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Abstract— The paper focuses on hyper-redundant arms with 
continuum elements that perform the grasping function by 
coiling. First, there is concern with the dynamic model of the 
continuum arm for the position control during non-contact 
operations with the environment. A frequency stability 
criterion based on the Kahman – Yakubovich – Popov Lemma 
and P and PD control algorithms is proposed. Then, the 
grasping control of the arm in contact with a load is analyzed. 
The dynamics of the system are discussed and an extension of 
the Popov criterion is endorsed. The control algorithms based 
on SMA actuators are introduced. Numerical simulations and 
experimental results of the arm motion toward an imposed 
target are presented. 

I. INTRODUCTION 
he hyper-redundant arms with continuum elements are a 
special class of robots that perform the grasping 
function by coiling. This function is often met in the 

animal world. The elephant trunk, the octopus tentacle or 
constrictor snakes represent the well-known biological 
models. The enveloping grasps are superior in terms of 
restraining objects. As a technical solution, the grasping by 
wrapping, by coiling is used for restraint, fixturing and 
dexterous manipulation. 

The control of these systems is complex, indeed, and a 
large number of researchers have tried to cater solutions. In 
[2], Gravagne analyzed the kinematic model of “hyper-
redundant” robots, known as “continuum” robots. 
Remarkable results were achieved by Chirikjian and Burdick 
[6], who laid the foundations of the kinematic theory of 
hyper-redundant robots. Their findings are based on a 
“backbone curve” that captures the robot’s macroscopic 
geometric features. Mochiyama investigated the problem of 
controlling the shape of an HDOF rigid-link robot with two-
degree-of-freedom joints using spatial curves [7]. In [8], the 
“state of art” of continuum robots, their areas of application 
and some control issues are presented. Other papers [9, 10] 
deal with several technological solutions for actuators used 
in hyper-redundant structures and with conventional control 
systems. 

The current paper investigates the control problem of a 
class of hyper-redundant arms with continuum elements that 
performs the grasping function by coiling. The dynamics of 
the arm during non-contact or contact operations with the 
environment are analyzed. The frequency criteria for the 
stability and control algorithms are also discussed. The 

paper is organized as follows: Section II presents 
technological and theoretical preliminaries; Section III 
studies the dynamic model for non-contact motions; Section 
IV presents a frequency criterion and position control law; 
Section V discusses the dynamics of the arm and load in a 
grasping function; Section VI presents an extension of the 
Popov criterion for this class of systems; Section VII 
verifies the control laws by computer simulation; Section 
VIII presents some experimental results. 

 
 

II. TECHNOLOGICAL AND THEORETICAL PRELIMINARIES 
The hyper-redundant technological models are complex 

structures that operate in 3D space, but the grasping function 
of these arms is, generally, a planar function. Accordingly, 
the model discussed in this paper is a 2D model. 

The technological model basis is presented in Fig.1.a. It 
consists of layered structures that ensure the flexibility, 
driving and position measuring. The high flexibility is 
obtained by an elastic backbone rod. 

The driving layer is made up of two antagonistic SMA 
actuators, A and B, each of them having a number of SMA 
fibers that are connected to the ends of the beam and 
determine its bending by current control. These SMA fibers 
are well suited for grasping force control due to their high 
strength to weight ratio. 

 

  
(a)       (b) 

Fig.1. (a) The segment layer structure; (b) The arm structure 
 
The measuring layer is represented by an electro-active 

polymer curvature sensor. This sensor is placed on the 
boundary of the beam and allows for its curvature measuring 
by the resistance measuring. The sensor system is completed 
by a number of force sensors placed at each terminal of the 
beam segment. A rubber envelope protects and isolates this 
layer structure from the operator environment. 

The general form of the arm is shown in Fig.1.b. It 
consists of a number (N) of segments and the last m 
segments ( )m N<  represent the grasping terminals. 
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As a theoretical model, we shall consider the beam in 
Fig.2.a with the length L and the thickness l. This beam has 
been deflected into a circular arc by a SMA fiber. The beam 
is composed of concentric arcs. The neutral arc defines the 
curvature of the beam, 

 

V
dc
ds
φ

= , 
c

s
R

φ =  (2.1) 

 
where φ  represents the angle of the current position, s is the 
arc length from the origin, and  is the radix of the arc. cR
 

 
(a)        (b) 

Fig.2. (a) The arm parameters; (b) The force variation 
 

We denote the equivalent force developed by the SMA 
actuators at the end of the beam ( )s L=  by χ , the force 
density and the distributed force along the beam exercised 
by the SMA fibers on the beam surface by w and F, 
respectively, and τ  is the equivalent moment of the beam. 

