ ... ]T T T T
i i i i m=h h h h                     (7) 

2 2
, ,

, 1
, ,,

( ( ) ( )) ( ( ) ( ))

tan {( ( ) ( )) ( ( ) ( ))} ( )
j v i j v i

i j
j v i j v iv i

x t x t y t y t

y t y t x t x t tθ−

⎡ ⎤− + −
⎢ ⎥=
⎢ ⎥− − −⎣ ⎦

h    (8) 

where ,i jh  is the part of the observation model ( )th  
corresponding to ith vehicle observing jth landmark. For 
simplicity of notation we hereinafter remove the symbol t 
denoting time from the variables and denote the 
measurement model of n vehicle m landmark CMSLAM by 

( , )n mh  and the process model by ( , ).n mf  

B. Vehicle Models 
The vehicle kinematic models such as the unicycle model 

and the bicycle model [2] are widely used in autonomous 
vehicle navigation applications. Depending on the 
requirements to model complex vehicle dynamics even more 
complex vehicle models can also be utilized. Here, we 
consider the unicycle and bicycle models, which are more 
than adequate to describe the CMSLAM problem on a 2D 
plane. The unicycle model for the ith vehicle is; 

, , ,cos( ) sin( )
T

v i i v i i v i iv vθ θ ω⎡ ⎤= ⎣ ⎦x            (9) 

where iv  is the speed input and iω  is the angular velocity 
input of the heading in the 2D plane of the ith vehicle. In the 
unicycle model iω  can be independently set from .iv  In the 
simple car-like (bicycle) model iω  is dependent on .iv  i.e. 

tan( )i i i iv Wω γ=                        (10) 
where iγ  is the steering angle input and iW  is the wheel 

base of the ith vehicle. 

III. THEORY OF NONLINEAR OBSERVABILITY 

A. Nonlinear Observability of Systems 
The SLAM problem and in particular CMSLAM problem 

are highly nonlinear. As a result the linear techniques of 
observability analysis are not appropriate. In the case of 
highly nonlinear systems, linear observability theory can 
only be applied under certain assumptions and linearization 
of process and measurement models. The main disadvantage 

of the linear observability analysis is it does not take the 
effects of inputs into consideration. The linear observability 
analysis tests the observability of a system over a finite 
amount of time steps and therefore is a global phenomenon. 
The nonlinear observability theory according to [3] on the 
other hand is more of a local phenomenon which is much 
more suitable for the analysis of highly nonlinear systems. 
The basic theory of nonlinear observability according to [3] 
can be given in a nutshell as follows. Let Σ  be a nonlinear 
state estimation problem defined by 

{ ( ,  ) and ( )Σ x f x u z h x= =                       (11) 
where x  is the state vector estimated, u  is the control 
input, z  is the measurement vector and (.)f  and (.)h  are 
nonlinear functions designating the process and the 
measurement models respectively.  

Theorem 1: Let (.....( ( )).....)O iL L hf fS d=  denote a linear 
space comprising finite linear combinations of the gradients 
of the Lie derivatives of zero and higher orders of the 
components of the measurement model denoted by .ih  Here, 

[ ]1 2(.) .... ,mh h hh =  d  is the gradient operator with 

respect to x  and ( )k
iL hf  is the Lie derivative of order k of 

ih  with respect to (.).f  Σ  is locally weakly observable at 
*x x=  if *( )OS x  satisfies the observability rank condition 

at *x x= , where *( )OS x  denotes the OS  evaluated at 
*x x=  and the observability rank condition is satisfied if the 

dimension of *( )OS x  is equal to n (the dimension of the 
state vector x ). 

B. Nonlinear Observability of Control Affine Systems 
For a special class of nonlinear problems [11] has shown 

the following interesting result (Theorem 2).  
Theorem 2: If Σ  is in control affine form 

0( ,  )= ( ) ( )i
iu+ ∑f x u g x g x  where x  is a vector of n state 

variables occupying an open subset Ξ  of ,n  0 (.)g ,...., 
(.)ig  are n dimensional vector analytic functions in Ξ , the 

measurement function (.)h  is an analytic function of  m  
and u  is an analytic function of time comprising distinct 
scalar controls iu , then Σ is locally weakly observable if 
the matrix ΣO  (hereinafter referred to as the nonlinear 
observability matrix) given below has rank n (i.e satisfies 
nonlinear observability rank condition).  

0 1 1( ) ( ) ... ( )
TT T n TL L L −

Σ ⎡ ⎤= ⎣ ⎦f f fO d h d h d h         (12) 
Conversely for systems that are control affine, 

considering Lie derivatives of order zero to n-1 in ΣO  is 
adequate to determine the nonlinear observability. 

IV. NONLINEAR OBSERVABILITY OF THE CMSLAM 
PROBLEM 

A. Nonlinear Observability Matrix of the CMSLAM 
When the motions of vehicles are modeled using a 

unicycle kinematic model, the CMSLAM problem can be 
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written in the following control affine form.  
( )1 2

, , ,( ) ( )n m i n m i i n m i
i

v ω= +∑x g x g x               (13) 

1
, ,1 , , ,2( ) cos( ) sin( )

TT T
i n m i v i v i iθ θ⎡ ⎤= ⎣ ⎦g x 0 0      (14) 

2
, ,3 ,4( ) 1

TT T
i n m i i⎡ ⎤= ⎣ ⎦g x 0 0                   (15) 

where ,1,i0  ,2 ,i0  ,3 ,i0  and ,4i0  are null vectors with 
appropriate dimensions. ,1i0  does not exist for i=1. Hence 
we can apply the result of Theorem 2 for the nonlinear 
observability analysis of the CMSLAM problem resulting in 
the following nonlinear observability matrix ,n mO . 

