
Multiple vehicles mission coordination using Petri nets

Narcı́s Palomeras, Pere Ridao, Carlos Silvestre and Andres El-fakdi

Abstract— This paper provides a methodology to model and
execute coordinated missions involving multiple vehicles using
Petri nets. Individual vehicle missions are defined by means
of Petri nets and three constraints are added for coordination
purposes: mutual exclusion, ordering and synchronisation. The
proposed methodology generates a centralised net, checks if it
is deadlock free and then obtains a decentralised Petri net for
every vehicle minimising the communication between them. The
resulting Petri nets implement the multi-vehicle mission control
program that is responsible for coordinating in real-time the
set of vehicles involved in the mission.

I. INTRODUCTION

In previous articles [1] [2] mission description for au-
tonomous vehicles using Petri nets has been studied. Petri
nets have been chosen as the formalism to describe the
Discrete Event System (DES) responsible for enabling and
disabling the basic vehicle primitives based on the sequence
of events produced by the vehicle control architecture and by
the surrounding environment. Using the Petri net formalism,
it is possible to analyse the generated net to check the
consistency in the resulting controller avoiding to drive the
vehicle into a deadlock situation and simultaneously ensuring
the reachability of all the final states related to the mission.

The purpose of this paper is to further develop this
framework to be able to deal with the coordination of
multiple vehicles. Our approach consists in applying a set of
coordination constraints to the set of vehicles involved in the
mission generating a centralised mission program, check if
the deadlock free property is also satisfied in the centralised
net (end states reachability is satisfied by construction) and,
finally, decentralise it generating an independent mission
for every vehicle minimizing the communications between
vehicles. It is worth noting that reducing the amount of
information to be exchanged among the vehicles is of vital
importance for instance in case of Autonomous Underwater
Vehicle (AUV) applications due to the very low data rate
achieved nowadays by acoustic modems. In this paper three
coordination constraints are studied. The first one concerns
with the access to shared resources (commonly known as
mutual exclusion), the second consists in the ordering of two
tasks between several vehicles and the last one is related with
the synchronisation between several tasks (start several tasks
simultaneously).

Previous work on the use of Petri nets to the coordination
of multiple vehicles can be found in [3] where the imple-

This research was sponsored by FREEsubNET (MRTN-CT-2006-036186)
and the Spanish government commission MCyT (DPI2008-06548-C03-
03).University of Girona, Edifici Politecnica IV, Campus Montilivi 17071
Girona, Spain npalomer@eia.udg.edu.Institute for Systems and
Robotics. Instituto Superior Tecnico Lisbon, Portugal.

mentation of a mutual exclusion among two mine robots that
have to cross a tunnel through the same point is presented.
There, a supervisor is generated to solve the problem using a
Supervisor Based on Place Invariants (SBPI) (check [4] for
an introduction on SBPIs). In [5] a framework to describe
plans using Petri nets is presented. The way in which vehicles
missions (plans) are defined is similar to the one introduced
in our framework [1]. It relies on a set of predefined Petri
net control structures that are used to join tasks. One of
this control structures is responsible for a synchronisation
between two vehicles. When applying this control structure,
a centralised Petri net capable of synchronising the different
vehicles is obtained. This net is then divided to be executed
in each vehicle involved in the mission. In both cases, coor-
dination constraints are supervised by a centralised system,
however, there are some lines of research dealing with the
supervision of a decentralised systems. Theoretical work on
this topic appeared during the nineties. Lin and Wonham
[6] studied the supervision of a decentralised DES able to
recognise a language using automates. Techniques that can
be used to address the supervision of a decentralised system
problem using Petri nets were introduced in [7].

The main contribution of this paper is the use of the
particular structure of Petri nets to model and execute the
coordination of multiple vehicles missions by implement-
ing general constraints like mutual exclusions, ordering or
synchronisation as well as to address the decentralisation of
the resulting discrete event system minimising the commu-
nications among the different vehicles and preserving the
coordinated system free of deadlocks.

The paper is organised as follows. Section II proposes a
new framework to address the multiple vehicles coordination
problem. In Section III a procedure for deadlock avoidance
is introduced. An overview of the decentralised supervision
methodology introduced in [7] is presented in Section IV for
the readers convenience. Section V presents a full example in
which several missions are coordinated and distributed and
finally, how the methodology have been tested is commented
in Section VI before conclusions.