From [11], we have the following relations 
 

dFw
ds

= , Vw cχ= ⋅ , 
2
lτ χ= ⋅  (2.2) 

 
dF dχ φ= ⋅ , dF dχ θ= − ⋅  (2.3) 
 

This relation allows us to estimate the variations of the 
force on the beam surface as a function of the angle 
coordinate variations for a specified force χ  exercised by 
the actuators. These relations are shown in Fig.2.b. 

Fig.2.a illustrates the backbone of the beam represented 
by the curve C. We can use a parameterization of the curve 
C based upon a continuous angle ( )sθ , 

The position of a point s on the curve C is defined by the 
position vector ( )r r s= , [ ]0,s L∈ . For a dynamic motion, 

the time variable will be introduced, ( ),r r s t= , 
 

( ) ( ) ( ), , , Tr s t x s t y s t= ⎡⎣ ⎤⎦  (2.4) 
 

The beam has the elastic modulus , the moment of 
inertia 

bE

bI , the bending stiffness , the linear mass 
density 

b bE I

bρ  and rotational inertial density bI
ρ

. 

I. DYNAMIC MODEL 
The dynamic model of the arm can be derived by using 

the Hamilton principle [7], 

 

(
0

0
t

k p v f fT V W W L dtδ )− + + + =∫  (3.1) 

 
where  is the kinetic energy, kT pV  is the potential elastic 

energy (the gravitational potential energy is neglected for 
this light-weight arm), fW  and fL  are the work energies of 

the applied external forces and  is the viscous damping 
work. 

vW

Using the same procedure as in [5], we have the partial 
differential equations of the arm  

 
2

2 0b b b b b b bI b E I c F
sρ
θθ θ ∂

+ − +
∂

=  (3.2) 

 
with the initial and boundary conditions 
 

( ) ( )00,b bs sθ θ= ; ( )0, 0sθ =  (3.3) 
 

( ),b
b b L

t L
E I

s
θ

τ
∂

⋅ =
∂

; 
( ),0

0b t
s

θ∂
=

∂
; 

( ),0
0b t

s
θ∂

=
∂

; 

( ) ( ) ( )1 2
,

,b
b b

t L
t L t L

s
θ

α θ α θ
∂

= − −
∂

,  (3.4) 

 

where ( ),b b t sθ θ= , bθ  represents 
( ),b t s
t

θ∂
∂

,  is the 

equivalent damping coefficient of the beam, 

bb

1α , 2α  are the 
coefficients that determine the constraints on the boundary, 

1 0α ≥ , 2 1α > , and Lτ  is the actuator input torque 
generated at the beam boundary s L= . From (2.2), it results 
that 
 

( ) ( ),
2L
lt L tτ τ χ= = ⋅  (3.5) 

 
We consider that the initial and desired states of the 

system are given by the curves , , respectively, 0C dC
 

( )( )0 0: bC sθ , ( )( ):d bdC sθ , [ ]0,s ∈ L  (3.6) 
 

We define by ( ),be t s  the position error, 
 

( ) ( ) ( ) (, , ,b be t s t s t s sθ θ θ= ∆ = − )bd  (3.7) 
 

In terms of the error, the dynamic model (3.2) – (3.4) can 
be rewritten as 

 
2

2 0b
b b b b b b b

e
I e b e E I c f

sρ
∂

+ − +
∂

=  (3.8) 

 

( ),b
b b

e t s
E I

s
τ ∗∂

⋅ =
∂

 (3.9) 
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when , f τ ∗  are determined by the relations 
 

( ) ( ) ( ), , df f t s F t s F s= = − , ( ) ( ) dt tτ τ τ∗ ∗= = −τ  (3.10) 
 
and dF , dτ  are the static backbone force and moment, 
respectively, applied by the actuators, 
 

