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Abstract— In a previous paper [3], we proposed a new way
to achieve visual servoing. Rather than minimizing the error
between the position of two set of geometric features, we
proposed to maximize the mutual information shared by the
current and desired images. This leads to a new information
theoretic approach to visual servoing. Mutual information is
a well known alignment function. Thanks to its robustness
toward illumination variations, occlusions and multi modality,
it has been widely used in medical applications for alignment
as well as in general tracking problems. Despite those previous
works, no highlight has been given on the problem of Hessian
computation that yields, in the case of common approximations,
to divergence of the optimization process. In this paper we
focus on the need of computing the second order derivative of
the mutual information in visual servoing. Experiments on a 6
dof robot demonstrates the significance of this work on visual
servoing tasks.

I. INTRODUCTION

Visual servoing consists in using the information provided

by a vision sensor to control the movements of a dynamic

system [1]. Most of the proposed approaches requires the

extraction of a set of geometric visual features that have to

be tracked and matched over frames. This process has proved

to be a difficult one.

Recently, it has been shown that no other information

than the image intensity can be considered to control the

robot motion and that these difficult tracking and matching

processes can be totally removed. The approaches proposed

by [2]–[4], [7], no longer require any matching or tracking

process. They turn the visual servoing problem into a non

linear optimization problem [9]. The error to be minimized

is no more defined by the difference between some desired

and current features but by an alignment function between

the current image I and the image acquired at the desired

position I
∗. In [2] the alignment function is defined by the

sum of squared differences on the intensity of all pixels of

the two images, in [7] by spatial sampling kernels and in [3]

by the mutual information between the two images [12].

Whereas these methods are very different from the classical

geometric approaches [1], the goal remains the same: from

its current pose r, the robot has to reach the desired pose

r
∗. In terms of optimization, it means that during all the

visual servoing task the pose of the robot has to evolve in the

direction of the extremum of the choosed alignment function

by sending a velocity to the robot. This robot velocity is

computed using the derivatives of the cost function with

respect to the pose r.

In the present work we focus on the cost function defined

by mutual information [10] shared by the current and desired

Amaury Dame is with CNRS, IRISA, Rennes, France. Eric Marc-
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image [3]. This function does not compare directly intensities

of the two images but the distribution of the information in

the images. This yields to very interesting properties for vi-

sual servoing: this approach is robust to large light variations,

to occlusions and to the mutlimodality of acquisition between

the desired and the current image.

We consider this cost function derivatives and show that

special care has to be taken in the computation of the Hessian

matrix. Our studies reveal that classical approximation on the

Hessian [5], [6], [11] may involve divergence in the visual

servoing task.In alignment or tracking algorithm this problem

can be solve of using an approach like Brent’s method but

in visual servoing it is impossible to use this kind of method

because it requires backtracking. In previous works [3] the

problem has been handled by successively changing some

parameters in the computation during the servoing task. This

leads to problematic non continuous and non smooth control

law and non optimal robot 3D trajectory. To the best of

our knowledge, despite the fact that mutual information is

commonly used in computer vision, no paper raises the

problem of these regularly used approximations.

This paper clearly defines the previous encountered prob-

lem and proposes a way to properly handle it. The exact

formulation of the Hessian matrix is defined and several

experiments on a 6 dof robot show that the behaviour in

the 3D space is better than in our previous works. The

multimodal image-based navigation proposed in previous

work that was limited to 3 dof is now workable with 6 dof

applications as it is shown on the last experiment.

The remainder of this paper is organized as follows. The

first section presents the way to achieve visual servoing by

a non linear optimization and introduces an example that

allows illustrating the main expressions. The definition of

mutual information is given in Section II with its derivatives

where we focus on the Hessian computation. In Section III

a solution to perform the visual servoing task despite the

small concavity domain of mutual information is proposed.

Finally Section IV illustrates the results obtained using a 6

dof robot.

II. BACKGROUND

A. Visual servoing as a non linear optimization

The aim of a visual servoing task is to minimize the error

between the current pose of the robot and a desired pose us-

ing a camera. Here we consider an eye-in-hand configuration,

the camera is placed at the end effector of the robot, and the

scene is supposed motionless. Hypotheses are simple, only

the image at the desired pose is known. Mutual information is

a function that defines the quantity of information shared by

two variables [12]. Maximizing mutual information between

the desired image and the current image acquired by the

2010 IEEE International Conference on Robotics and Automation
Anchorage Convention District
May 3-8, 2010, Anchorage, Alaska, USA

978-1-4244-5040-4/10/$26.00 ©2010 IEEE 5531



robot is equivalent to minimize the error between the current

and the desired position [3]. The optimization process is a

Newton’s descent method that typically requires the gradient

G and the Hessian matrix H of the function to maximize.