II. A PROPOSAL FOR MULTIPLE VEHICLES
COORDINATION

In this paper we propose a methodology for the coor-
dinated mission control of a team of underwater vehicles
based on the theoretical developments presented in [7] for
decentralised supervision of a DES. The proposed method
consists on the following steps i) Program the mission of
each team-vehicle using an independent Petri net [1]. ii) Use
mutual exclusions, task ordering and task synchronisation

2010 IEEE International Conference on Robotics and Automation
Anchorage Convention District
May 3-8, 2010, Anchorage, Alaska, USA

978-1-4244-5040-4/10/$26.00 ©2010 IEEE 3531

constrains to define a set of SBPIs involving the whole team.
iii) Synthesise the SBPIs and generate a centralised mission.
iv) Check that the centralised mission is deadlock free.
v) Partitioning the centralised Petri net into as many Petri
nets as vehicles are involved minimising the communication
among them.

As introduced in our approach [1], a mission is defined
as a Petri net N = (P, T, F) where P is a set of places
pi, i ∈ {1..n}, a set T of transitions tj , j ∈ {1..m} and a
set of transition arcs F ⊆ (P ×T)∪ (T ×P). A mission has
a set of starting places called B, where B ⊂ P , and a set
of ending places called E, where E ⊂ P , and B ∩ E = Ø.
In the same way, W = ∪Ni = {∪Pi,∪Ti,∪Fi}, i ∈ {1...c}
where ∀i,j∈{1..c}i 6= j Pi∩Pj = Ti∩Tj = Fi∩Fj = Ø
is the union of c independent Petri nets with nc places and
mc transitions.

A Petri net can be reduced to a single place psub net iff
•psub net = •B and psub net• = E•1. In a mission Petri net,
each place represents a task, a sub-net or a waiting place.
When a place representing a task is marked (has a token),
it means that the task is under execution. Moreover, when a
place representing a sub-net is marked, it means that at least
one of the tasks in the sub-net is under execution. All tasks
or sub-net2 places are 1-bounded.

In the following subsections, the constraints used for
defining coordinated missions are detailed.

A. Mutual exclusion

Figure 1(a) shows two simple Petri nets representing two
independent missions (one for each vehicle) in which three
tasks are sequenced. Tasks represented by the marked places
p1 and p4 are currently under execution.

Definition A mutual exclusion is defined as a pair (M ,
β), where M ⊂ ∪Pi is the set of places involved in the
mutual exclusion and β ∈ N \ {0} is the maximum number
of places belonging to M which can be simultaneously
marked. In our case Ni represents the Petri net related to
the mission of vehicle i. M represents the set of tasks
of possible different vehicles which must accomplish the
mutual exclusion property. Finally β, commonly equal to 1,
represents the maximum number of tasks in M that can be
simultaneously under execution.

For instance, if the tasks represented by places p2 and p5

in Fig.1(a) are in mutual exclusion (M = {p2, p5}) and only
one of the tasks can be running (β = 1), then the SBPI
described in Proposition 2.1 can be used to generate the
centralised Petri net supervisor shown in Fig. 1(b) used to
enforce this coordination constraint.

Proposition 2.1: Let W be a set of independent Petri nets
as discussed above and (M , β) a mutual exclusion defined

1Where •p is the set of transitions with output arcs to place p, p• is the
set of transitions receiving input arcs from place p, •t is the set of places
with output arcs to transition t and t• is the set of places receiving input
arcs from transition t.

2From this moment both tasks and sub-nets will be referenced as tasks.

over W , then if the constraint in (1)3 holds, the mutual
exclusion property defined above is satisfied.

l · µ ≤ β where

l = [l1 · · · li · · · lnc], with li =


1 if pi ∈M
0 otherwise (1)

Proof: Because only those components li ∈ l related
to places pi ∈ M are set to 1 and the rest of them are
set to 0 and the task places are 1-bounded, l · µ gives the
number of places in M simultaneously marked. Hence, using
the fact that a marked place represents a running task, if the
constraint l · µ ≤ β holds, it follows that no more than β
tasks of M can be simultaneously under execution.

It is worth noting that a waiting place has been added
before every pi ∈ M in Fig. 1(b). A simple transformation
called PW-Transformation has been applied for this purpose.

Definition The PW-Transformation over a place pi in the
Petri net N = {P, T, F} is defined as P ′ = P ∪ {pwaiti },
T ′ = T ∪ {twaiti } where •pwaiti = •pi, pwaiti • = {twaiti },
twaiti • = {pi} and •pi = {twaiti }.

