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Abstract— We present an approach for efficiently recognizing
all objects in a scene and estimating their full pose from multiple
views. Our approach builds upon a state of the art single-view
algorithm which recognizes and registers learned metric 3D
models using local descriptors. We extend to multiple views
using a novel multi-step optimization that processes each view
individually and feeds consistent hypotheses back to the algo-
rithm for global refinement. We demonstrate that our method
produces results comparable to the theoretical optimum, a
full multi-view generalized camera approach, while avoiding
its combinatorial time complexity. We provide experimental
results demonstrating pose accuracy, speed, and robustness to
model error using a three-camera rig, as well as a physical
implementation of the pose output being used by an autonomous
robot executing grasps in highly cluttered scenes.

I. INTRODUCTION

There has been recent renewed interest ([1–4] to name a
few) in enabling mobile manipulators to perform useful tasks
in unstructured human environments, like homes and offices.
Such environments are particularly challenging due to their
dynamic nature and due to high clutter. These characteristics
demand speed and accuracy from all components: planning,
control, and perception. Motivated by these practical require-
ments, we demonstrated a single-view object recognition and
pose estimation algorithm in [5] that is fast, accurate, and
robust to clutter.

With cameras getting better, cheaper, and smaller, multiple
views of a scene are often easily available. For example, our
robot HERB (Fig. 1) has, at various times, been outfitted
with cameras on its shoulder, in the palm, on its ankle-high
laser, as well as with a stereo pair. Multiple views of a scene
are often desirable, because they provide depth estimation,
robustness against line-of-sight occlusions, and an increased
effective field of view.

Two standard approaches are popular for converting a
single-view vision algorithm to multiple views.

The first, which we term single-view averaging, executes
the single-view algorithm on each of the images and com-
bines the resulting output, often using machine learning
techniques [6] (Fig. 2(a)). This approach scales linearly with
the number of images and has the ability to combine many
single-view algorithms at the same time. However, it treats
the single-view algorithm as a black box: fused information
is not fed back to the algorithm for further refinement.

The second, which we term full multi-view, combines
multiple images by considering a network of cameras as
one generalized camera [7, 8] which produces a single large
aggregate image (Fig. 2(b)). The single-view algorithm is
then applied to this generalized image. This approach is
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Fig. 1. Object grasping in a cluttered scene using our algorithm. (Top)
Scene observed by each camera. Our introspective multi-view algorithm
recognizes objects and computes consistent poses across multiple views.
Each recognized object is projected back into the images as a coordinate
frame plus a convex hull of its projected 3D model. (Bottom) Our robot
platform HERB in the process of grasping an object, using only the pose
information from this algorithm.

optimal: there is no loss of information. However, the large
search space created by the generalized image makes itera-
tive algorithms such as RANSAC struggle in the presence
of thousands of correspondences, due to the exponential
increase in computation time when linearly increasing the
number of points to be tested.

We propose a third approach, which we term introspec-
tive multi-view, which combines the speed of single-view
averaging with the accuracy of the full multi-view approach
(Fig. 2(c)). Each individual view is processed first using the
single-view algorithm [5], obtaining an initial estimate of
objects and their poses. Then, a second stage clusters the out-
put of multiple views, filtering out inconsistent data. Finally,
the object pose is re-optimized using a reduced generalized
image comprising only of points consistent across all images.

Our multi-step optimization incurs only a slight computa-
tional overhead over single-view averaging as a result of its
final stage, and only a slight reduction in accuracy over full
multi-view as a result of its filtering (Fig. 2(d)). In the general
case of complex scenes with clutter, the introspective multi-
view algorithm proves to be far superior than single-view
and generalized image algorithms, combining the efficiency
of the former and the accuracy of the latter.
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Fig. 2. Multi-view merging alternatives. (a) Single-view averaging: Process each view individually using a single-view algorithm and combine their
output (e.g. weighted voting, mixture of experts). (b) Full multi-view: Embed all views inside a single generalized camera model and use all information
to recognize objects and estimate pose. (c) Our method: Introspective multi-view: Process each view individually, and feed back consistent hypotheses to
the pose estimation algorithm for global refinement. (d) Our method has accuracy comparable to (b) and speed comparable to (a). (Right) HERB grasping
in clutter using the multi-view algorithm.