0
, ( , )

1
, ( , )

, ,

3 2 1
, ( , )

( , )
( , )

( ,  ( , ),  ( , ))
...........................

( , )

n m n m

n m n m
n m n m

n m
n m n m

L n m
L n m

n m n m

L n m+ −

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

f

f

f

d h
d h

O d f h

d h

  (16) 

where ,n md  is the gradient operator with respect to ,n mx  and 

( , )
i

n mLf  denotes the Lie derivative of order i with respect to 
( , ).n mf  By definition for any positive integers i and j; 

, ,1,0 , ,0
( , ) , ,

, ,2,0 , , ,

(( ), ( ))
(( ), ( ), )

i j j v i j v i
n m i j i j

i j j v i j v i v i

h x x y y
L

h x x y y θ
− −⎡ ⎤

= = ⎢ ⎥− −⎣ ⎦
f h h    (17) 

where , ,1,i j kh  and , ,2,i j kh denote the kth order Lie derivatives 
in functional form of the range measurement and the bearing 
measurement of the jth landmark respectively observed by 
the ith vehicle. Thus, 0

, ( , ) ,n m n m i jLfd h  has the structure below. 
1,0 2,0 3,0 4,0 5,0

1 , , , 2 3 , , 40
, ( , ) , 6,0 7,0 8,0 9,0 10,0

5 , , , 6 7 , , 8

i j i j i j i j i j
n m n m i j

i j i j i j i j i j

h h h h h
L

h h h h h
⎡ ⎤

= ⎢ ⎥
⎢ ⎥⎣ ⎦

f

0 0 0 0
d h

0 0 0 0
(18) 

where 1 5 1 3( 1)  for  1i i× −= = ∀ >0 0 0  and 1 5 and 0 0  do not 
exist for 1.i =  2 6 1 3( )n i× −= =0 0 0  for  <ni∀  and 2 6and 0 0  
do not exist for .i n=  3 7 1 2( 1)  for  1j j× −= = ∀ >0 0 0  and 

3 7 and 0 0  do not exist for 1.j =  4 8 1 2( )m j× −= =0 0 0  
for  <j m∀  and 4 8 and 0 0  do not exist for .j m=  l which is 
an integer from 1 to 10 represents the position of the 
element ,

,
l k
i jh  in , ( , ) ,

k
n m n m i jLfd h  as shown in (18) and k is the 

order of the Lie derivative. Hence it follows that; 
4,0 1,0 1,0
, , , , ,(( ), ( ))i j i j i j j v i j v ih h h x x y y= − = − − −             (19) 

By similar reasoning and simplification it follows that; 
9,0 6,0 6,0
, , , , ,(( ), ( ))i j i j i j j v i j v ih h h x x y y= − = − − −             (20) 
5,0 2,0 2,0
, , , , ,(( ), ( ))i j i j i j j v i j v ih h h x x y y= − = − − −            (21) 

10,0 7,0 7,0
, , , , ,(( ), ( ))i j i j i j j v i j v ih h h x x y y= − = − − −             (22) 

3,0
, 0i jh =                                    (23) 

8,0
, 1i jh = −                                   (24) 

Thus, when q is a positive integer, by recursion it follows 
that; 

1
( , ) , , ( , ) ,( ). ( , )q q
n m i j n m n m i jL L n m−=f fh d h f                   (25) 

, ,1, , , ,
( , ) ,

, ,2, , , ,

(( ), ( ), )
(( ), ( ), )

i j q j v i j v i v iq
n m i j

i j q j v i j v i v i

h x x y y
L

h x x y y
θ
θ

− −⎡ ⎤
= ⎢ ⎥− −⎣ ⎦

f h             (26) 

Hence, the gradient , ( , ) ,
q

n m n m i jLfd h  of (26) is; 
1, 2, 3, 4, 5,

1 , , , 2 3 , , 4
, ( , ) , 6, 7, 8, 9, 10,

5 , , , 6 7 , , 8

q q q q q
i j i j i j i j i jq

n m n m i j q q q q q
i j i j i j i j i j

h h h h h
L

h h h h h
⎡ ⎤

= ⎢ ⎥
⎢ ⎥⎣ ⎦

f

0 0 0 0
d h

0 0 0 0
(27) 

Hence it follows that; 
4, 1, 1,
, , , , , ,(( ), ( ), )q q q

i j i j i j j v i j v i v ih h h x x y y θ= − = − − −          (28) 
9, 6, 6,
, , , , , ,(( ), ( ), )q q q

i j i j i j j v i j v i v ih h h x x y y θ= − = − − −          (29) 
5, 2, 2,
, , , , , ,(( ), ( ), )q q q

i j i j i j j v i j v i v ih h h x x y y θ= − = − − −         (30) 
10, 7, 7,
, , , , , ,(( ), ( ), )q q q

i j i j i j j v i j v i v ih h h x x y y θ= − = − − −         (31) 
Let the ith column of ,n mO  comprising order zero to 
3 2 1n m+ −  Lie derivatives of all the observations be 
denoted by ( , ).i n mC  
B. Nonlinear Observability Matrix for 2n ≥  and 1m >   
Result 1: Nonlinear observability matrix of the SLAM 
problem estimating 2n ≥  vehicle poses and 1m >  
landmarks is rank deficient by 3 when every vehicle 
observes only the estimated landmarks. 
Proof: The nonlinear observability matrix for CMSLAM 
estimating 2 landmarks from 2 vehicles assuming both 
vehicles observe both landmarks is; 

2,2 2,2 2,2( ,  (2, 2),  (2, 2))=O O d f h                    (32) 
By row reduction and simplification of (32) it can be shown 
that the rank of 2,2O  is 7. 2,2O  is therefore rank deficient by 
3. Hence Result 1 is true for n=2 and m=2. Consider ,λ μO  
where λ  and μ  are positive integers both greater than 2. 
Assume that Result 1 is true for n λ=  and m μ=  or in 
other words the nonlinear observability matrix resulting 
from Theorem 2 is rank deficient by 3. From (16); 

, , ,( ,  ( , ),  ( , ))λ μ λ μ λ μ λ μ λ μ=O O d f h                (33) 
Using the properties of the Jacobians of Lie derivatives of 

, ( , ) ,
q

n m n m i jLfd h  detailed in (16) to (31) and by reordering rows 
of ,λ μO  we can also express (33) by (34)-(36). 