2

2
d

b b dE I F
s
θ∂

− ⋅ =
∂

, 
( )d

b b d
L

E I
s

θ
τ

∂
⋅ =

∂
 (3.11) 

 
The equation (3.2) can be rewritten in a matrix form, 
 

2

2
ee A Be cf

s
∂

= + +
∂

 (3.12) 

 
with initial and boundary conditions 
 

( ) ( )00,e x e x= (; ),0 0=e t ; 
( ),0

0
e t

s
∂

=
∂

 (3.13) 

 

( ),b
b b

e t L
E I

s
τ ∗∂

=
∂

 (3.14) 

 

( ),0
0be t

s
∂

=
∂

; 
( ) ( ) (1 2

,
,b

b b
e t L

e t L e t L
s

α α
∂

= − −
∂

),

]

 (3.15) 

 

where  (3.16) [ , T
b be e e=

 
0 0

0b b

b

E IA
I ρ

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

; 
0 1

0 b

b

bB
I ρ

⎡ ⎤
⎢= ⎢ −
⎢ ⎥⎣ ⎦

⎥
⎥  (3.17) 

 

0
T

b

b

c
c

I ρ

⎡ ⎤
= −⎢ ⎥

⎢ ⎥⎣ ⎦
;  (3.18) [ 0 T

b bd E I= ]

F

II. MAIN RESULTS (1) 
The closed loop system of the arm is represented in Fig.3. 

The dynamic model is defined by equations (3.12) – (3.18), 
and the control force  is generated by a linear 
variation of the angle error 

f = ∆
θ∆  with the gradient χ . The 

magnitude χ  is produced by the SMA fibers at the end of 
the beam. 

 
Fig.3. The control position closed loop system  

 
Theorem 1. The closed loop system (Fig.3) is absolutely 
stable if: 

(1) ( )A B− +  is a Hurwitzian matrix; 

(2) the pair ( ),A B C− +  is completely controllable; 
(3) there is a positive definite and symmetrical matrix P such 
that ( )TA P PA+ is positive definite; 
 

(4) ( )( ) 11 Re 0Tn j I A B cω
χ

−⎡ ⎤+ − − + ≥⎢⎣ ⎥⎦
 (4.1) 

 
(5) the moment control law is  
 

( ) ( ) ( ),p b d bt k e t L k e t Lτ ∗ = − − ,  (4.2) 
 
where the coefficients pk ,  are chosen so as to the matrix dk

1 2

1

1

p d

b b b b

k k
K E I E I

α α

⎡ ⎤
−⎢ ⎥= ⎢ ⎥

⎢ ⎥−⎣ ⎦

 will be positive definite. 

 
Proof. See Appendix 1. 
 
Remark 1. The condition (1) – (3) are easily verified for a 
beam with normal elastic properties. Condition (4) allows us 
to introduce a frequency criterion. If we denote this 
condition by 
 

( ) ( )( 1TG j n j I A B cω ω −
= − − + )  (4.4) 

 

it can be easily graphically interpreted. Let  be the plot of G
( )G jω  in the ( )G jω -plane. Condition (4) requires that the 

plot  cross the negative real axis at a point that lies to the 

right of the critical point defined by 

G
1
χ

−  (Fig.4). 

 

 
Fig.4. The plot of ( )G jω  for the position control 

 
Let M be the point of intersection of  with the real axis. 

This point defines the limit value of 
G

χ χ∗=  that ensures the 
stability of the motion for a specified beam. 
 
Remark 2. Condition (5) implies a PD boundary controller 
in the actuation system, but the derivative control 
component is difficult to be implemented by SMA actuators. 
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A P control component is preferable; the condition (4.2) 
becomes 
 

( ) ( ),p bt k e t Lτ ∗ = − ,     p b bk E I>  (4.5) 
 
From (2.3) and (4.5) it results 
 

( )2 ,2 pp b k t Lk e
l l

θ
χ χ∗∆

= = ≤  (4.6) 

 
The upper limit of pk  can be obtained for the maximum 

value of ( ),t Lθ∆ , which can be evaluated by the curvature 

resistive sensor, , where  is a 
sensor proportionality coefficient, assumed to be constant 
for the domain of motion, and ,  are the sensor 
resistances at the desired and initial position, respectively. 