II. SINGLE-VIEW RECOGNITION AND POSE ESTIMATION

We build upon the single-view algorithm introduced in [5],
which this section details.

A. Modeling 3D objects
Objects to be recognized are modeled through an offline

learning phase and stored in an object database O. For each
object o ∈ O, a set of images is first taken with the object in
various positions and orientations. Reliable local descriptors
are extracted from natural features using SIFT features[9].
Using structure from motion [10] on matched SIFT features,
information from each training image is merged to produce a
sparse 3D model comprising of a set of 3D points Po where
each point in the set is associated with a local descriptor.
Finally, alignment and scale for each model are computed to
match the real object dimensions.

B. Recognizing all objects in an image
From a single image, the single-view algorithm finds all

known objects in a scene and recovers their accurate 6D pose,
even under heavy occlusion and the presence of multiple
confusing instances of the same object class.

Our goal is to obtain an object hypothesis h comprised of
its identity o ∈ O and its transformation To ∈ SE(3) with
respect to the camera frame, for each object present in the
image.

We accomplish this by minimizing the sum of reprojection
errors between points in the image and projected points in
the model. A novel combination of RANSAC and Mean
Shift clustering[11] allows for a real-time solution of the
correspondence problem, even with many instances of the
same object present.

We repeat the following procedure for each object o in the
object database. An example of the robustness to clutter and
multiple instances of o is seen in Fig. 3.

1) Extract SIFT features p from image i and match them
against o, obtaining set of correspondences Pi

o ↔ po.

2) Cluster the 2D image locations of po using Mean Shift.
3) For each cluster c, choose a subset of points and

estimate a hypothesis with the best pose according to
those points. If the amount of points consistent with
the hypothesis is higher than a threshold ε, create a
new object instance and refine the estimated pose using
all consistent points in the optimization. Repeat this
procedure until the amount of unallocated points is
lower than a threshold, or the maximum number of
iterations has been exceeded. This produces a set of
hypotheses hc for each cluster c.

4) Merge hypotheses from different clusters whose esti-
mates of To are similar.

5) Output a reduced set of hypotheses h for object o.

III. MULTI-VIEW RECOGNITION AND POSE ESTIMATION

Some multi-view techniques for pose estimation param-
eterize a network of cameras as a single Generalized
Camera[7] and optimize the camera pose over this gener-
alized space by solving the resulting non-perspective PnP
(nPnP) problem[12]. While such an approach is perfectly
valid, it might not be entirely feasible in real-time if the cor-
respondence problem needs to be taken into account. Another
alternative is to combine multiple single-view algorithms via
pose verification[13], robust averaging, or weighted voting
[14]. These methods avoid the combinatorial explosion that
plagues generalized images, but they fail to feedback useful
fused information to the underlying algorithm for further
refinement.

The single-view object recognition system described in §II
analyzes an image and returns several object hypotheses con-
taining information about its identity, its full pose relative to
the camera and the set of 3D-2D correspondences consistent
with each hypothesis. We now describe our approach to use
a single-view object recognition system for a set of images
and efficiently fuse the local information to obtain a set of
object detections globally consistent with all views.
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Fig. 3. Recognition of multiple object instances in a (left) Scene
observed by the robot’s camera, used for object recognition/pose estimation.
Coordinate frames show the discovered pose of each object. (right) 3D
reconstruction where each object is represented using a simple geometry.

A. Multi-step pose optimization in static camera rigs

We define the multi-view pose optimization algorithm as a
multi-step optimization in the sub-image (clusters of points),
image and multi-image (clusters of objects) domains.

