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Abstract— We present a translation estimation method for
single viewpoint (SVP) cameras using line features. Images
captured by multiple central cameras such as perspective,
central catadioptric and fisheye cameras are mapped to spher-
ical images using the unified projection model. It is possible
to recover the camera rotations using vanishing points of
parallel line sets. We then estimate the translations from
known rotations and line images on the spheres. The algorithm
has been validated on simulated data and real images. This
vision-based estimation approach can be applied in navigation
of autonomous robots besides the conventional devices such
as Global Positioning System (GPS) and Inertial Navigation
System (INS). It helps vision-based localization of a single
robot or recovery of relative positions among multiple robots
equipped with different types of cameras.

I. INTRODUCTION

Localization is a critical issue in robot motion control. It
is possible to acquire robot motion data using various types
of sensors. While a GPS is sensitive to signal dropout and
an INS may accumulate the localization error over time, a
vision-based approach for position estimation is a suitable
choice. That is one of the reasons why cameras are widely
used in robot guidance. There exist different methods for
camera motion estimation which may be organized into
three main categories [5]: 1. egomotion estimation using
optical flow, 2. decomposition of fundamental or essential
(F/E) or homography (H) matrices to obtain camera motion
and 3. two-stage estimation, in other words decoupling of
rotation and translation. This paper presents an approach of
translation estimation for all single projection center cameras
supposing that rotations among them have been known. We
therefore focus on methods belonging to the last category.

A. Perspective vision

Multiple view reconstruction methods may be started
with factorization techniques. First, Tomasi and Kanade
[26] proposed a factorization method to recover the scene
structure and camera motion from a sequence of images.
The implementation of this method is simple and provides
reliable results. However, its use is limited to affine camera
model and it requires that all point features are visible in all
images [10]. The projective factorization, an extension of the
previous one to projective camera model, was developed in
[25], [11], [19]. These approaches again require the presence
of all points in all frames and they may not converge to
correct solution in all cases [10]. Martinec and Pajdla [21]
improved Jacobs’ method [13] to deal with data missing

problem, which occurs when point features disappear in
some frames.

Reconstruction problems can also be solved by bundle
adjustment [29]. Although this iterative technique may be
applied in a wide class of optimization problems, it cannot
be proven to converge to optimal solution from an arbitrary
initial point [10]. Therefore, an initialisation technique, such
as 8-point algorithm [18], [9], [28] is usually employed in
order to provide a good starting point for bundle adjustment.
The main disadvantage of bundle adjustment is that it is a
slow technique [10] and not robust to significant measure-
ment noise [15].

Recently, L∞ optimization methods have been proposed
to solve the structure and motion problem. In [14], Kahl
presented an L∞ approach based on second-order cone
programming (SOCP) to estimate the camera translations and
3D points assuming known rotations. This technique permits
an efficient computation of global estimates for a wide range
of geometric vision problems. Moreover, its solutions are
invariant to projective and similarity transformations. Sim
and Hartley [24] recovered the camera translations also using
L∞ minimization based on SOCP. Martinec and Pajdla [22]
solved the reconstruction problem in two stages: estimate
first the camera rotations linearly in least squares and then
the camera translations using SOCP. A similar technique for
quasi-convex optimization was developed in [16]. The main
disadvantage of L∞-norm is that it is not robust to outliers
[15]. Method proposed in [14] may fail due to a single wrong
correspondence [22].

B. Omnidirectional vision

Omnidirectional vision systems possess a wider field of
view than conventional cameras. Such devices can be built up
from an arrangement of several cameras or a single camera
with special lenses such as fisheye or with mirrors of partic-
ular curvatures. In structure and motion problem, omnidirec-
tional sensors using a single camera play an important role
as they overcome several disadvantages when working with
perspective cameras, such as translation/rotation ambiguity,
lack of features and the large number of views in use.