The PW-Transformation does not modify the Petri net
behaviour, however, the additional waiting place allows a
previous task to finalise even if the next task in the sequence
can not be executed due to a mutual exclusion. Applying
the PW-Transformation to p2 and p5 and the Proposition 2.1
to the Petri net in Fig.1(a) to impose the mutual exclusion
(M = {p2, p5}, β = 1), the following constraint is obtained.

ˆ
0 1 0 0 1 0

˜
·

2666664
µ(p1)
µ(p2)
µ(p3)
µ(p4)
µ(p5)
µ(p6)

3777775 ≤ 1 = µ(p2) + µ(p5) ≤ 1 (2)

To synthesise the SBPI derived from Proposition 2.1 it is
necessary to obtain the incidence matrix of the centralised
Petri net (Dp). This incidence matrix is a block diagonal
matrix composed by joining the incidence matrix of each
team-vehicle Petri nets (Dpi).

Dp =

26664
Dp1 0 · · · 0
0 Dpi · · · 0

...
...

. . .
...

0 0 · · · Dpk

37775 (3)

In order to apply the restriction l · µ ≤ b to the Petri net
represented by Dp equations (4) and (5) are used as reported
in [4]:

Dc = −l ·Dp (4)

µc0 = b− l · µp0 (5)

where Dc describes the Petri net controller and µc0 is its
initial marking. Then, the incidence matrix of the resulting
centralised Petri net (D) and its initial state (µ0) can be
obtained as:

D =
»
Dp
Dc

–
µ0 =

»
µp0
µc0

–
(6)

3Where l is a vector of integers with as many elements as places in the
centralised Petri net and µ is the marking vector of the centralised Petri net.

3532

B. Ordering

The notion of order appears quite naturally when describ-
ing distributed systems. Ordering between two tasks happens
when one task can be only executed after the termination
of another one. In this framework, launching (enabling) a
task represented by the 1-bounded place p with µ(p) = 0
consists in marking p with one token (µ(p) = 1). On the
other hand, terminating (disabling) a task p currently under
execution (µ(p) = 1) consist in removing the token from p
(µ(p) = 0.)

Definition An ordering pair is defined as a set of two places
O = {ps, pw} ⊂ ∪Pi where pw can not be marked before
the unmarking of ps.

Again, a PW-Transformation must be applied before
adding the ordering constraint. This transformation must be
applied to the place pw ∈ O.

To ensure the ordering constraint, an extended form of the
l · µ ≤ b constraint is used. This form, c · υ ≤ b, described
in [8] uses the Parikh vector (υ) to control the Petri net
behaviour. The Parikh vector contains a counter for every
transition in the system. Every counter is initialised to 0 and
when a transition tj fires, the corresponding element υj of
the Parikh vector is incremented. For ordering the two places
contained in an ordering pair, transitions ps• and •pw are
used.

Proposition 2.2: Let W be a set of independent Petri nets
and O = {ps, pw} an ordering pair defined over W , then it
can be shown that if the constraint (7) holds, the properties
of the ordering pair are satisfied.

c · υ ≤ 0 where

c = [c1 · · · cj · · · cmc], with cj =

8<: −1 if tj ∈ ps•
1 if tj ∈ •pw
0 otherwise

(7)

Proof: With the Parikh vector it is possible to register
the number of firings of each transition. To ensure the order
between both tasks, the number of firings of the transition
immediately after the place ps must be always equal or
greater than the number of firings of the transition before
the place pw. If the transition before place pw fires before
the transition after the place ps, the constrain synthesised in
Proposition 2.2 will be bigger than 0 making itself false.

Figure 1(c) shows an example of an ordering constraint
O = {p5, p2} applied over the nets presented in Fig. 1(a)
where the PW-Transformation has been applied to p2. Fol-
lowing Proposition 2.2 the constraint (8) has been defined
and used to generate the SBPI.

ˆ
0 1 0 − 1

˜
·

264 υ(t1)
υ(t2)
υ(t3)
υ(t4)

375 ≤ 0 = υ(t2)− υ(t4) ≤ 0 (8)

C. Synchronisation

Synchronisation constraints are used to fix rendevouz
among tasks allowing them to be launched simultaneously.

Definition A set of places S ⊂ ∪Pi is said to be synchro-
nised if and only if ∀pi,pj∈S / pi 6= pj and]•pi =]•pj = 1,
•pi is enabled if and only if •pj is enabled.