The algorithm in §II is executed for each individual image
i, obtaining an initial hypothesis of all objects in a scene. At
the end of this step, each object hypothesis h is linked to
its identity and a pose T i

o relative to camera i. In order to
fuse all hypotheses, each object pose is transformed from a
camera-centric coordinate system into a common reference
frame using the extrinsic parameters Ti = (Ri, ti) for each
camera i producing a global pose To = TiT

i
o .

With all objects in the same reference frame, Mean Shift
clustering is performed on all poses To belonging to the
same object class. It is convenient to parameterize rotations
in terms of quaternions and project them in the same half
of the quaternion hypersphere prior to clustering. As in the
single-view case, this produces a set of hypotheses hc for
each cluster c, with a total number of clusters C. This is often
the final output that multi-view integration algorithms offer,
a set of reduced set of hypotheses h obtained by rejecting
clusters with less than a certain number of hypotheses to
filter out spurious detections or by cluster-merging like in
the single-view case. However, it is possible to improve this
result further.

The optimal single hypothesis h∗c for a given cluster
c is one that minimize the sum of reprojection errors of
correspondences across all images. To accomplish this, we
first collect the correspondences for each point Pj ∈ Po in
the model across all images, marking 0 if the view i does
not contain a corresponding point. This produces a corre-
spondence set that looks like Pj ↔ {p1

j , p
2
j , 0, 0, . . . , p

M
j },

where M is the total number of views. The optimal single
hypothesis is then given by

h∗c = arg min
T

∑
Pj∈Po

M∑
i=1

δi
j

[
pi

j − proj
(
T iTPj

)]2
(1)

where δi
j = 0 if pi

j = 0 and 1 otherwise.
Alternatively, one can define an analogous optimization

in terms of the backprojection error, by tracing the line Li
j

from the camera center to each 2D point pi
j its distance to the

corresponding 3D point Pj . We parametrize a line as L =
(c, v), where v is a unit vector indicating the line direction
and c is an arbitrary point on that line, e.g. the camera center.

Using projective geometry, we obtain

v̄i
j =

K−1
i pi

j

‖K−1
i pi

j‖
(2)

where Ki is a 3×3 intrinsic camera matrix for view i. Each
line Li

j in a common reference frame is then given by

vi
j = (Ri)

T
v̄i

j cij = − (Ri)
T
ti (3)

The distance between a point P and Li
j is given by

d(Pj , L
i
j) = ‖

(
I3×3 − vi

jv
i
j

T
) (
P − cij

)
‖ (4)

The analogous equation to Eq. 1 that minimizes the sum
of backprojection errors is given by

h∗c = arg min
T

∑
Pj∈Po

M∑
i=1

δi
j

[
d
(
T iTPj , L

i
j

)]2
(5)

Additionally, we found it useful to constrain the objects
to lie in front of the cameras. Given that vi

j are vectors
from the camera center pointing towards the image plane,
vi

j
T (P − cij) > 0 for all points P in front of the camera.

We incorporate this constraint as a regularizer (with weight
ξ > 0) in the minimization

h∗c = arg min
T

∑
Pj∈Po

M∑
i=1

δi
j[

d
(
T iTPj , L

i
j

)
+ ξ

(
1− vi

j

T (Pj − cij)
‖Pj − cij‖

)]2

(6)

Both the reprojection (Eq. 1) and backprojection (Eq. 6)
error functions are numerically equivalent when estimat-
ing object poses in Euclidean space, so one may choose
either one. The reprojection error is usually preferred in
the computer vision community because it is invariant to
projective transformations, while the backprojection error is
meaningless in projective space[15]. In our particular case,
working with calibrated cameras in an Euclidean space, we
have chosen the backprojection error because it makes our
framework more easily extensible to other types of multi-
modal data, such as LASER point clouds, which we plan to
incorporate in the near future.

If we were considering the general case of pose esti-
mation in multiple views “from scratch”, initializing the
non-linear minimization from Eq. 6 involves solving the
nPnP problem[12] for each iteration of RANSAC, which is
computationally very expensive. In our case, we will use
the good estimate provided by each cluster centroid as the
starting pose.