,

(1) .... (1)
(2) .... (2)

.... .... .... .... ....
.... ( ) ( )

v M

v M

v M

λ μ

λ λ

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

H 0 0 H
0 H 0 H

O

0 0 H H

      (34) 

,1

,2

,

....

....
( )

.... .... .... ....
....

M
i

M
iM

M
i

i

μ

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

H 0 0
0 H 0

H

0 0 H

                   (35) 

,1 ,2 ,( ) ( ) ( ) .. ( )
Tv v T v T v T

i i ii μ⎡ ⎤= ⎣ ⎦H H H H           (36) 

Here ( )v iH  is the part of the three columns of ,λ μO  
corresponding to the ith vehicle and associated with 
observing all the μ  landmarks. ( )M iH  is the part of the 
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2μ  columns of ,λ μO corresponding to the μ  landmark 
positions of the state vector associated with the ith vehicle. 

,
M
i jH  is the part of the two columns of ,λ μO  corresponding 

to the jth landmark position and associated with the ith 
vehicle. ,

v
i jH  is the part of the three columns of ,λ μO  

corresponding to the ith vehicle and associated with the jth 
landmark. Consider now the addition of one vehicle state to 
the SLAM state vector. The resulting nonlinear observability 
matrix is; 

1, 1, 1,( ,  ( 1, ),  ( 1, ))λ μ λ μ λ μ λ μ λ μ+ + += + +O O d f h         (37) 
By definition 

0
( 1, ) 1( 1, ) ( ( , )) ( )

TT TL λ μ λλ μ λ μ+ +⎡ ⎤+ = ⎣ ⎦f h h h           (38) 
1

( , )1
( 1, ) 1

( 1, ) 1

( , )
 ( 1, )=

L
L

L
λ μ

λ μ
λ μ λ

λ μ
λ μ+

+ +

⎡ ⎤
+ ⎢ ⎥

⎢ ⎥⎣ ⎦

f
f

f

h 0 0 0
h

h
         (39) 

1
, ( , )1

1, ( 1, ) 1
1, ( 1, ) 1

( , )
( 1, )=

L
L

L
λ μ λ μ

λ μ λ μ
λ μ λ μ λ

λ μ
λ μ+ +

+ + +

⎡ ⎤
+ ⎢ ⎥

⎢ ⎥⎣ ⎦

f
f

f

d h 0 0 0
d h

d h
 (40) 

Therefore, by recursion it can be shown that; 

, ( , )
1, ( 1, )

1, ( 1, ) 1

( , )
( 1, )

l
l

l

L
L

L
λ μ λ μ

λ μ λ μ
λ μ λ μ λ

λ μ
λ μ+ +

+ + +

⎡ ⎤
+ = ⎢ ⎥

⎢ ⎥⎣ ⎦

f
f

f

d h 0 0 0
d h

d h
(41) 

for any positive integer l. Thus, from (41)  
,

3 2
, ( , )

3 2 1
, ( , )

3 2 2
, ( , )1,

0
1, ( 1, ) 1

3 2 2
1, ( 1, ) 1

                      
( , )   

( , )
( , )

.........................

L
L
L

L

L

λ μ
λ μ

λ μ λ μ
λ μ

λ μ λ μ
λ μ

λ μ λ μλ μ

λ μ λ μ λ

λ μ
λ μ λ μ λ

λ μ
λ μ
λ μ

+

+ +

+ +
+

+ + +

+ +
+ + +

⎡
⎢
⎢
⎢
⎢

= ⎢
⎢
⎢
⎢
⎢⎢⎣

f

f

f

f

f

O 0 0 0
d h 0 0 0
d h 0 0 0
d h 0 0 0O

d h

d h

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎥⎦

             (42) 

Using the notation in (34)-(36) 1,λ μ+O  can also be expressed 
as follows. 

1,

(1) .... (1)
(2) .... (2)

.... .... .... .... .... ....
.... ( ) ( )
.... ( 1) ( 1)

v M

v M

v M

v M

λ μ

λ λ
λ λ

+

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥+ +⎢ ⎥⎣ ⎦

H 0 0 0 H
0 H 0 0 H

O
0 0 H 0 H
0 0 0 H H

(43) 

,λ μO  has three null columns according to the assumption on 
its rank. Any such null column of ,λ μO  is; 

2 1
3 2 3 2 1

3 2 3 2 1
1 0 1 0

( , ) ( , )v i k M j k
i k j k

i k j k
T T

μλ
λ

λλ μ λ μ+ − + + −
+ − + + −

= = = =

+ =∑∑ ∑∑C C 0  (44) 

where v
iT  for 1,  2,...,3i λ=  and 3

M
jT λ +  for 1,  2,...,2j μ=  are 

transformations on the columns of , .λ μO  Let , ( , )k
i j λ μC  

denote the elements of the kth column of ,λ μO  comprising 
Lie derivatives of order zero to 3 2 1λ μ+ −  corresponding to 
the ith vehicle observing jth landmark. By expanding (44) 
using (34) for all 1,  2,....,  i λ=  and 1,  2,....,  j μ=  we 
have; 