(a) (b) (c)

(d)

Fig. 1. (a) Example of two simple Petri net missions. (b) Mutual exclusion
between tasks p2 and p5. (c) Ordering: p2 has to be executed after the
termination of p5. (d) Synchronisation of tasks p2 and p5.

To synthesise a set of SBPIs to enforce this constraint a
new set of places S′ = {pwaiti } has to be defined where all
the pwaiti comes from the PW-Transformation of pi ∀pi∈S .

Proposition 2.3: Let W be a set of independent Petri nets
and S a synchronisation set defined over W , then it can be
shown that if the constraint (9) holds, the synchronisation
property is satisfied.

∀
pwait
k

,pwaitw ∈S′ where p
wait
k 6= p

wait
w

obtain a c · υ ≤ 0 where

c = [c1 · · · cj · · · cmc], with cj =

8<: −1 if tj ∈ •pwaitk

1 if tj ∈ pwaitw •
0 otherwise

(9)

Proof: A synchronisation between places S = {pi, pj}
is equivalent to the orderings O1 = {• • pj , pi} and O2 =
{••pi, pj}. Therefore the proof follows the lines of the proof
of Proposition 2.2.

If the tasks represented by the places p2 and p5 in Fig.1(a)
have to be executed synchronously, a synchronisation set S =
{p2, p5}must be defined. After apply the PW-Transformation
to p2 and p5 and building the set S′ = {pwait2 , pwait5 } the
constraints −υ(t1) + υ(t′5) ≤ 0 and υ(t′2) − υ(t3) ≤ 0 are
synthesised following Proposition 2.3 to get the supervised
system presented in Fig. 1(d).

III. DEADLOCK AVOIDANCE

After apply a set of coordination constraints among several
single vehicle missions it is necessary to check that the
resulting centralised mission is deadlock free.

Figure 2 shows two basic cases in which deadlocks
can appear by combining the above mentioned constraints.
The deadlock in Fig.2(a) arise because O(p2, p5) has to
be marked before firing t′5 to mark then p5, fire t4 and
finally mark O(p5, p2). Hence, O(p2, p5) is a predecessor

3533

(a)

(b)

Fig. 2. (a) A deadlock appears when two ordering constraint O(p2, p5)
and O(p5, p2) are combined. (b) A deadlock appears when the two mutual
exclusions M([p2 → t2 → p3 → t3 → p4]sn, p8) and M(p3, [p7 →
t6 → p8 → t7 → p9]sn) are combined.

of O(p5, p2). But at the same time O(p2, p5) can only be
marked if t′2 fires marking p2 and also firing t2. Since
O(p5, p2) must be marked in order to enable t′2, O(p5, p2)
must also be a predecessor of O(p2, p5) and hence the
deadlock appears. This deadlock can be detected but not
avoided. However, the deadlock shown in Fig.2(b) can appear
if t′7 fires after t′2 and before t3 or if t′2 fires after t′7 but
before t7. This deadlock can not be only detected but avoided
too applying an extra supervisor. A procedure to check if a
Petri net is deadlock free as well as able to add the needed
supervisors to avoid them is described next.

A. Deadlock Avoidance Procedure

Several techniques to avoid deadlocks in Petri nets have
been proposed in the literature [9]. Most of them are based
on the well known necessary condition for deadlock, namely
that a deadlocked ordinary Petri net contains at least one
empty siphon. Hence, to avoid a deadlock, it is necessary to
avoid that the siphons in the net become empty. To achieve
this, two conditions have to be accomplished: (i) all the
siphons must be initially marked, and (ii) all the siphons
must be controlled4. A siphon can be controlled by a trap
or by a place invariant. If a siphon is not controlled by
the own Petri net it is possible to add a constraint like
l · µ ≤ 1 to control it. Algorithm 1 describes a simple
deadlock avoidance procedure applicable to our framework.

Applying Algorithm 1 to the Petri net in Fig. 2(a) the
invariants obtained are: p1+pwait2 +p2+p3 = 1, p4+pwait5 +
p5+p6 = 1 and p2+p5+O(p2, p5)+O(p5, p2) = 0. To apply
the Petri net modification described in step ii, a transition
(t′) must be added between the end place p3 and the begin
place p1 as well as between p6 and p4. Five minimal siphons
are obtained in the transformed Petri net. All of them are

4A siphon is said to be controlled if it will never lost all its tokens.