Two further refinements are necessary to construct a multi-
view algorithm from the algorithm described in §II.B. First,
the single-view algorithm contains a cluster merging step,
designed to fuse information from different clusters within
the same image. In the multi-view algorithm, it is also
necessary to cluster object poses across different views, and
both actions can be integrated in a single clustering step,
to merge all clusters within multiple images at the same
time. A second issue that requires careful consideration is
the clustering radius, i.e. the distance between two object
hypotheses to be merged together. Regardless of the choice, it
is highly unlikely that a single threshold distance will satisfy
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Fig. 4. Three-camera rig used for accuracy tests with coordinate frame
indicated on bottom left corner.

all possible cases. If this radius is too small, hypotheses that
belong to the same physical object might not be clustered
together. If it is too large, a single cluster might envelope sev-
eral physical objects that are close together (e.g. Fig. 3). The
solution is available in the single-view algorithm: RANSAC
and a merging step handle well clustering radius issues. The
final multi-view algorithm is as follows:

1) Run single-view algorithm on each image without
cluster merging.

2) Collect all hypotheses in a common reference frame.
3) For each object class, cluster hypotheses with Mean

Shift to obtain sets of hypotheses hc for cluster c.
4) For each cluster c, minimize Eq. 6 using all 3D-

2D correspondences from all objects that belong to
the cluster. Initialize the optimization at the cluster
centroid. If number of points consistent with h∗c is
greater than a threshold ε2, consider pose as correct
and process next cluster.

5) If ε2 is not met, choose a subset of n points and
estimate a hypothesis with the best pose according to
those points. If the amount of points consistent with
the hypothesis is greater than a threshold ε1 < ε2,
create a new object instance and refine the estimated
pose using all consistent points in the optimization.
Repeat this procedure until the number of unallocated
points is lower than a predetermined amount, or until
the maximum number of iterations are exceeded.

6) Merge similar hypotheses using the single-view cluster
merging algorithm. Re-optimize using all points.

B. Implementation details

The performance of this multi-view algorithm in real
scenes depends largely on the chosen termination conditions
for each procedure. Given that each pass refines the solution
in search of greater accuracy, it is safe to enforce more
stringent constraints as the algorithm proceeds forward.
When considering ε2, we are aiming to identify those pose
clusters with a strong agreement to avoid further processing.
Therefore, choosing a high number of points (e.g. 75% of
the total number of points within the cluster) is advisable. ε1
is a fail-safe condition that operates on those clusters with
disagreeing poses. We are in an equivalent position to that in
the single-view RANSAC step, so a similar value should be
chosen. Finally, the last merging step only receives highly
refined poses (this algorithm’s average translation error is
0.61%), so merging hypotheses should only be performed

Fig. 5. Examples scenes captured by the rig with Cam 1 (top), Cam 2
(middle), and Cam 3 (bottom). (Col 1) Rice box at 50 cm. (Col 2) Notebook
at 60 cm. (Col 3) Coke can at 80 cm. (Col 4) Juice bottle at 1m. (Col 5)
Pasta box at 1.2m.

when their positions are closer than 1 − 2cm. apart. In
addition, multi-view constraints should be enforced to com-
pletely eliminate possible false positives in the single-view
algorithm, e.g. validating an object hypothesis by requiring
that consistent points exist in at least two cameras.

IV. EXPERIMENTS

Three sets of experiments have been conducted to prove
our pose estimation algorithm’s suitability for robotic ma-
nipulation. The first set evaluates the accuracy of the pro-
posed algorithm in estimating the position and orientation
of a given object in a set of images. The second set of
experiments evaluates our algorithm’s robustness against
modeling errors, which greatly influence the accuracy of pose
estimation. Finally, the third set uses the pose estimation
algorithm alongside a state-of-the-art planning algorithm
to grasp objects with a Barrett WAM robotic arm. In all
experiments estimate the full 6-DOF pose of objects, and
no assumptions are made on their orientation or position. In
all cases, the single-view algorithm clusters the scene with
a Mean Shift radius of 100 pixels, and chooses subsets of
5 correspondences to compute each RANSAC hypothesis.
The maximum number of RANSAC iterations is set to 1000.
The multi-view algorithm requires that a pose is seen by at
least two views, and that at least 50% of the points from the
different hypotheses are consistent with the final pose.