2 1
3 2 3 2 1

3 2 , 3 2 1 ,
0 0

( , ) ( , )v i k M j k
i k i j j k i j

k k

T T λ
λλ μ λ μ+ − + + −

+ − + + −
= =

+ =∑ ∑C C 0  (45) 

From the converse of Theorem 2 and assumption of the rank 
condition of ,λ μO  it can be concluded that terms ,λ μO , 

3 2
, ( , ) ( , ),L λ μ

λ μ λ μ λ μ+
fd h  3 2 1

, ( , ) ( , )L λ μ
λ μ λ μ λ μ+ +

fd h  and 
3 2 2

, ( , ) ( , )L λ μ
λ μ λ μ λ μ+ +

fd h  in (42) when considered as a matrix 
have only 3 null columns. Hence we can extend (45) to Lie 
derivatives of order zero to 3 2 2.λ μ+ +  Thus, for all 

1,  2,....,  i λ=  and 1,  2,....,  j μ=  we have; 
2 1

3 2 3 2 1
3 2 , 3 2 1 ,

0 0
( 1, ) ( 1, )v i k M j k

i k i j j k i j
k k

T T λ
λλ μ λ μ+ − + + −

+ − + + −
= =

+ + + =∑ ∑C C 0  (46) 

Here (46) covers all the rows of (43) from (1)vH  to ( ).v λH  
Also note that 3 2

, ( 1, )i k
i j λ μ+ − +C  for k=0, 1 and 2 and 

3 2 1
, ( 1, )j k

i j
λ λ μ+ + − +C  for k=0 and 1 are functions of 

, , ,,  y ,  ,  v i v i v i jx xθ  and .jy  Now for 1,  2,....,  j μ=  let  
2 1

3 1 3 2 2
3 1 1, 3 2 2 1,

0 0
( 1, ) ( 1, )v k M j k

k j j k j j
k k

T Tλ λ
λ λ λ λλ μ λ μ+ + + + +

+ + + + + + +
= =

+ + + =∑ ∑C C n (47) 

In (47) for all 1,  2,....,  ,j μ=  3 1
1, ( 1, )k

j
λ

λ λ μ+ +
+ +C  for k=0, 1 

and 2 and 3 2 2
1, ( 1, )j k

j
λ

λ λ μ+ + +
+ +C  for k=0 and 1 are functions of 

, 1 , 1 , 1,  y ,  ,  v v v jx xλ λ λθ+ + +  and .jy  It follows from (47) that the 
structure of 1,λ μ+O  is such that rows corresponding to the 
vehicle 1λ +  can be interchanged with rows corresponding 
to any vehicle 1,  2,....,  .i λ=  Therefore, it follows that 

0j =n  for all 1,  2,....,  j μ=  in (47). Hence by combining 
(46) and (47) we have; 

1 2 1
3 2 3 2 1

3 2 3 2 1
1 0 1 0

( 1, ) ( 1, )v i k M j k
i k j k

i k j k
T T

μλ
λ

λλ μ λ μ
+

+ − + + −
+ − + + −

= = = =

+ + + =∑∑ ∑∑C C 0 (48) 

The equation (48) results in a null column in 1, .λ μ+O  
Therefore, all three null columns of ,λ μO  result in null 
columns in 1, .λ μ+O  However, ,λ μO  has the maximum of 
three null columns according to the assumption made on its 
rank. Hence from (43), any column operation done on 
columns 1 to 3 2 3λ μ+ +  using all the columns of 1, ,λ μ+O  
does not result in more than 3 null columns because it 
contradicts with (44)-(48) on the rank of the matrix , .λ μO  
Thus, if there are more than 3 null columns in 1,λ μ+O  they 
must be obtained only from column operations on the 
columns 3 1,λ +  3 2λ +  and 3 3λ +  of 1,λ μ+O  

corresponding to the th1λ +  vehicle state. Let the zero order 
Lie derivatives corresponding to observations of landmark 1 
by vehicle 1λ +  be given by the 4x3 matrix 1.

v
λ +M   

( )1 3vrank λ + =M                             (49) 

Therefore, from (49) it follows that 1,λ μ+O  cannot have 
more than 3 null columns. Thus, Result 1 is true for 

1n λ= +  and hence for any number of vehicles by the 
Principle of Mathematical Induction. Consider now the 
addition of one landmark state to the CMSLAM state vector 
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given by (3). The resulting nonlinear observability matrix is; 
, 1 , 1 , 1( ,  ( , 1),  ( , 1))λ μ λ μ λ μ λ μ λ μ+ + += + +O O d f h        (50) 

By a similar simplification procedure to that of (38)-(42); 
,

3 2
, ( , )

3 2 1
, ( , )

0 1, 1
, 1 ( , 1)

3 2 1 1
, 1 ( , 1)

                      
( , )   

( , )

...........................

L
L

L

L

λ μ
λ μ

λ μ λ μ
λ μ

λ μ λ μ
μλ μ

λ μ λ μ

λ μ μ
λ μ λ μ

λ μ
λ μ

+

+ +

++
+ +

+ + +
+ +

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

f

f

f

f

O 0 0
d h 0 0
d h 0 0

O
d h

d h

           (51) 

Hence using the notation of (50)-(52) , 1λ μ +O  can also be 

expressed by (34) with ( )M iH  given by the following; 

,1

,2

, 1

....

....
( )

.... .... .... ....
....