Within this context, the velocity v sent to the robot can

simply be defined by:

v = −λH
−1

G
⊤ (1)

where λ is the step size of the optimization. Following

sections give definitions of mutual information and its deriva-

tives (gradient and Hessian matrix).

B. Illustration

The goal of the visual servoing task is to control a 6 dof

robot. Since the possibilities to represent the expressions of

a 6 dof non linear optimization problem are limited, a set of

illustrations is shown on a more simple example that uses

a one degree of freedom visual servoing task. This example

allows illustrating the main expressions that we will define

in this work. The camera is positioned around the desired

pose along the degree of freedom and the results used in

the minimization can be analysed. Figure 1 illustrates the

corresponding method: an image is acquired at the desired

pose of the robot, then the robot goes through surrounding

poses using the choosed transformation (here the translation

along the x axis of the camera frame is represented) and

mutual information and its derivatives are computed using

the current image and the desired image for each position.

(a) (c)

(b)

Fig. 1. Method used to compute mutual information and its derivatives
along one axis. Here the represented transformation is the translation along
the x axis of the camera. (a) External view of the camera at the desired
position (red) and at the position corresponding to a 4cm translation (green).
(b) image I

∗ acquired at the desired pose (c) image I at the current position.

III. MUTUAL INFORMATION IN VISUAL SERVOING

A. Mutual information definition

As shown in previous works [3], mutual information

between the desired image I
∗ and the current image I can be

defined with respect to the camera pose r by the following

expression:

MI(r) =
∑

i,j

pij(i, j, r) log

(

pij(i, j, r)

pi(i, r)pj(j)

)

(2)

where pij(i, j) is the probability of the couple (I(x), I∗(x))
to have the value (i, j) that is called joint probability. pi and

pj are the probabilities of respectively I(x) and I∗(x) to have

the values i and j, these are called marginal probabilities. I

and I∗ are respectively the images I and I
∗ scaled to belong

to the [0;Nc] ⊂ R space:

I(x) = I(x)
Nc

NcI

I∗(x) = I
∗(x)

Nc

NcI∗

. (3)

where NcI and NcI∗ are the maximal intensities of the pixels

of I and I
∗ (typically 255). The probabilities are basically

defined using normalized histogram functions, so that the

joint probability is obtained using the joint histogram of the

two images and the marginal probabilities are obtained using

the histogram of each images as follows:

pij(i, j, r) =
1

Nx

∑

x

φ
(

i − I(x, r)
)

φ
(

j − I∗(x)
)

(4)

pi(i, r) =
1

Nx

∑

x

φ
(

i − I(x, r)
)

(5)

pj(j) =
1

Nx

∑

x

φ
(

j − I∗(x)
)

(6)

where Nx is the number of point x in the region of interest

in the image. Typically the φ function used to compute

histograms are Gaussians centered on zero. It is commun

to approximate Gaussians with B-splines functions. In [3],

φ used to be approximated with a first order B-spline that

is easy and fast to compute but that is not differentiable

and causes difficulties to compute the derivatives needed

for the minimization. In our experiments Gaussians is then

approximated by tricubic B-splines functions that is a two-

times differentiable function (see figure 2).
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Fig. 2. φ function defined as a third order B-spline that is two-times
differentiable. (a) third order B-spline, (b) its derivative and (c) its second
order derivative.

Mutual information has been computed using the previous

definition for the example described in Section II.B. Figure

3(a) shows that mutual information reaches the maximum

value when the robot is at the desired pose (corresponding

to a null translation along the x axis).

B. Gradient

The gradient of mutual information is its derivative with

respect to the camera pose r. As explained in [11], applying

chain rules on the general definition of equation (2) and

simplifying, the final expression of the gradient can be

written:

G =
∂MI

∂r
(r) =

∑

i,j

∂pij

∂r

(

1 + log

(

pij

pi

))

. (7)

To compute this gradient the first derivative of the joint

probability with respect to the position
∂pij

∂r
is needed. Using

the previous definition of (4) and since φ is two-times
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Fig. 3. Computation of mutual information and its derivatives with
respect to the horizontal translation of the camera frame in meters. (a)
Mutual information, (b) first derivative of mutual information and (c) second
order derivatives with and without approximations. [δ1, δ2] represents the
concavity domain of mutual information.

differentiable, the derivative of the joint probability is given

by:

∂pij

∂r
=

1

Nx

∑

x

∂φ

∂r

(

i − I(x, r)
)

φ
(

j − I∗(x)
)

. (8)

Finally the derivative of the φ function is given in [3] by:

∂φ(i − I(x, r))

∂r
= −

∂φ(i − I(x, r))

∂i
∇I Lx (9)

where ∇I is the image gradient in the metric space
(

∇Ix,∇Iy

)

and Lx is the interaction matrix that links the

displacement of a point with the velocity of the robot.