In [1], Antone and Teller first estimated camera rotations
using vanishing points calculated from parallel line sets in
3D scene and then extracted camera translations using Hough
transform. This method provided interesting results but might
be time consuming. Moreover, two stages of their algorithm
require different feature types, i.e. lines for rotation and
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points for translation estimations. Kim and Hartley presented
a translation estimation from omnidirectional images assum-
ing known rotations [17]. The translations along multiple
views were recovered from point correspondences using
a constrained minimization. In [20], Makadia and others
proposed a 3D motion computation from two omnidirectional
views without correspondences. The camera rotation and
translation were estimated using the Fourier transform of the
spherical images. Although this approach is robust to wrong
feature detection and outliers, it is computational expensive
and sensitive to dynamic environment [5]. Bazin et al.
presented a motion estimation approach also by decoupling
rotation and translation [5]. The relative orientation of two
para-catadioptric cameras was determined using vanishing
points calculated from parallel lines. Then, the translation
was recovered from known rotation and two point corre-
spondences. Again, this technique requires different feature
types, i.e. lines and points, for two stages.

In this paper, we present a translation estimation method
for SVP cameras assuming known rotations, in which:

1. We use the unified projection model proposed by Mei
[23], a slightly modified version of the models de-
veloped by Geyer [7] and Barreto [2]. This model
encompasses a large range of central projection devices
including fisheye lenses [30]. Therefore, our method
may be applied to perspective, central catadioptric and
fisheye cameras. To the best of our knowledge, such
translation estimation approach for a wide class of
central imaging systems has not been presented.

2. Lines are used as the primitive feature in our approach
for several reasons: Such features are typically more
stable than points and are less likely to be produced
by clutter or noise, especially in man-made environ-
ment [6]. Compared to point features, lines are less
numerous but more informative, they have geometrical
and topological characteristics which are useful for
matching [8], [3]. Moreover, the authors in [1], [5]
recovered rotations from lines and translations from
points. We propose to use a single type of feature, i.e.
lines for both rotation and translation estimations, that
may help optimise the computation time of such two-
stage technique. A fast motion recovery is obviously
useful in robotic applications.

In the following section, we develop the multi-view geom-
etry for single viewpoint cameras. Next, we present our
translation estimation using line feature. We show then the
experimental results from simulated data and real images
before the conclusions.

II. MULTI-VIEW GEOMETRY FOR SINGLE VIEWPOINT
CAMERAS

Central imaging systems including fisheye lenses can be
modelled by the unitary sphere, therefore they are considered
to be equivalent to spherical cameras. Noting that line
correspondences can be used only with more than two views
[10], we develop three- and four-view geometry for spherical
cameras, an extension of the two- and three-view geometry

derived by Torii et al. [27], in which they demonstrated the
bilinear and trilinear constraints for spherical cameras, but
did not discuss its further application.

Notation: Matrices are denoted using Sans Serif font,
vectors in bold font and scalars in italics.

Consider four spherical cameras with projection centers
Ci (i=1..4) as illustrated in figure 1. A line L in 3D space is
projected to spherical images as great circles li, which have
the corresponding normals ni. L can be expressed vectorially
by L = X0 +µd where L,X0,d ∈ IR3 and µ ∈ IR. ni ∈ IR3

are normal correspondences in four spherical images.

Fig. 1. Four view geometry of spherical cameras

Assuming that C1 is at the origin of our coordi-
nate system, let [R2|t2], [R3|t3] and [R4|t4] be the
[Rotation|translation] between (C1 and C2), (C1 and C3)
and (C1 and C4) respectively.

As the line L lies on the projective planes passing through
great circles li and perpendicular to normals ni, we have the
following relations in which L is expressed in C1 and ni are
expressed in Ci (i=1..4):

nT
1 L = 0 (1)

nT
2 (R2L + t2) = 0 (2)

nT
3 (R3L + t3) = 0 (3)

nT
4 (R4L + t4) = 0 (4)

A. Three-view geometry

Each triplet, i.e. group of three equations, chosen among
four equations (1) to (4) expresses the relation among the
line L and the corresponding normals in three views. For
example, the relation among three views 1,2 and 3 consists
of equations (1),(2) and (3) and can also be represented as
follows:

AL̂ = 0 (5)

where

A =

 nT
1 0

nT
2 R2 nT

2 t2
nT

3 R3 nT
3 t3

 (6)
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and L̂ = (LT , 1)T .
The existence of at least a non-zero solution in (5) requires

that the 3x4 matrix A has rank 2. It follows that there is a
linear dependence among three rows of A. Denoting A =
(aT

1 , aT
2 , aT

3 ), the linear relation can be written as a1 = αa2+
βa3. Noting that a14 = 0, we can select α = ktT3 n3 and
β = −ktT2 n2 for some scalar k. This can be applied to the
first three columns of A to obtain the next relation:

nT
1 = αnT

2 R2 + βnT
3 R3

n1 = αRT
2 n2 + βRT

3 n3

n1 = ktT3 n3RT
2 n2 − ktT2 n2RT

3 n3

Views 1, 2 and 3:

RT
2 n2nT

3 t3 − RT
3 n3nT

2 t2 + k̂n1 = 0 (7)

with scalar k̂ = −1/k. Note that k is definitely different
from zero.