M
i

M
iM

M
i

i

μ +

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

H 0 0
0 H 0

H

0 0 H

                 (52) 

Again according to the assumption of the rank of , ,λ μO  

,λ μO  has three null columns. Any such null column of ,λ μO  
can be expressed by (44) using the same notation. As before 
by expanding (44) we obtain (45). From the converse of 
Theorem 2 and the assumption of the rank condition of ,λ μO  

it can be concluded that ,λ μO , 3 2
, ( , ) ( , )L λ μ

λ μ λ μ λ μ+
fd h  and 

3 2 1
, ( , ) ( , )L λ μ

λ μ λ μ λ μ+ +
fd h  terms in (51) when considered as a 

matrix have only 3 null columns. Hence we can extend (45) 
to Lie derivatives of order zero to 3 2 1.λ μ+ + Thus, for all 

1,  2,....,  i λ=  and 1,  2,....,  j μ=  we have; 
2 1

3 2 3 2 1
3 2 , 3 2 1 ,

0 0
( , 1) ( , 1)v i k M j k

i k i j j k i j
k k

T T λ
λλ μ λ μ+ − + + −

+ − + + −
= =

+ + + =∑ ∑C C 0  (53) 

Note that 3 2
, ( , 1)i k

i j λ μ+ − +C  for k=0, 1 and 2 and 
3 2 1
, ( , 1)j k

i j
λ λ μ+ + − +C  for k=0 and 1 are functions of 

, , ,,  y ,  ,  v i v i v i jx xθ  and .jy  Let for 1,  2,....,  i λ=   
2 1

3 2 3 2 1
3 2 , 1 3 2 1 , 1

0 =0
( , 1)+ ( , 1)v i k M k

i k i k i i
k k

T T λ μ
μ λ μ μλ μ λ μ+ − + + +

+ − + + + + +
=

+ + =∑ ∑C C n  (54) 

The structure of , 1λ μ +O  is such that rows corresponding to 
the landmark 1μ +  can be interchanged with rows 
corresponding to any landmark 1,  2,....,  .j μ=  Hence it 
follows that i =n 0  for all 1,  2,....,  i λ=  in (54). Hence by 
combining (53) and (54) we have; 

2
3 2

3 2
1 0

1 1
3 2 1

3 2 2
1 0

{ ( , 1)}

                         { ( , 1)}

v i k
i k

i k

M j k
j k

j k

T

T

λ

μ
λ

λ

λ μ

λ μ

+ −
+ −

= =

+
+ + −

+ + −
= =

+ +

+ =

∑∑

∑∑

C

C 0
  (55) 

The equation (55) results in a null column in , 1.λ μ +O  
Therefore, all three null columns of ,λ μO  result in null 
columns in , 1.λ μ +O  However, ,λ μO  has the maximum of 
three null columns according to the assumption made on its 
rank. Hence from (52), any column operation on columns 1 

to 3 2 2λ μ+ +  using all the columns of , 1λ μ +O  does not 
result in more than 3 null columns (because it contradicts 
with (44), (45), (53), (54), (55) and on the rank of ,λ μO ). 
Thus, if there are more than 3 null columns in , 1λ μ +O  they 
must be obtained only from column operations on the 
columns 3 2 1λ μ+ +  and 3 2 2λ μ+ +  of , 1λ μ +O  
corresponding to the newly added landmark state. Let the 
zero order Lie derivatives corresponding to the observing of 
landmark 1μ +  by vehicles 1 and 2 be given by 1.

M
μ +M  The 

rank of 1
M
μ +M  is 2. Therefore, , 1λ μ +O  cannot have more than 

3 null columns. Thus, the Result 1 is true for 1m μ= +  and 
hence for any number of landmarks by the Principle of 
Mathematical Induction. Thus, by the Principle of 
Mathematical Induction Result 1 is true for any number of 
landmarks or vehicles in the CMSLAM state vector. 
 
Result 2: When observing two known landmarks and all 
the estimated landmarks by all the vehicles, the CMSLAM 
is locally weakly observable. 
Proof: Let *

jx  and *
jy  denote the longitudinal and lateral 

coordinates of the jth  known landmark. Suppose a known 
landmark j be observed from vehicle i. Let  

* * *
, ,1,0 , ,0 * *

( , ) , , * * *
, ,2,0 , , ,

(( ), ( ))
(( ), ( ), )

i j j v i j v i
n m i j i j

i j j v i j v i v i

h x x y y
L

h x x y y θ
⎡ ⎤− −

= = ⎢ ⎥− −⎢ ⎥⎣ ⎦
f h h  (56) 

where *
,i jh  is the measurement model when the range and 

bearing of the known landmark j are observed by vehicle i, 
*
, ,1,i j kh  and *

, ,2,i j kh are the kth order Lie derivative of the 
measurement model corresponding to observing range and 
bearing of the jth known landmark. Thus, using the same 
recursive simplification procedure given by (17)-(31) we 
can obtain the Jacobians of higher order Lie derivatives of 
order q of *

,i jh  as follows. 
1, 2, 3,

1 , , , 2 3*
, ( , ) , 6, 7, 8,

4 , , , 5 6

q q q
i j i j i jq

n m n m i j q q q
i j i j i j

h h h
L

h h h
⎡ ⎤

= ⎢ ⎥
⎢ ⎥⎣ ⎦

f

0 0 0
d h

0 0 0
       (57) 

where 1 4 1 3( 1) for  1i i× −= = ∀ >0 0 0  and 1 4and 0 0  do not 

exist for 1,i =  2 5 1 3( )  for  ,n i i n× −= = ∀ <0 0 0  and 2 5and 0 0  

do not exist for ,i n=  and 3 6 1 2 .m×= =0 0 0  When all the 
vehicles observe two known landmarks and all the estimated 
landmarks the observation model is given by (6) where ih  is 
given below. 