To illustrate the results with respect to a single translation

along the x axis with a perspective projection, Lx is set to

[−X/Z 0]⊤ for each point of coordinates (X,Y,Z) in the

camera frame.

In the case of visual servoing experiments using the 6 dof

robot, the interaction matrix is defined as in [1] using:

Lx =

[

−1/Z 0 x/Z xy −(1 + x2) y
0 −1/Z y/Z 1 + y2 −xy −x

]

where x and y are theimage point coordinates. Figure 3(b)

shows the computed values of the derivative. These values

are consistent with the corresponding mutual information

values (Figure 3(a)).

C. Hessian

The Hessian of mutual information is its second order

derivative with respect to the camera pose r. Differentiating

the previously obtained gradient given by (7) it yields to:

H =
∂G

∂r
(10)

=
∑

i,j

∂pij

∂r

⊤∂pij

∂r

(

1

pij

−
1

pi

)

+
∂2pij

∂r2

(

1 + log
pij

pi

)

It is classical to consider the second term of this expression

as null [6], [11] that gives the following approximation:

H ≃
∑

i,j

∂pij

∂r

⊤ ∂pij

∂r

(

1

pij

−
1

pi

)

. (11)

We will see that this approximation is too coarse. In fact, at

convergence it yields to a null Hessian. Using a classical

non-linear optimization such as a Newton’s method (see

equation (1)) with this approximation leads to a divergence

at the desired position since the inverse of the null Hessian

is used to compute the velocity. The complete expression of

the Hessian is finally given and, using some examples, the

results of the approximation and the exact method will be

compared.
1) Approximation results: At convergence the current

image is supposed to be similar to the desired image. In

the case of an ideal positioning at r
∗ we have I = I

∗ which

implies that:

P
[

I(x, r∗) 6= I∗(x)
]

= 0 (12)

P
[

I(x, r∗) = i ∩ I∗(x) = i
]

= P
[

I(x, r∗) = i
]

(13)

= P
[

I∗(x) = i
]

(14)

where P (χ) is the probability of the event χ. The joint prob-

ability is then the diagonalization of the marginal probability

pj(j) with pij(i, j, r) = pj(j) for i = j and 0 otherwise. As

a consequence the summation of equation (11) is null for

i = j.

Moreover considering equation (8), it is clear that the

derivative of the joint probability for I = I∗ and for i 6= j
is quasi null. At the desired pose the all summation of (11)

can finally be considered as null.

As expected using the example explained in Section II we

can see in Figure 3(c) that the approximated Hessian is null

at the desired position tx = 0.
2) Exact Hessian computation: The second part of the

expression (10) that has been considered as null in previous

works [3] following [6], [11] has then to be taken into

account. This involves computing the Hessian of the joint

probability pij with respect to r:

∂2pij

∂r2
(i, j, r) =

∑

x

∂2φ

∂r2

(

i − I(x, r)
)

φ
(

j − I∗(x)
)

. (15)

Using the first derivative of φ in (9) and applying chain rules

and product derivative, the following result is obtained for

the second order derivative:

∂2φ

∂r2

(

i − I(x, r)
)

=
∂2φ

∂i2
(

i − I(x, r)
)

(∇I Lx)⊤(∇I Lx)

−
∂φ

∂i

(

i − I(x, r)
) (

∇IxHx + ∇IyHy

)

−
∂φ

∂i

(

i − I(x, r)
)

L
⊤

x∇
2
I Lx (16)

where ∇2
I ∈ R

2×2 is the gradient of ∇I in the metric space

and Hx and Hy are respectively the derivatives of the first

and second line of the interaction matrix Lx (see [8] for the

computation of the two Hessian matrices).

We previously chose the φ function as a two-times dif-

ferentiable function so that the computation of the previous
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Fig. 4. Mutual information and its derivatives with respect to different degrees of freedom: (a) translation along the z axis in meters, (b) rotation around
the x axis and (c) rotation around the z axis in degrees.

expression is possible. The Hessian has been computed

considering the one degree of freedom example. The figure

3(c) shows the corresponding results and that the final values

are accurate.