In the same manner, we can establish the relations in the
other triplets:

Views 1, 2 and 4:

RT
2 n2nT

4 t4 − RT
4 n4nT

2 t2 + k̃n1 = 0 (8)

Views 1, 3 and 4:

RT
3 n3nT

4 t4 − RT
4 n4nT

3 t3 + k̆n1 = 0 (9)

for some scalars k̃, k̆.
Each equation (7), (8) or (9) relates the normal corre-

spondences in a triplet of views to each other through the
transformations among those views.

B. Four-view geometry

Equations (1) to (4) can be arranged in a linear system as
follows:

BL̂ = 0 (10)

where

B =


nT

1 0
nT

2 R2 nT
2 t2

nT
3 R3 nT

3 t3
nT

4 R4 nT
4 t4

 (11)

and L̂ = (LT , 1)T .
Again, the system (10) has at least a non-zero solution

when the 4x4 matrix B is not invertible. It follows that the
determinant of this square matrix is null, that is expressed
in the next equation:∣∣∣∣∣∣

nT
1

nT
3 R3

nT
4 R4

∣∣∣∣∣∣nT
2 t2−

∣∣∣∣∣∣
nT

1

nT
2 R2

nT
4 R4

∣∣∣∣∣∣nT
3 t3+

∣∣∣∣∣∣
nT

1

nT
2 R2

nT
3 R3

∣∣∣∣∣∣nT
4 t4 = 0 (12)

where |.| denotes the matrix determinant.
Equation (12) relates the normal correspondences in a

quadruplet of views to each other through the transformations
among those views.

III. TRANSLATION ESTIMATION METHOD

In this section, we present a method to estimate the trans-
lations t2, t3 and t4 among the SVP cameras from known
rotations R2, R3 and R4 and line/normal correspondences ni

(i=1..4) in spherical images.

A. Translation estimation from triplets of views

It is possible to estimate the translations t2 and t3 from
(7), t2 and t4 from (8), t3 and t4 from (9). Hence, we can
concatenate (7), (8) and (9) in a linear system that permits
the estimation of all translations.


RT

2 n2nT
3 t3 − RT

3 n3nT
2 t2 + k̂n1 = 0

RT
2 n2nT

4 t4 − RT
4 n4nT

2 t2 + k̃n1 = 0
RT

3 n3nT
4 t4 − RT

4 n4nT
3 t3 + k̆n1 = 0

⇔ MX = 0 (13)

where

M =

 −RT
3 n3nT

2 RT
2 n2nT

3 0 n1 0 0
−RT

4 n4nT
2 0 RT

2 n2nT
4 0 n1 0

0 −RT
4 n4nT

3 RT
3 n3nT

4 0 0 n1


(14)

and

X = (tT2 , t
T
3 , t

T
4 , k̂, k̃, k̆)T (15)

with k̂, k̃ and k̆ being some scalars in triplets of views
{1,2,3}, {1,2,4} and {1,3,4} respectively.

We may notice that two triplets already permit the esti-
mation of t2, t3 and t4. However, we use all three triplets as
they are independent of each other. Obviously, from the last
three columns of matrix M in (14), it is impossible that one
triplet is dependent on the others.

Therefore, given a line/normal correspondence ni in four
spherical views, (13) gives us a linear system in the transla-
tions t2, t3 and t4 and three scalars. Each extra correspon-
dence enlarges the matrix M by 9 lines and 3 columns and
the unknown vector X by 3 scalars.

With N correspondences, we have the following system:

M̂X̂ = 0 (16)

where M̂ is a 9Nx(9+3N ) matrix and X̂ a (9+3N )-vector.
They are established as follows:

M̂ = [M̂1, M̂2] (17)

with
M̂1 =

−RT
3 n31nT

21 RT
2 n21nT

31 0
−RT

4 n41nT
21 0 RT

2 n21nT
41

0 −RT
4 n41nT

31 RT
3 n31nT

41

... ... ...