( )0R d Rk R R k Rθ∆ = − = ∆ Rk

dR 0R

The lower limit of  is defined by the positiveness 
condition (4.5). 

pk

 

2b b p
R

lE I k
k R
χ∗

< ≤
⋅ ∆

 (4.7) 

 
Remark 3. The tension χ  is generated by the pair of 
antagonistic SMA actuators (Fig.1), each actuator consisting 
of N parallel fibers. Theoretical modeling and open loop 
experiments have shown that the antagonistic force response 
of the SMA actuators behaves like an integrator while the 
input current is applied. A current pulse-width modulated 
controller, in which the control variable is the duration of 
the input signal at constant current amplitude, is used [13]. 

The average value of the force can be evaluated as 
 

( )
22med D

SMA
p

T
F I

T
λ ∗= ⋅ ⋅ ,     

2
f f

g

a NR
c

λ =  (4.8) 

 

where pT  is the wave period,  is the current amplitude, I∗

DT  is the pulse duration, N is the number of fibers, fa  – the  

fiber cross sectional area, fR  – the fiber resistance, and gc  
is the material complex coefficient defined by the specific 
heat, latent heat, stress rate, austenite and finish 
temperatures and mass of the fiber. 

Considering med
SMAFχ ≈ , and using the P control (4.5), we 

have 
 

( )( )1 2
,D bT e t Lα= ,     

1 221 P Pk T
lI

α
λ∗

⎛ ⎞= ⋅⎜ ⎟
⎝ ⎠

 (4.9) 

 

A simpler control law of DT  can be obtained if the wave 

generator ensures a constant ratio D

P

T
T

β= . In this case, the 

control algorithm of DT  becomes 
 

( ),D bT e tα ∗= ⋅ L ,     
( )2

2 Pk

I l
α

λβ

∗

∗
=

⋅
 (4.10) 

 
Besides, the force inequality (4.6) can be expressed in 

terms of the limit of the current pulse duration DT ∗ , 
 

( )2
1

DT
I

χ
λβ

∗ ∗

∗
≤ ⋅

⋅
 (4.11) 

III. GRASPING DYNAMIC MODEL 
The grasping function control is represented by the force 

control between the arm and load. Consider that the arm has 
achieved the desired position defined by the surface (object). 

 

 
Fig.5. The grasping model 
 
In Fig.5, an object with elastic and damping parameters 

,  and , respectively, is grasped by coiling. Using 
the same procedure as developed in Section 3, the dynamic 
model of the two bodies in contact, arm and load, is 
represented by the following partial differential equations, 

o oE I ob oc

 
2

2
ee A Be cf

s
∂

= + +
∂

 (5.1) 

 

( )0, 0e s = ; ( ) ( ),0
,0 0

e t
e t

s
∂

= =
∂

 (5.2) 

 

( ),b
b b

e t L
E I

s
τ ∗∂

⋅ =
∂

 (5.3) 

 

( ) ( ), ,be t L e t Lθ= ; 
( ) ( ), ,o be t L e t L
s s

∂ ∂
=

∂ ∂
 (5.4) 

 

( ) ( ) (1 2
,

,
e t L

e t L e t L
s

α α
∂

= − −
∂

),  (5.5) 
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where , with 

; 

( ) ( ) ( ), , , , T
b oe t s e t s e t s= ⎡⎣ ⎤⎦

( ) ( ) ( ),b b bde t s s sθ θ= − ( ) ( ) ( ),o o ode t s s sθ θ= − , f is the 

force error, τ ∗  is the control variation, defined as in (3.10), 
and the indices b and o specify the parameters of  the beam 
and object, respectively. 
 

( )

0 0 0 0
1 0 0

0 0 0 0

0 0

o o
b b o o

b

o o o o

o o

E I
E I E I

I I
A

E I E I
I I

ρ

ρ ρ

⎡ ⎤
⎢ ⎥
⎢ ⎥+ −
⎢

= ⎢ ⎥
⎢
⎢
⎢ ⎥−
⎢ ⎥⎣ ⎦

bρ ⎥

⎥
⎥

 (5.6) 

 
0 1 0 0

0 0 0

0 0 0 1

0 0 0

b

b

b

o

b
I

B

b
I

ρ

ρ

⎡ ⎤
⎢ ⎥
⎢ ⎥−
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥⎣ ⎦

;        