* *
,1 ,2 , ,1 ,2.. ( ) ( )

TT T T T T
i i i i m i i⎡ ⎤= ⎣ ⎦h h h h h h      (58) 

Let , ( , )k
i j n mC  denote the elements of the kth column of ,n mO  

comprising Lie derivatives of order zero to 3 2 1n m+ −  
corresponding to the ith vehicle observing jth known 
landmark. Inspired by the notation used in (34)-(36) we use 
a compact notation of ,

M
i jH  for the elements of the columns 

of ,n mO  corresponding to the map and associated with jth 
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known landmark and ith vehicle. We use ,
v
i jH  for the 

elements of the columns of ,n mO  corresponding to ith vehicle 
and associated with jth known landmark. Hence from (57) it 
follows that ,

M
i j =H 0  for all i and j. From (34) ,n mO  is given 

by nλ =  and .mμ =  Let the L.H.S. of (35) and (36) be 
( )M iH  and ( )v iH  respectively. 

( ) ( ( ))
TM M Ti i⎡ ⎤= ⎣ ⎦H H 0 0                    (59) 

,1 ,2 , ,1 ,2( ) ( ) ( ) .. ( ) ( ) ( )
Tv v T v T v T v T v T

i i i m i ii ⎡ ⎤= ⎣ ⎦H H H H H H (60) 

From the structure of ,n mO  it can be observed that ,1 ( , )k
i n mC  

and ,2 ( , )k
i n mC  are independent from any other vehicle state 

in the CMSLAM state other than the ith vehicle state. 
Consider the Assumption (a) given below. 

Assumption (a): Assume now that there are 
transformations 1,iT  2 ,iT  and 3

iT  that operate on the three 
columns of ,n mO  corresponding to vehicle i that results in a 
null column in ,1( , )k

i n mC  and ,2 ( , ).k
i n mC  Solving for 1,iT  2 ,iT  

and 3
iT  it follows that the assumption (a) is a contradiction. 

Hence the columns 3 2,i −  3 1,i −  and 3i  of ,n mO  are 
linearly independent. Therefore, ,n mO  has 3n linearly 
independent columns at columns corresponding to n 
vehicles. Similarly, ,n mO  has 2m null columns 
corresponding to m landmark positions. Hence, by the 
structure of ,n mO  it follows that ,n mO  has 3 2n m+  linearly 
independent columns. Hence, ,n mO  is full rank. Thus, the 
CMSLAM is locally weakly observable. 

C. Nonlinear Observability Matrix for 2n ≥  and 1m =   
Result 3: The n vehicle one landmark CMSLAM problem, 
in which the estimated landmark is observed by all the 
vehicles, has a nonlinear observability matrix with n null 
column vectors such that. 

3 2 3 1 3
1 , 1 ,  ( - ) ( ,1)   ( ) ( ,1) ( ,1)i i i

v i v iy y n x x n n− −+ − + + =C C C 0  (61) 
where 1,2,..., .i n=  
Proof: When n=2, it can be shown for i=1 and 2 that;  

3 2 3 1 3
1 , 1 ,  ( - ) (2,1)   ( ) (2,1) (2,1)i i i

v i v iy y x x− −+ − + + =C C C 0  (62) 
Thus, Result 3 is true for n=2. Assume that Result 3 is true 
for .n λ=  By expanding (61), for all 1,  2,....,  i λ= ;  

3 2 3 1 3
1 , ,1 1 , ,1 ,1 ( - ) ( ,1)  ( ) ( ,1) ( ,1)i i i

v i i v i i iy y x xλ λ λ− −+ − + + =C C C 0  (63) 
Consider now the addition of a new vehicle state vector to 
the CMSLAM problem. By expanding (63) for all 

1,  2,....,  i λ=  
3 2 3 1

1 , ,1 1 , ,1

3
,1

 ( - ) ( 1,1)  ( ) ( 1,1)

                                                            ( 1,1)

i i
v i i v i i

i
i

y y x xλ λ

λ

− −+ + − + + +

+ =

C C

C 0
 (64) 

Also note that 3 2
,1 ( 1,1),i

i λ− +C  3 1
,1 ( 1,1)i

i λ− +C  and 3
,1( 1,1)i

i λ +C  
are functions of , , , 1,  y ,  ,  v i v i v ix xθ  and 1.y  Now let  

3 1 3 2 3 3
1 , 1,1 1 , 1,1 1, ( - ) ( 1,1) ( ) ( 1,1) ( 1,1)v i v i jy y x xλ λ λ

λ λ λλ λ λ+ + +
+ + ++ + − + + + + =C C C n

(65) 
In (65), 3 1

1,1( 1,1),λ
λ λ+

+ +C  3 2
1,1 ( 1,1)λ

λ λ+
+ +C  and  3 3

1,1( 1,1)λ
λ λ+

+ +C   
are functions of , 1 , 1 , 1 1,  y ,  ,  v v vx xλ λ λθ+ + +  and 1.y  Thus, the 

structure of 1,1λ +O  is such that rows corresponding to the 
vehicle 1λ +  can be interchanged with the rows 
corresponding to any vehicle 1,  2,....,  .i λ=  Hence it 
follows that .=n 0  Hence the null vector is true for 

1.n λ= +  Therefore, by the Principle of Mathematical 
Induction Result 3 is true for any number of vehicles. 