The experimental setup is a static three-camera rig with
approximately 10cm baseline between each two cameras (see
Fig. 4). Both intrinsic and extrinsic parameters for each
camera have been computed, considering camera 1 as the
coordinate origin.

A. Pose estimation accuracy

In this set of experiments, we evaluate our system’s
accuracy over the range most useful in robotic manipulation.
The three-camera rig was mounted and calibrated on a flat
table(see Fig. 4). Our database is composed of five common
household objects of various shapes and appearances. A set
of 27 different positions and orientations for each object
were gathered, with depths (i.e. distances from the central
camera) ranging from 0.4m to 1.2m in 10cm increments,
lateral movements of up to 20cm and out-of-plane rotations
of up to 45 degrees. 10 images were taken with each camera
at each position to account for possible image noise and
artifacts, producing 810 images per object and a total of 4050
images.
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Fig. 6. Examples of introspective multi-view in complex scenes. (Cols 1-3) depict the recognized poses overlaid on each image. (Col 4) shows a
reconstruction of the given scenes in our virtual environment.

TABLE I
AVERAGE ACCURACY TEST. (1) SINGLE-VIEW. (2) ROBUST POSE

AVERAGING. (3) INTROSPECTIVE MULTI-VIEW. (4) FULL MULTI-VIEW.

(1) (2) (3) (4)

TX error (cm) 1.45 1.36 0.47 0.46
TX error/dist. 1.80% 1.71% 0.61% 0.60%
Rot. error (deg) 6.27 8.11 5.69 3.48
Correct det. rate 85.0% 88.3% 88.3% 71.9%
False pos. rate 2.78% 0% 0% 0%
False neg. rate 13.61% 11.67% 11.67% 28.15%
Num iter./view 96.71 96.71 98.69 259.05

Table I compares the accuracy of Collet et al’s single-
view algorithm, robust pose averaging of single views,
the proposed multi-view algorithm and a Full Multi-view
(Generalized Image) approach. Single-view results show the
average performance of [5] over each of the three cameras
in our setup. Robust pose averaging computes a weighted
mean pose based on the single-view pose hypotheses, using
a metric based on the number of consistent points and av-
erage reprojection error as a weighting factor. The distance-
normalized translation error refers to the absolute translation
error divided by the distance with respect to the closest
camera. Rotation error is measured as the quaternion angle
α = 2cos−1(qT qgt). The correct detection rate counts all
pose hypotheses that lie within 5 cm of the true pose. It is
important to note that the correct detection, false positive
and false negative rates do not necessarily need to add up to
100%, because an algorithm might output a correct and an
incorrect pose in the same image.

As we can see in Table I, accuracy is increased threefold
using the introspective multi-view scheme with respect to
pose averaging, while requiring similar processing time. It is
noteworthy that the introspective multi-view and full multi-
view, considered a theoretical limit, perform very similarly
in terms of accuracy. The low detection rate of the full multi-
view algorithm is due to its enormous computational cost, as
it often exceeds the maximum number of iterations with no
correct detection. The average number of iterations required
to detect a single object with a full multi-view approach is

TABLE II
AVERAGE DISTANCE-NORMALIZED TRANSLATION ERROR WITH

VARYING MODEL SCALE.

Model scale (1) (2) (3) (4)

0.95 4.11% 4.20% 0.81% 0.81%
0.97 2.56% 2.65% 0.68% 0.62%
0.99 1.86% 1.76% 0.61% 0.54%
1.01 2.12% 1.95% 0.74% 0.69%
1.03 3.14% 2.90% 0.98% 0.94%
1.05 4.72% 4.43% 1.29% 1.18%

three times greater than with any other technique, and its
computational complexity grows exponentially with respect
to the number of objects in a scene.