Algorithm 1 Deadlock avoidance procedure
i) Calculate the invariants of the centralised net.
ii) For every vehicle mission, join the final places with the initial
place through a single transition.
iii) Calculate the minimal siphons and traps in the transformed
Petri net resulting from step (ii).
iv) For every siphon Sp that is not controlled by a place invariant
or a trap or that is not initially marked, generate a constraint
l · µ ≤ 1 using equation (10). If there are no uncontrolled or
initially unmarked siphons, the Petri net is deadlock free and the
algorithm finalises.
v) If the constraint l · µ ≤ 1 generated in step (iv) produces a
Dc = [0, 0, ...0] applying equation (4) means that it is impossible
to add a supervisor to avoid the deadlock. The algorithm finalises
with a deadlocked Petri net.
vi) If the Dc generated in step (iv) is valid (dc 6= [0, 0, ...0]), add
the supervisor to the original Petri net, add the place invariant to
the list created in step (i) and repeat from step (ii).

l = [l1 · · · li · · · lnc], where li =


1 if pi ∈ Sp
0 otherwise (10)

trap or invariant controlled but {p2, p5, O(p2, p5), O(p5, p2)}
is not initially marked. When we try to synthesise a su-
pervisor the resulting supervisor it happens to be not valid
(Dc = [0, 0, ..., 0]) and the algorithm terminates at step (v).
However, applying the same algorithm to the Petri net of
Fig. 2(b) 4 invariants and 5 siphons are obtained. The only
uncontrolled siphon is {p4, p3, p8, p9,M([p2 → t2 → p3 →
t3 → p4], p8),M(p3, [p7 → t6 → p8 → t7 → p9])}. A
supervisor is generated in step (iv) and applied to the Petri
net as shows the supervisor place in Fig.2(b). As no more
siphons appear, the algorithm terminates with a deadlock free
Petri net.

IV. DECENTRALISED SUPERVISION

In [7], Iordache and Antsaklis presented a set of algorithms
to check if a centralised system can be distributed among
several subsystems, how to add minimal communication in
case that the system is not directly distributable and how to
implement the distributed subsystems if it is distributable.
This section reproduces some of the algorithms described in
[7] and that will be used to decentralise the multiple vehicle
mission control.

A. Checking the d-admissibility of a constraint

A system is admissible if all its supervisors control only
controllable transitions and detect only observable transi-
tions. To check if a system that is admissible in a centralised
way (c-admissible) is also admissible once distributed (d-
admissible) all its constraints have to accomplish Algo-
rithm 2. TMo and TMc are the observed and controlled
transitions by the constraint l · µ + h · q + c · υ ≤ b
to be checked. ζ is the set of subsystems in which the
centralised system will be split and To,i and Tc,i are the
observable and controllable transitions for each subsystem.
In our framework, the subsystems ζ as well as the To,i and
Tc,i sets are defined for the initial uncoordinated vehicle
missions. There are as many sub-missions as vehicles and

3534

it is assumed that each vehicle is only capable of observing
and controlling their own transitions.

Algorithm 2 Check the d-admissibility of a constraint
1) Find TMo and TMc .
2) Let ζ be the set of indices i satisfying To,i ⊇ TMo .
3) If ζ = ∅, declare the constraint not d-admissible and exit.
4) Define Tc = ∪i∈ζ Tc,i.
5) If Tc satisfy Tc ⊇ TMc then constraint d-admissible else constraint not d-
admissible.

In general, it can be difficult to compute TMo and TMc .
Alternatively, estimates of T ec ⊇ TMc and T eo ⊇ TMo can
be used. However, in this case the algorithm only checks
a sufficient condition for d-admissibility. T ec and T eo can
be calculated using the control place C generated for the
SBPI synthesised by the constraint to check in the centralised
system as T ec = C• and T eo = •C•

B. Design minimising communication

If the Algorithm 2 returns that a constraint is not d-
admissible it is possible to introduce communication in order
to make the constraint d-admissible. To characterise commu-
nication three binary variables are introduced: αi,j = 1 iff
the transition tj is communicated to subsystem si, εi,j = 1 iff
the transition tj is remotely controlled by subsystem si and
δi,k = 1 iff the subsystem si intervenes with the constraint
k.

Algorithm 3 applies an Integer Linear Program (ILP)
to solve (14) minimising the communication cost of the
distribution.