Result 4: If the n vehicle one landmark CMSLAM problem 
in which the estimated landmark and one known landmark 
are observed by all the vehicles has a nonlinear 
observability matrix with a null column vector, the null 
vector is a linear combination of all the columns 
corresponding to n vehicles and the estimated landmark of 
the nonlinear observability matrix. 
Proof: Let the nonlinear observability matrix of the n 
vehicle 1 landmark CMSLAM be as follows; 

,1

(1) .... (1)
(1) ....

(2) .... (2)
(2) ....

.... .... .... .... ....
.... ( ) ( )
.... ( )

v M

v

v M

v
n

v M

v

n n
n

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

H 0 0 H
H 0 0 0

0 H 0 H
O 0 H 0 0

0 0 H H
0 0 H 0

   (66) 

where ( )v iH  for all 1, 2,...,i n=  corresponds to the vehicle i 
observing known landmark 1. Let there be column 
operations 1T ,  2T  or 3T  on columns corresponding to 
vehicle i that results in null elements. 

1,0 2,0 3,0
,1 1 ,1 2 ,1 3 0i i ih T h T h T+ + =                (67) 
6,0 7,0 8,0
,1 1 ,1 2 ,1 3 0i i ih T h T h T+ + =                (68) 

When any one of 1T , 2T  or 3T  is zero and another is equal to 
one (67) and (68) result in two inconsistent equations. 
Hence we can’t find operations on two columns that will 
result in a null column. If we assume now that 3 1T =  we 

obtain ( )*
1 , 1v iT y y= − +  and  ( )*

2 , 1 .v iT x x= −  However, it 
follows that 

 * 1,0 * 2,0 3,0
1 , ,1 1 , ,1 ,1( ) ( ) 0v i i v i i iy y h x x h h− + + − + ≠               (69) 

* 6,0 * 7,0 8,0
1 , ,1 1 , ,1 ,1( ) ( ) 0v i i v i i iy y h x x h h− + + − + ≠               (70) 

Extending operations to the columns 3 1n +  and 3 2n +  let; 
* 1,0 * 2,0 3,0 4,0 3 1 5,0 3 2
1 , ,1 1 , ,1 ,1 ,1 ,1( ) ( ) 0n n

v i i v i i i i iy y h x x h h h T h T+ +− + + − + + + =       (71) 
* 6,0 * 7,0 8,0 9,0 3 1 10,0 3 2
1 , ,1 1 , ,1 ,1 ,1 ,1( ) ( ) 0n n

v i i v i i i i iy y h x x h h h T h T+ +− + + − + + + = (72) 
From (71) and (72) 3 1 *

1 1( )nT y y+ = − +  and 3 2 *
1 1( ).nT x x+ = −  

Therefore, operations on all five columns are required to 
create a null column. However, operations on columns of 

,1nO  corresponding to landmark 1 result in all vehicle states 
being included in the equations. Hence by the same logic of 
equations (67)-(72) it follows that a null column in ,1nO  is a 
linear combination of all the columns corresponding to all 
the vehicles and the landmark. 
Result 5: The n vehicle one landmark CMSLAM problem, 
in which the estimated landmark and one known landmark 
are observed by all the vehicles, is locally weakly 
observable when (a) One known landmark distinct from 
the one which is observed by all the vehicles is observed by 

3176



  

at least one vehicle or (b) At least one vehicle’s 
longitudinal and lateral coordinates are observed  
Proof: From Result 4 it follows that operations on all the 
columns are required to generate a null column when one 
known landmark is observed by all the vehicles.  
When (a) is also true, from Result 2 it follows that one can’t 
have zero elements on rows corresponding to vehicles that 
observe two known distinct landmarks by any column 
operation in the nonlinear observability matrix ,n mO . Hence 

,n mO  is full rank. Therefore, CMSLAM is locally weakly 
observable. 
When (b) is also true and since gradients of zero order Lie 
derivatives at the first two columns corresponding to a 
vehicle state result in an identity matrix, they cannot be 
made zero by any column operation on ,n mO . Hence ,n mO  is 
full rank. Therefore, CMSLAM is locally weakly 
observable. 

V. USE OF A CAR-LIKE VEHICLE MODEL 
When a car-like vehicle model ((9) and (10)) is used, the 
heading of the vehicle cannot be controlled independently 
from the speed input. Therefore, the CMSLAM state vector 
cannot be represented in control affine form. In this context, 
application of Theorem 2 is not possible. However, it is 
interesting to note that the proofs of Results 1-5 used the 
properties of only the zero order Lie derivatives of the 
measurement models. Hence, the order of the Lie derivatives 
used in the observability analysis is independent of the 
proofs of Results 1-5. This means we can have the same 
proofs if we assume that the number of the Lie derivatives 
used in the nonlinear observability matrix is independent 
from the number of vehicles and the number of estimated 
landmarks.  
Thus, it follows from the proofs of Results 1-5 that we can 
arbitrarily increase the order of the Lie derivatives of the 
measurement model used in the calculation of the nonlinear 
observability matrix. Hence the proofs of Results 1-5 satisfy 
nonlinear observability conditions given by Theorem 1. It is 
also observed that the subsequent analysis for nonlinear 
observability of the car-like vehicle models is similar to 
those with the unicycle model if the substitution 

tan( )i i i iv Wω γ=  is used in the analysis because the 
composition of iω  does not affect the nonlinear 
observability analysis of Section IV. Therefore, Results 1-5 
are true even if we use car like vehicle models in CMSLAM. 