To validate the previous computation on the 6 dof problem,

the same experiments as in figure 3 have been realized on

the other degrees of freedom. Since we are working in the

camera frame, translations along the x and y axis can be

considered as similar, as well as rotations around the x
and y axis. So, to illustrate our results in 6 dof, we will

only represent the x and z translations and the x and z
rotations. Figure 4 represents the corresponding results. The

same conclusion as the previous example can be made, the

computed Hessian values remain consistent with the value

of the gradient.

IV. MAXIMIZATION PROBLEM

The analysis in one dimension of the mutual information

and its derivatives highlights one issue: the domain of

concavity around the desired pose is small. In the case of our

first example (see figure 3) the domain of concavity [δ1, δ2]
corresponds to a 1cm translation for a scene at a distance

of one meter. Using the classical non-linear optimization as

Newton’s method minimization defined in (1) will only allow

an initial pose belonging to concavity domain.

Nevertheless the shape of mutual information cost func-

tion suggests that using a gradient descent method would

practically leads to a convergence domain larger than a 8cm

translation. Nevertheless if we consider the maximization by

simply using the rotation around the y axis and the translation

along the x axis (see the corresponding mutual information

in figure 5), mutual information has a shape of valley near

the convergence. In the case of such valley it is known that

gradient descent is unadapted and induces oscillating effects.

An usual method in visual servoing [1] is to replace

the current Hessian by the Hessian at the desired position

H
∗. In our case H

∗ is obtained computing the Hessian

of mutual information considering I = I∗. That is the

Hessian of a locally concave function. In this case the entire

domain is considered as concave. Then an optimization such

as Newton’s method theoretically converges to the desired

position.

The limit of this method is that mutual information has

been chosen for its robustness toward multiple variations. In
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Fig. 5. Valley shape of mutual information on the 2 dof (tx, ry) subspace:
(a) shape of the cost function and (b) isocontours. tx and ry are producing
a quasi similar transformation to the image acquired by the image.

the case of large variations, the current Hessian at the desired

pose differs from the Hessian computed using I = I∗, leading

to possible problem of convergence.

To overcome this issue the proposed method consist of

using the Hessian at the desired position until the robot

reaches the concavity domain. At this moment the control

law changes and uses the current Hessian. To do so a

detection process is created to detect the entrance in the

concavity domain: both the theoretical velocities using the

current Hessian vc and the ones at the desired position vd

are computed. If the robot is in the convexity domain then the

current Hessian is the one of a local convex function whereas

the other Hessian is the one of a local concave function,

leading to two completely different velocities. As soon as

the robot reaches the concavity domain, the two computed

velocities are becoming similar. A function µ(vc,vd) is

simply defined to measure the similarity of the two velocities:

µ(vc,vd) =
1

‖vc‖
2
‖vd‖

2
v
⊤

c vd (17)

if µ is equal to one the two velocities are aligned. If µ is

superior to a given threshold then the robot is considered to

be in the concavity domain and the velocity vc computed

with the current exact Hessian is finally used.

V. EXPERIMENTAL RESULTS

A. Standard visual servoing task

To demonstrate the impact of the Hessian computation,

experiments have been realized using the proposed method

on a 6 dof Gantry robot equipped with a camera mounted on

its end-effector. The experimental scheme is the same used

in [3]. The robot is moved at the desired pose r
∗ to acquire

the desired image I
∗. Then the robot is moved to a random

initial pose. The velocity computed using the control law
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Fig. 6. Experiment of mutual information visual servoing using second
order derivatives computation. (a) translation part of ∆r (meter) and (b)
rotational part of ∆r () with x axis in seconds. (c) Initial image, (d) desired
image, (e) initial images difference and (f) final images difference I∗ − I.

defined in (1) is send to the robot. To analyse the behaviour

of this method, current camera pose r and the transformation

∆r between r
∗ and r are stored during the task.

Figure 6 shows the acquired images and the corresponding

behaviour of the robot for a typical experiment. The initial

error pose ∆r = (−15cm,−23cm, 30cm,−19◦,−11◦, 13◦)
is large. Figure 7 shows the trajectory of the camera in the

3D space and its orientation. This experiment shows that the

behaviour of the robot is far more better than in our previous

works [3]. There is no more non continuity in the control law

that was due to the changes in the parameter Nc (see figure

4 in [3]), here the bin size Nc is fixed to Nc = 8. This

leads to a smooth trajectory. Contrary to previous works the

trajectory of the camera in the 3D space is really satisfying:

the first part of the trajectory is almost a straight line and

when the camera reaches the valley of the cost function (see

figure 5) then the camera is reaching the final pose using a

circular trajectory focusing on the scene.