Algorithm 3 Design minimising communication
1) Solve (14) subjected to (11), (12) and (13).

αi,j ≥ δi,j ∀j ∈ {f : tj ∈ Tko \ To,i} (11)

∀k = 1...nc :

nX
i=1

δi,k ≥ 1 (12)

∀k = 1...nc, ∀x = 1...n, ∀j ∈ {y : ty ∈ Tkc } :

δx,k ≤ εx,j +
X
i∈Ij

δi,k (13)

min
X
i,j

αi,jci,j +
X
i,j

εi,jfi,j +
X
i,k

δi,khi,k (14)

Where nc is the number of constraints, n the number of
subsystems, ci,j is the cost of communicate the tj firing to
subsystem si, fi,j is the cost of control the tj firing from
subsystem si and hi,k is the cost that subsystem si intervenes
in constraint k.

C. Supervisor Design for a d-admissible constraint

If the Algorithm 2 shows that all the constraints are d-
admissible or using Algorithm 3 a communication policy is
found to made all the constraints d-admissible, it is possible
to design a decentralised supervisor applying Algorithm 4 to
every constraint.

Algorithm 4 Supervisor Design for a d-admissible constraint
1) Let µ0 be the initial marking of N , C the control place of the centralised SBPI
enforcing lµ+ hq + cυ ≤ b and ζ the set of subsystems.
2) ∀i∈ζ , let xi ∈ N be a state variable of si.
3) Define Si, for i ∈ ζ, by the following rules:

3.1 - Initialise xi = µs0
3.2 - If t ∈ Tc,i, t ∈ C• and xi < Ws(C, t), then Si disables t.
3.3 - If t fires, t ∈ To,i and t ∈ •C, then xi = xi +Ws(t, C).
3.4 - If t fires, t ∈ To,i and t ∈ C•, then xi = xi −Ws(C, t).

V. MULTIPLE VEHICLES COORDINATION EXAMPLE

A typical underwater vehicles mission involving several
coordinated vehicles is a Mine Countermeasures Mission
(MCM). In the proposed example two vehicles are used
to survey a zone and inspect all the Mine Like Objects
(MLO) found. The first vehicle has a torpedo shape and
it is in charge to survey the zone and inform the other
about the position of all the MLO found. The second one
is an open frame shaped vehicle which goal is to inspect the
already detected MLO. Both vehicles share the same acoustic
localisation system installed on the main surface vessel. To
avoid acoustic interference’s only one vehicle can access the
acoustic localisation device at the same time. Hence, both
vehicles must navigate using a dead reckoning system and
take a position fix only when their navigation uncertainty is
above a threshold.

To define a Petri net mission for every vehicle the Mission
Control Language (MCL) introduced in [2] is used. This high
level language is able to automatically compile a mission
program into the corresponding Petri net. Fig. 3 show how
these independent missions are written using MCL.

To describe the necessary constraints to coordinate the
vehicles missions, three new keywords have been added to
the MCL in order to define mutual exclusions, orderings
and synchronisation constraints. In the presented mission
three constraints have been proposed: (i) A synchronisation
between both vehicles in order to go to the initial position
simultaneously, (ii) an ordering constraint to allow only the
inspection vehicle check for a MLO location when the survey
vehicle has found a new MLO and, (iii) a mutual exclusion to

(a) (b)

Fig. 3. (a) Survey Vehicle Mission. (b) Inspection Vehicle Mission.

3535

Fig. 4. Centralised Petri net mission with coordination constraints.

prevent both vehicles to use its acoustic localisation system
simultaneously. These constraints are specified using new
MCL keywords as follows:
• sync: {surveyVehicle: startMission, inspectionVehicle: startMission}
• order: {surveyVehicle: SendInfo, inspectionVehicle: CheckInfo}
• mutex: {surveyVehicle: WaitPositionFix, inspectionVehicle: WaitPositionFix}

= 1

Once the imposed constraints are applied the centralised
Petri net showed in Fig. 4 is automatically obtained. To en-
hance the paper readability the Petri net has been simplified
removing the fail and abort states and its corresponding sub-
nets. The w places were generated by the PW-Transformation
and four supervisors places are also added according to
Proposition 2.1, 2.2 and 2.3. The synchronisation between
the tasks Goto(initial position) in both vehicles is supervised
by the two sync places. The ordering between SendInfo
and CheckInfo is supervised by the order place that will
receive as many tokens as MLO are found5. Finally, the
mutual exclusion between the vehicles to take a location fix
is supervised by the mtx place initialised with one token.