VI. SIMULATIONS AND EXPERIMENTS 

A. Simulations 

 
(a) (b) 

Fig. 1 CMSLAM simulation. Estimated vehicle trajectories are shown by 
the thick lines, while the dotted lines show the true trajectories. Estimated 
landmarks are shown by crosses and the true landmarks are shown by the 
circles. Fig. 1 (a)  CMSLAM simulations, Fig 1 (b) Odometry based vehicle 
paths. 
Results of CMSLAM proved in the previous sections are 
verified by CMSLAM simulations assuming a 2D 

environment (Fig. 1). It is assumed that five car-like mobile 
robots are moving in a 2D environment of 100x100 m2 area 
according to specified trajectories while observing point 
landmarks in the environment using range and bearing 
sensors. An extended Kalman filter based approach to 
CMSLAM was used to compare the performance of 
CMSLAM in the context of Results 1-5. A nearest neighbor 
data association method [2] and a map management method 
based on the number of times a landmark is observed were 
also used in the simulation of CMSLAM. It is assumed in 
the simulations that all the vehicles observe all the estimated 
landmarks and two a priori known landmarks. The estimated 
vehicle path and the map are consistent (Fig. 1 (a)) when the 
nonlinear observability conditions stipulated in the Results 
are satisfied. Fig. 1 (b) shows the vehicle paths if odometry 
only is used in vehicle path estimation. Fig. 2 shows how the 
localization error of a vehicle diverges in CMSLAM when 
nonlinear observability conditions are not satisfied. The 
same CMSLAM simulation when repeated with nonlinear 
observability conditions are satisfied shows consistent 
vehicle localization errors bounded by the 95% confidence 
limits as shown in Fig. 3. Furthermore, extensive Monti-
Carlo simulations show that CMSLAM (for 2n ≥  and 

1m =  or 1m > ) is consistent only when nonlinear 
observability conditions are satisfied. In particular, 
simulations also show that nonlinear observability 
conditions enable CMSLAM to be consistent even when 
initialized with large errors. 
 

 
(a) (b) 

Fig. 2 CMSLAM with nonlinear observability conditions not satisfied. Thin 
continuous line shows the localization error and the thick dotted line shows 
the 95% confidence limit of the uncertainty.  Fig. 2. (a)- Lateral position 
error and Fig. 2 (b)- Heading error of a vehicle. 
 

(a) (b) 
Fig. 3 CMSLAM with nonlinear observability conditions are satisfied. Thin 
continuous line shows the localization error and the thick dotted line shows 
the 95% confidence limit of the uncertainty.  Fig. 3. (a)- Lateral position 
error and Fig. 3 (b)- Heading error of a vehicle. 

B. Experiments 
Experiments are performed with a part of the Victoria Park 
dataset of the University of Sydney. The dataset was 
obtained by driving a utility vehicle equipped with GPS, 
wheel and steering encoders and a laser range finder. A 
dataset for the second vehicle was emulated by adding noise 
deliberately to the measurements of the original data set. The 
estimated trajectories using the odometry are shown in Fig. 
4 (a). CMSLAM is implemented using the data set obtained 
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ensuring at least two a priori known landmarks are visible to 
the vehicle at all times. Several landmark locations (trees) 
were estimated using the GPS prior to the CMSLAM 
experiment to be used as known landmarks. It is noted that 
the nonlinear observability guaranteed full recovery of 
estimated state variables consistently and therefore during 
the experiments all the landmark locations were not 
estimated throughout. When the landmarks are visible they 
are estimated. When the landmark visibility is poor 
(estimated via a normalized measurement innovation as in 
[2]) they were removed from the state vector and kept for 
future use. Removal of state variables from the CMSLAM 
state vector is theoretically sound as long as the full 
nonlinear observability is maintained. Hence, map 
management is performed by making sure CMSLAM is 
locally weakly observable at all times. Fig. 4 (b) shows the 
estimated map and the vehicle paths of the two vehicles. It 
can be observed that the estimated vehicle paths and the 
landmarks are consistent with the true vehicle path and the 
landmark locations even without maintaining the full map 
vehicle state correlations all the times when nonlinear 
observability of CMSLAM is ensured. 

 
Fig. 4 (a) 

Fig. 4 (b) 
Fig. 4 CMSLAM with Victoria Park data set. Fig. 4 (a)-Odometry only 
vehicle path estimation. Fig. 4 (b)- CMSLAM with 2 vehicles using 
Victoria Park data set. 
 

VII. CONCLUSION 
The work described in this paper gives a useful insight into 
the nonlinear observability properties of the CMSLAM 
problem. The properties are different from the single vehicle 
SLAM and vary over the number of landmarks estimated. It 
is shown that all the vehicles must observe all the estimated 
landmarks and at least two a priori known landmarks all the 
time to maintain local weak observability of the CMSLAM 
problem when at least 2 unknown landmarks are estimated. 
It is also shown that the nonlinear observability conditions 

change when CMSLAM estimates only one unknown 
landmark.  
It is shown that all the vehicles must observe a known 
landmark and at least one vehicle must observe two distinct 
known landmarks for the nonlinear observability when 
CMSLAM estimates only one unknown landmark. The same 
nonlinear observability conditions are proved to be satisfied 
when one known landmark is observed by all the vehicles 
and longitudinal and lateral coordinates of a vehicle position 
are observed by at least one vehicle thus verifying that the 
conditions for nonlinear observability of CMSLAM is not 
equal to those required for n copies of independent single 
vehicle SLAM problems [4].  
The properties of the nonlinear observability matrix are vital 
in understanding the nonlinear observability of CMSLAM in 
greater detail, providing a greater insight to the nonlinear 
properties of the CMSLAM problem and for designing 
efficient nonlinear observers for CMSLAM, localization and 
mapping. The results established in this paper is therefore 
invaluable in designing computationally feasible solutions 
for critical fleet location estimation problems in which 
vehicle positions are estimated from a  central location such 
as in open pit mining and military deployment applications. 
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