B. Robustness against modeling noise
This set of experiments evaluates our proposed algorithm’s

robustness against modeling inaccuracies. Successful pose
estimation in our single-view algorithm is heavily dependent
on a good model calibration, specially in terms of scaling,
because depth is estimated entirely based on an object’s
scale. Therefore, extreme care needs to be taken when
creating models to set a proper scale, and several tests need to
be conducted before a new object model can be incorporated
into the robot’s knowledge database. For example, a model-
ing error of 1mm in a coke can (i.e. 1mm larger than its real
size), translates into a depth estimation error of up to 3cm at a
distance of 1m, large enough to cause problems to the robotic
manipulator. On the other hand, having multiple views of the
same object enables the use of further constraints in its pose.
In particular, if the cameras have been fully calibrated, an
“implicit triangulation” takes place during the optimization,
with the object drifting to its true position to minimize the
global backprojection error, despite the larger error when
each view is processed individually.

Table II and Table III showcase the effect of scale errors
during the object modeling stage. The proposed multi-view
algorithm outperforms every other approach in the presence
of modeling noise. It is remarkable that its worst result
(with models increasing 5% in scale) outperforms every other
approach’s best result (with no modeling error, Table I).

2054



TABLE III
AVERAGE CORRECT DETECTION RATE WITH VARYING MODEL SCALE.

Model scale (1) (2) (3) (4)

0.95 69.7% 71.7% 80.8% 59.3%
0.97 82.2% 85.0% 85.8% 66.7%
0.99 84.4% 86.7% 86.7% 71.1%
1.01 84.2% 88.3% 88.3% 70.4%
1.03 74.4% 77.5% 87.5% 65.2%
1.05 55.8% 58.3% 85.0% 54.1%

Fig. 7. Distribution of distance-normalized translation errors for different
multi-view approaches. Introspective multi-view obtains the most amount
of pose hypotheses under 1% error, and global average error of 0.61%

C. Grasping objects
We integrated the multi-view algorithm with a planning

algorithm on HERB. The planning algorithm, called the
Inverse-Kinematics BiDirectional Rapidly-exploring Ran-
dom Tree algorithm (IKBiRRT) [16], plans a trajectory for
the arm starting from its current configuration and ending
at a configuration that places the wrist of the robot at
an acceptable location for grasping. Each object that was
localized has an associated set of wrist locations that are
suitable for grasping. Once the transform of the object is
found, the associated wrist locations are input as goal regions
for the planner, which then samples from these goal regions
as it plans. Note that, for scenes where multiple graspable
objects are present, we input all the associated wrist locations
for all objects into the planner, which finds a trajectory
to reach any one of them. Once the robot completes the
trajectory, the fingers are closed and the object is lifted.

In the grasping experiments, one object of each class was
placed on a table within the robot’s reachable workspace.
Before each test, objects were placed in a new arbitrary
position and orientation within 10 cm of each other on the
table. The robot then planned a trajectory to retrieve each
object from the table avoiding the rest and throw it to a trash
can. During 20 such scenarios, the robot successfully grasped
98 of the 100 objects (see Table IV), validating the accuracy
of the proposed multi-view pose estimation algorithm for
robotic manipulation of objects in cluttered scenes.

V. CONCLUSIONS

We have presented and validated an efficient multi-view
system for the recognition and registration of common house-

TABLE IV
GRASPING IN CLUTTERED SCENES

Can Juice Rice Pasta Notebook Total

Attempts 20 20 20 20 20 100
Successful grasps 19 19 20 20 20 98

hold objects which proves to increase both accuracy and
computation time by a factor of three against other multi-
view approaches. We have demonstrated that the results are
accurate enough for a robot to reach into a cluttered scene
and pick up all objects, with a grasping success rate of 98%.
We believe that our system provides a crucial capability that
will enable mobile manipulators to function and interact in
crowded indoor environments with speed and accuracy.
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