0

0

b

b

o

o

c
I

c

c
I

ρ

ρ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥⎣ ⎦

 (5.7) 

IV. MAIN RESULTS (2) 
The grasping force control is the second problem of the 

grasping control. A force sensor network is used to account 
for the contact between the arm and the load. We notice, 
from (2.2), that the force density w is constant along the arm 
segment and, in a steady state, w can be approximated to f. A 
force sensor with the position [ ]0,s s∗= ∈ L  is used to 
measure the contact force. The contact force – displacement 
relation of the sensor is assumed to lie in the positive sector 
(Fig.6). 
 

( )F ψ θ∆ = − ∆ , ( ) 0ψ θ θ∆ ⋅ ∆ ≥  (6.1) 
 

( )0 0ψ =  for 0θ∆ =  (6.2) 
 

The nonlinearity ( )ψ θ∆  is single-valued, time invariant 
and constraint to a sector bounded by slope sk  which is 
assumed to meet 

 

( )
0 sk

ψ θ
θ
∆

≤ ≤ <
∆

∞  (6.3) 

 
which is the case for most physically realistic elastic 
contacts. 

In terms of the sensor characteristics, the convergence to 
zero of the error  is equivalent to the convergence to zero 
of the contact force error f 

be

 

( )lim , 0bt
e t s∗

→∞
=   ⇒ ( )lim , 0

t
f t s∗

→∞
=  (6.4) 

 

The sensor nonlinearity (6.1) – (6.3) and the dynamic 
model of the grasping contact described by (5.1) – (5.5) 
suggest the closed – loop system of Fig.6. 
 

 
Fig.6. The grasping control closed loop system 

 
Theorem 2. The closed – loop system (Fig.6) is absolutely 
stable if: 
(1) ( )A B− +  is a Hurwitzian matrix; 

(2) the pair ( ),A B c− +  is completely controllable; 

(3) there is a positive definite and symmetrical matrix P such 
that ( )TA P PA+  is positive definite; 
 

(4) ( )( ) 11 Re 0T

s
n j I A B c

k
ω

−⎡ ⎤+ − − + ≥⎢⎣ ⎦⎥
 (6.5) 

 
(5) the moment of the arm verifies the relation 
 

( ),p bk e t Lτ ∗ = ,        p b bk E I>  (6.6) 
 
Proof. See Appendix 2. 
 

Equations (6.1), (6.3) and (5.1) – (5.5) describe the closed 
loop system (Fig.6), consisting of a partial derivative 
equation linear system and a nonlinear element represented 
by the function ( )ψ ⋅  belonging to the sector [ ]0, sk . In this 
case, the condition (4) represents the Popov criterion for this 
class of systems. According to it, the system will be 
absolutely stable if the plot of ( )G jω  

 

( ) ( ) 1TG j n j I A B cω ω
−

⎡= − − +⎣
⎤
⎦  (6.7) 

 
crosses the negative real axis at a point that lies to the right 

of the critical point defined by 1

sk
−  (Fig.7). 

 

 
Fig.7. The plot of ( )G jω  for the grasping control 
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For a pair “arm – load” specified, the plot of ( )G jω  has 
a well-defined characteristic and the intersection with the 
real axis determines the limit value of k. Let k∗  be the 
corresponding value of the crossing point. The absolute 
stability is guaranteed if the sensor parameters meet the 
condition 

 

sk k∗≤  (6.8) 

V. SIMULATION 
A hyper-redundant manipulator with 4 segments is 

considered. The parameters of the arm were selected run as 
follows: bending stiffness , linear mass density 1b bE I =

0.5b kg mρ = , rotational inertial density 20.001bI kg mρ = ⋅  
and damping ratio 0.35. These constants are realistic for 
long thin backbone structures. The grasping function is 
exercised by the last three segments of the arm, the length of 
each arm segment is 1L =  (Geometrical parameters are 
scaled.). The load is a cylinder with the radix 1R = , 
bending stiffness , rotational inertial density and 
damping ratio 0.22. 

0.2o oE I =

Fig.8 illustrates the grasping function of the arm. The 
initial position is a vertical one, and the arm motion by 
coiling of the arm can be seen. 
 