... ... ...

−RT
3 n3N nT

2N RT
2 n2N nT

3N 0
−RT

4 n4N nT
2N 0 RT

2 n2N nT
4N

0 −RT
4 n4N nT

3N RT
3 n3N nT

4N


(18)
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M̂2 =

diag(n11,n11,n11,n12, ...n1(N−1),n1N ,n1N ,n1N ) (19)

X̂ = (tT2 , t
T
3 , t

T
4 , k̂1, k̃1, k̆1, ...k̂N , k̃N , k̆N )T (20)

where
• nij is the jth correspondence in the ith view (i=1..4,
j=1..N )

• k̂j , k̃j and k̆j are respectively some scalars in three
triplets {1,2,3}, {1,2,4} and {1,3,4} for the jth corre-
spondence

B. Translation estimation from quadruplet of views

Equation (12) describes the geometry constraint of a
line/normal correspondence ni in four views. N correspon-
dences provide a linear system in the translations t2, t3 and
t4 as shown below:

Q

 t2
t3
t4

 = 0 (21)

where

Q =


∆21 ∆31 ∆41

∆22 ∆32 ∆42

... ... ...
∆2N ∆3N ∆4N

 (22)

∆2j =

∣∣∣∣∣∣
nT

1j

nT
3jR3

nT
4jR4

∣∣∣∣∣∣nT
2j , ∆3j = −

∣∣∣∣∣∣
nT

1j

nT
2jR2

nT
4jR4

∣∣∣∣∣∣nT
3j and

∆4j =

∣∣∣∣∣∣
nT

1j

nT
2jR2

nT
3jR3

∣∣∣∣∣∣nT
4j (23)

with nij being the jth correspondence in the ith view (i=1..4,
j=1..N ).

Using a linear approach such as Single Value Decomposi-
tion (SVD), we can solve the systems (16) or (21) to recover
the translations among four cameras.

Ignoring the effects of noise in the normals and rotations,
the rank of the systems (16) and (21) generated from N ≥ 2
line/normal correspondences is analyzed in order to study
the theoretical number of correspondences sufficient for the
estimation. The result is given in the following table. Noting
that M̂ is a 9Nx(9+3N ) matrix, thus four correspondences or
more permit the estimation of three translations using three
triplets in section III.A. Matrix Q is of size Nx9, therefore
the translations can be estimated using the quadruplet in
section III.B from at least eight correspondences.

N rank(M̂) rank(Q)
2 10
3 15 min(N ,9)

more than 4 8+3N

IV. EXPERIMENTAL RESULTS

A. Synthetic data

Since the proposed method is based on line projections
in spherical images, we first create 3D lines surrounding the
centers Ci (i=1..4) of four spherical cameras. The average
baseline among four cameras is 1000 mm and the average
distance of the 3D lines from the cameras is 15000 mm.
These lines are mapped to the spherical images as great
circles and corresponding normals. The translations t2, t3 and
t4 among four cameras are recovered from the line/normal
correspondences together with known rotations R2, R3 and
R4 using 3-triplet and quadruplet approaches presented in
section III.

To evaluate the results, we also implemented the transla-
tion estimation approach proposed by Kim and Hartley in
[17]. In [17], the translations among spherical cameras are
estimated from point correspondences and known rotations
using a constrained minimization.

Normals in our method and points in Kim-Hartley [17] are
on unitary spheres, thus may be specified by elevation and
azimuth angles. Gaussian noise of zero mean and varying
standard deviations (0.1 and 0.5 degrees) is added to two
angles of every normal and every point. To simulate the
inaccuracy in preliminary rotation estimation, the roll, pitch
and yaw angles of each rotation are perturbed by Gaussian
noise of zero mean and standard deviations from 0.0 to 1.0
degrees. Figure 2 shows the average angular error of three
translations after 1000 runs.

It can be seen that using triplets of views gives better
estimation than using a quadruplet of views. The reason is
that matrix Q in (21) is badly conditioned. Its elements are
very near to zero. For example with one correspondence,
∆4j in (23) is composed of the trilinearity of views 1, 2 and
3. The determinant |.| in ∆4j is exactly the determinant of
the 3x3 minor of A in (6). Compared to Kim-Hartley [17],
our estimation from three triplets of views provides nearly
similar accuracy. However, we may notice that using lines is
more favorable than using points in the feature detection and
matching phases, notably when we used different types of
cameras. In addition, adding the same noise has an influence
to normals more critical than to points.