After checking that this centralised Petri net is dead-
lock free (Algorithm 1), the minimal communication policy
between vehicles must be found. If the cost to remotely
control a transition uncontrollable without communication
is supposed to be 100 times larger than the cost to remotely
observe a transition unobservable without communication,
the transitions that must be communicated from one vehicle
to another are found applying the ILP method described in
Algorithm 3. With the list of transitions to communicate
and following Algorithm 4 an independent Petri net for each
vehicle is generated again. These Petri nets can be executed
in real time on board each vehicle ensuring no deadlock and
minimal communication between vehicles.

VI. TESTS

In order to test the whole system, the synthesis of
SBPI for the coordination constraints as well as the PW-
Transformation have been implemented together with the
ILP presented in Algorithm 3 and the supervisor design
for d-admissible constraints detailed in Algorithm 4. All

5See that this is not a task place, hence, it is not 1-bounded.

these procedures have been added to the existing version
of Mission Control Language - Compiler (MCL-C) [2] to
allow for the multiple vehicles mission specification. The
MCL-C generates an individual mission for every vehicle
that can be executed in real time through a Petri net player
against any autonomous vehicle implementing an Architec-
ture Abstraction Layer (AAL) [1]. Several multiple vehicle
missions have been tested using the Webots6 simulator and
the e-puck robots. After programming a control architecture
with some available primitives and an AAL module to enable
the communication between the e-pucks control architecture
and the Petri net player, different missions have been written
in MCL and tested in simulation. The MCL-C, the software
necessary to build and distribute the Petri nets and the code
to run the e-pucks under the Webots simulator can be found
in http://eia.udg.edu/∼npalomer.

VII. CONCLUSIONS

The aim of this paper was to provide a methodology to
model and execute multiple vehicles coordinated missions
using Petri nets. Individual vehicle missions were described
by means of Petri nets and using three coordination con-
straints (mutual exclusions, ordering and synchronisations)
the proposed methodology generates a centralised net, checks
if it is deadlock free, calculates the minimal communication
between vehicles, and obtain again an individual Petri net
for every vehicle. The proposed methodology presents a
reliable and completely automatic way to add coordination
constraints between several vehicle missions modelled and
executed using the Petri net formalism. An example was
detailed in Section V to illustrate how the methodology
can be applied. Moreover, some tests have been make in
simulation using the Webots software and the e-puck robots.
Experiments involving real vehicles are expected in a near
future.

REFERENCES

[1] N. Palomeras, P. Ridao, M. Carreras, and C. Silvestre, “Towards a
mission control language for auvs,” 17th IFAC World Congress, 2008.

[2] ——, “Using petri nets to specify and execute missions for autonomous
underwater vehicles,” IEEE/RSJ International Conference on Intelligent
Robots and Systems, pp. 4439–4444, Oct 2009.

[3] J. King, R. Pretty, and R. Gosine, “Coordinated execution of tasks in a
multiagent environment,” Systems, Man and Cybernetics, Part A, IEEE
Transactions on, vol. 33, no. 5, pp. 615–619, 2003.

[4] J. Moody and P. Antsaklis, “Petri net supervisors for discrete event
systems,” Thesis, p. 282, Sep 1998.

[5] V. Ziparo and L. Iocchi, “Petri net plans,” Proc. of ATPN/ACSD Fourth
International Workshop on Modelling of Objects, Components, and
Agents, 2006.

[6] F. Lin and W. Wonham, “Decentralized control and coordination of
discrete-event systems with partial observation,” Automatic Control,
IEEE Transactions on, vol. 35, no. 12, pp. 1330 – 1337, Dec 1990.

[7] M. Iordache and P. Antsaklis, “Decentralized supervision of petri nets,”
Automatic Control, IEEE Transactions on, vol. 51, no. 2, pp. 376 –
381, Feb 2006.

[8] ——, “Synthesis of supervisors enforcing general linear vector con-
straints in petri nets,” American Control Conference, 2002. Proceedings
of the 2002, vol. 1, pp. 154 – 159 vol.1, Apr 2002.

[9] M. V. Iordache, J. O. Moody, and P. J. Antsaklis, “Automated synthesis
of deadlock prevention supervisors using petri nets,” Technical Report
of the ISIS Group at the University of Notre Dame, p. 56, Jul 2002.

6http://www.cyberbotics.com/

3536