 
Fig.8. The simulation of the grasping operation 
 

 
Fig.9. The plot of ( )G jω  for position and force control 

 

Fig.9 shows the frequency plots of ( )G jω  and ( )G jω  
for the position and force control, respectively. The plot of 

( )G jω  crosses the negative real axis at 0.14− , which 

imposes the limit of tension at ; the plot of 7.15T ∗ = N
( )G jω  crosses the negative real axis at 0.74− , which 

corresponds to the critical value of the force sector at 
. 1.3k∗ =

 

 
Fig.10. The force phase portrait 

 
A P – control (4.5) with  is applied and the force 

phase portrait is illustrated in Fig.10. Please note the 
convergence to zero of the force error, but, also, the 
transient response of the system determined by the P – 
control law and a low damping factor of the system. 

24pk =

VI. EXPERIMENTAL RESULTS 
In order to verify the suitability of the control algorithm, a 

planar continuum terminal arm consisting by a layer 
structure has been employed for testing (Fig.11). 

The arm consists of two  continuum 
segments with an elastic backbone rod. The two antagonistic 
SMA actuators ensure the actuation system. Each actuator 
consists of G fibers in parallel. A polymer thick film layer 
which exhibits a decrease in resistance with an increase of 
the film curvature is used. Also, a Force Sensing Resistor is 
used at the end of each segment. 

(25 6 4mm× × )
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Fig.11. Experimental platform 
 
A Quancer based platform is used for control and signal 

acquisition. The load is represented by a sphere ball with 
. A P-control with , 0.02cR = m 2.17pk = 5sDT = , 

 is implemented. The contact force in the grasping 
operation is represented in Fig.12. 

7sPT =

 

 
Fig.12. The contact force diagram 

VII. CONCLUSIONS 
The paper treats the control problem of a hyper-redundant 

robot with continuum elements that performs the coil 
function for grasping. First, the dynamic model of 
continuum arm for the position control during non-contact 
operations with environment is studied and a frequency 
stability criterion based on KYP Lemma is introduced. The 
P and PD control algorithms are proposed. Then, the 
grasping control problem for the arm in contact with a load 
is analyzed. The dynamics of the system are discussed and 
an extension of the Popov criterion is proposed. The control 
algorithms based on SMA actuators are introduced. 
Numerical simulations and experimental results of the arm 
motion toward a imposed target prove the correctitude of the 
solutions. 

APPENDIX 1 
Consider the following Lyapunov functional, 
 

0

L
TV e Ped= ∫ s  (A.1.1) 

 

where P is a ( )2 2× , symmetrical and positive definite 
matrix. The derivative of this functional will be 
 

( )

2 2

2 2

0 2

T
T TL

T T T T

e eA Pe e PA
s sV d

e B Pe e PBe e Pcf

s

⎡ ⎤⎛ ⎞∂ ∂
+ +⎢ ⎥⎜ ⎟⎜ ∂ ∂ ⎟⎢ ⎥= ⎝ ⎠

⎢ ⎥
+ + +⎢ ⎥⎣ ⎦

∫  (A.1.2) 

 
By using the relation 
 

2

2

T T T
T Te e eA Pe A Pe A PT e

s s ss

⎛ ⎞

s
∂ ∂ ∂ ∂ ∂

= −⎜ ⎟⎜ ⎟∂ ∂ ∂∂ ⎝ ⎠ ∂
, (A.1.3) 

 

the derivative V  will be 
 

( )

( )

( )

0

0

2

T
TL

T T T

L
T T

e eA P PA
s sV d

e B P PB e e Pcf

ee A P PA
s

⎡ ⎤⎛ ⎞∂ ∂
− + +⎢ ⎥⎜ ⎟⎜ ⎟∂ ∂⎢ ⎥ s= +⎝ ⎠

⎢ ⎥
+ + +⎢⎣

∂⎛ ⎞+ +⎜ ⎟∂⎝ ⎠

∫
⎥⎦  (A.1.4) 

 
By using the inequality [14] and the condition (3) 

(Theorem 1) 
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If the condition (1) (Theorem 1) is verified and the 

conditions of the Yakubovich – Kalman – Popov Lemma are 
met [15] 
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Using the boundary conditions (5.1) – (5.5), and the 

conditions (5) of Theorem 2,  
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