B. Real images

We show in this subsection the translation estimation using
images captured by perspective, para-catadioptric and fisheye
cameras. We placed our cameras at four different positions
and recovered their configuration from the captured images.
The estimation requires line correspondences among four
views and relative orientations among four camera positions,
therefore we also discuss here the preliminary steps:

1. Spherical projection: Original images are mapped to
spherical images using the unified projection model in
[23].

2. Line detection: A fast central catadioptric line extraction
method is proposed in [4]. The extraction is composed
of a splitting step and a merging step in both original
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(a)

(b)

Fig. 2. Translation estimation errors from quadruplet, 3-triplet and Kim-
Hartley [17] approaches

and spherical images. Modifying the projection model,
we extend this approach to a line detection algorithm
applicable to a wide range of SVP cameras.

3. Line matching: To the best of our knowledge, a method
for matching lines across multiple views captured by
cameras of different classes has not been developed in
state of the art. To focus on our translation estimation
that requires just a few number of line correspondences,
line matching has been done offline and manually.
Examples of line matching among images taken by
fisheye and para-catadioptric cameras are illustrated in
figure 3.

4. Rotation estimation: Rotation between two views can be
estimated using the correspondences of two vanishing
points [5]. We first detect vanishing points from bundles
of parallel lines in each view and then recover the
rotation from corresponding vanishing points using the
solution proposed by Horn in [12].

In figure (4), we show the position recovery for a fisheye
camera using the 3-triplet, quadruplet and Kim-Hartley [17]

(a)

(b)

Fig. 3. Line matching among images captured by para-catadioptric (a) and
fisheye (b) cameras. Corresponding lines are plotted with same color

methods. We used 19 line/normal correspondences in our
approach and 19 point correspondences in Kim-Hartley [17].
The ratio among the translations (C3C4 : C4C2 : C2C1)
is used to evaluate these methods and summarized in the
next table. The 3-triplet estimation provides the best result.
However, it should be noticed that the estimation results
depend much on the line detection in our method and point
detection in Kim-Hartley [17].

(C3C4 : C4C2 : C2C1)
Ground truth (3.00 : 4.00 : 4.00)
3-triplet (3.00 : 4.03 : 4.02)
Quadruplet (3.00 : 3.93 : 3.94)
Kim-Hartley [17] (3.00 : 4.06 : 4.02)

In figure (5) is the position reconstruction for perspective
and para-catadioptric cameras using the 3-triplet approach.
For the perspective camera (on the left column), the ground
truth is (C3C4 : C4C1 : C1C2) = (3.00 : 3.00 : 3.00) and
the reconstruction from 13 line/normal correspondences is
(3.00 : 2.99 : 3.01). For the para-catadioptric camera (on the
right column), the ground truth is (C3C4 : C4C2 : C2C1) =
(3.00 : 4.00 : 4.00) and the recovery from 14 line/normal
correspondences is (3.00 : 4.18 : 4.12).

V. CONCLUSIONS AND FUTURE WORKS

We presented in this paper a linear approach of translation
estimation for imaging systems equivalent to the central
projection model. Assuming known rotations, the translations
among cameras of various types can be recovered using lines.
We validated our method using simulated data and real im-
ages, and compared to the translation estimation using point
features developed by Kim-Hartley [17]. Using the unified
projection model, this approach can be applied to a wide
class of central imaging systems. Moreover, line features are
employed to overcome the disadvantages of point features
when working with images taken from dissimilar categories
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of cameras. To estimate the translations among four cameras,
the 3-triplet is more favorable than the quadruplet approach
due to the robustness of the mathematical system used
to solve the problem. The proposed method promises a
fast and robust motion recovery which is very important
and helpful in autonomous robotics. We are applying this
estimation to a hybrid stereo vision system mounted on an
autonomous robot. Such hybrid stereo device may combine
advantageous characteristics of different types of cameras.
Moreover, once the relative position of two cameras of the
system is calibrated, the problem becomes estimating the
motion of an autonomous robot in aid of a binocular head.
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Fig. 4. Recovery of fisheye camera position using 3-triplet, quadruplet and
Kim-Hartley [17] methods

Fig. 5. Position recovery of paracatadioptric camera (left) and perspective
camera (right) using 3-triplet approach
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