The accuracy of the proposed method remains very high.

The robot reaches a pose error ∆r below 0.1mm in transla-

tion on each axis and 0.01◦ in rotation despite a distance to

the scene of approximately 1 meter.

The computation of the exact value of the Hessian could

be seen as a time-consuming task. However using a research

type code, the time of computation remains reasonable.

Using a 2.6GHz processor a new velocity is computed each

30ms for a frame of size 320 × 240.

B. Multimodal image-based navigation

The previous experiment gives qualitative results on the

method and can be seen as difficult to compare with previous

works. To validate the improvments of the proposed method,

the navigation experiment presented in [3] that was limited

to 3 dof is studied again with 6 dof.
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Fig. 7. 3D representation of the trajectory of the camera. Axis are in
meters. The desired camera pose is the red pose.

In this experiment we consider the navigation task defined

in the sensor space by a database of images acquired during

a learning step. This experiment evaluates the robustness

of mutual information toward multimodality. So during the

learning step, the camera is moving along the desired tra-

jectory and the set of desired images I
∗(t) is acquired on a

map scene. In the navigation task the map scene is replaced

by a satellite scene. These map and aerial image have been

acquired using the IGN (Institut Géographique Nationale)

geoportail (http://www.geoportail.fr) which is a tool similar

to google earth. Map and aerial images have the same scale

1:25000.

We suppose that the first camera pose is near the first

desired image I
∗(t0). The visual servoing task is then used to

reach the next intermediate desired pose. The switch between

two desired images is performed when the gradient of the

mutual information is below a given threshold. The same

process is used until the desired image is the last image of

the set of images I
∗(t).

In previous work only the three dof (tx, ty, rz) were

considered since the approximation in the non-linear op-

timization uses to make it impossible to deal with the

valley of the cost function induced by the two couples of

transformation (tx, ry) and (ty, rx) (see figure 5).

In the experiment the six camera dof have to be considered

to track the considered trajectory. Figure 9 shows the desired

trajectory of the camera on the scene and the resulting one.

Figure 8 shows the corresponding images acquired during

the experiment. As we can see on both figures the middle

part of the desired trajectory is defined as a (tx, ry) trans-

formation: the second and third columns of figure 8 look the

same whereas the transformation between the corresponding

positions is a 13cm translation along x with a 0.11◦ rotation

around y.

Since the real transformation between the map and satellite

scene are not precisely known, it is not possible to compare

numerically the result with a ground truth. Then, results are

evaluated on the 3D resulting trajectory of the camera and on

the superposition of the desired and current images. We do

not consider image error since the difference of acquisition

modalities makes such error insane.

Figure 8 shows that the two images are correctly aligned

and figure 9 shows that the two trajectories are similar. We

can conclude that the navigation task gives accurate results.
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Fig. 8. Multi-modal visual servoing in a navigation task. First row: desired images (acquired during the learning step) ; second row: current images ;
third row : desired images overlaid on the current ones.

(a)

Fig. 9. Reference path of the camera in red and resulting path in blue on
the scene in multimodal navigation experiment with initial and final position
of the camera. Axis units are in meters.

It demonstrates the robustness of the proposed method

compared to the previous one even with a complex 6 dof

trajectory tracking task.

VI. CONCLUSION

In this paper we focused on mutual information-based

visual servoing. The new proposed scheme shows interest-

ing properties since it is robust to illumination variations,

occlusions and different modality of acquisition between the

reference and the current image. Furthermore it does not

require any feature extraction or matching/tracking process.

Nevertheless the initial approach [3] used a common

approximation that makes it depend on parameter adjustment

during the visual servoing task. This adjustment caused the

trajectory of the camera not to be smooth. The issue led by

the approximation is explained in this paper and solutions

have been proposed to overcome it. A particular care is

taken on the second order derivation of mutual information

in information theory-based visual servoing. This solution

proves its benefits in different applications showing a better

behaviour on a 6 dof robot.

This study could be generalized to tracking algorithms

using mutual information since tracking is similar to virtual

visual servoing. Moreover the method proposed for the non-

linear optimization that yields to a good trajectory of the

camera in the 3D space could give similar results in SSD

based visual servoing.
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