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Abstract— This paper presents a novel planar three-degree-
of-freedom pendulum-like underactuated robot. The robot con-
sists of an end-effector with an actuated arm suspended on a
cable wound on a reel. The robot can achieve full planar point-
to-point motion (position and orientation) with zero-velocity
landing by swinging itself as children do on playground swings.
The equations of motion of the underactuated cable-driven
robot are first developed. Then, the actuated joint trajectory
design for swing-up as well as an optimization technique used
to control the behaviour of the passive joint are proposed.
Finally, a prototype of the robot and its real-time controller are
presented with experimental results for point-to-point trajecto-
ries. The proposed mechanism constitutes a low-cost solution
for applications requiring large workspaces by combining the
advantages of cable-driven systems and underactuation and, to
the best of our knowledge, this is the first work presenting the
real-time control of such a mechanism.

I. INTRODUCTION

Cable-driven robots are well-known solutions for applica-
tions requiring large workspaces since cables can be wound
on reels, thereby providing large motion ranges. More-
over, replacing rigid links with cables greatly reduces the
weight and actuation power. However, cable-driven robots
are generally based on parallel architectures with more (or
at least as much) actuators than degrees of freedom since
cables can only pull and not push. Indeed, implementing
such mechanisms requires installing numerous actuators at
different locations in space. A support structure as well as
some calibration [1] are thereby needed, which drastically
increases the implementation costs.

On the other hand, underactuated mechanisms are systems
with fewer actuators than degrees of freedom whose control
has attracted significant attention. The motion of the free
(unactuated) joints is generally related to that of the other
joints by complex dynamics, which makes the control prob-
lem challenging [2]. Moreover, due to underactuation, only
a subset of the kinematically possible global trajectories are
achievable. Nevertheless, such mechanisms are very well-
suited for point-to-point operations since the latter involve
mainly getting from a point to another regardless of the path.

Combining the advantages of underactuation (few actu-
ators, simplicity) with those of cable transmissions (agility,
large workspace, low mass) is a promising avenue in order to
reduce the cost of large workspace point-to-point operations.
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Potential applications include dock loading, construction,
field robotics, domotics, surveillance systems, automated
greenhouses as well as entertainment and human-robot in-
teractions. The latter is possible since underactuated cable-
driven robots are lightweight and cannot lead to constrained
motions that are a concern in the context of human/robot
cooperation [3].

A first two-degree-of-freedom cable-driven pendulum-like
robot, referred to as the Winch-Bot, was presented in [4].
The authors used off-line trajectory planning to control
the position of the robot. However, the proposed technique
requires specific initial conditions that may be incompatible
with the architecture or the current configuration of the robot.

The objective of this paper is to present a simple, fully
operational 3-dof planar cable-driven underactuated robot
and to provide an effective and robust trajectory planning
scheme that allows the real-time control of the robot. The
planning and control scheme developed in this paper allows
the performance of point-to-point trajectories and leads to
a natural behaviour of the robot. The proposed mechanism
is a 3-dof planar robot whose first R joint is passive, as
illustrated in Fig. 1. It consists of an end-effector of length
L, mass m2 and inertia I2 driven by a motor of mass m1 and
inertia I1. The centre of mass of the end-effector is located
at a distance d2 from the pivot while the centre of mass of
the actuator is located at a distance d1 from the same pivot.
The actuator is maintained in line with the cable using a

Fig. 1. The three-degree-of-freedom underactuated cable-driven robot.
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rigid section at the end of the latter. The angle of the cable
with respect to a vertical axis is noted θ1 while the angle
between the cable and the end-effector is noted θ2. Angle θ2
is associated with the suspended motor while angle θ1 is an
unactuated coordinate. The end-effector motor is suspended
to a cable of length ρ passing through a pulley and wound
on a reel actuated by a second fixed motor. Therefore, the
length of the cable can be controlled using the latter actuator.
Globally, the mechanism can be thought of as a planar serial
RPR robot whose first R joint is not actuated.

Based on the physical properties of the pendulum system
formed by the robot, a trajectory planning scheme is devel-
oped and a real-time optimization algorithm is used to control
the behaviour of the unactuated joint. The robot can achieve
planar point-to-point motion (position and orientation) with
zero-velocity landing by swinging itself as children do on
playground swings. It uses both techniques pointed out by
Case [5],[6] for effective swinging, namely, i) leg-stretching
as in seated swinging, using end-effector swing and ii)
centre of mass motion as in standing swinging, using cable
extension. Moreover, the proposed control technique does
not require specific initial conditions.

The rest of this paper is structured as follows: first, the
equations of motion of the underactuated cable-driven robot
are developed. Then, the actuated joint trajectory design
for swing-up as well as an optimization technique used to
control the behaviour of the unactuated joint are proposed.
A prototype of the robot and its real-time controller are
also presented with experimental results for point-to-point
trajectories. Finally, the future development of x − y path-
tracking trajectories is briefly addressed.

II. EQUATIONS OF MOTION

In this section, the kinematic and dynamic equations
governing the motion of the underactuated 3-dof cable-driven
robot are obtained.

A. Kinematics

Referring to Fig. 1, the direct kinematics of the robot can
be written as:

x = ρ cos θ1 + L cos(θ1 + θ2)
y = ρ sin θ1 + L sin(θ1 + θ2)
φ = θ1 + θ2. (1)

From these equations, the solution of the inverse kinematic
problem is readily obtained as:

θ1 = atan2
(
y − L sinφ

ρ
,
x− L sinφ

ρ

)
ρ =

√
(x− L cosφ)2 + (y − L sinφ)2

θ2 = φ− θ1. (2)

B. Dynamics

In order to simplify the dynamic model, it is first assumed
that the cable is a massless rigid body. This implies that
tension T in the cable is always sufficient to avoid sagging.

Moreover, friction in guides and pulleys as well as aerody-
namic effects are neglected compared to the other forces in
the system. Then, using Lagrangian dynamics, the equations
of motion can be obtained and written as:(
I1 + I2 +m1(ρ+ d1)2 +m2(ρ+ d2 cos θ2)2

)
θ̈1

−m2d2 sin θ2ρ̈+
(
I2 +m2(d2

2 + ρd2 cos θ2)
)
θ̈2

+2 (m1 (ρ+ d1) +m2 (ρ+ d2 cos θ2)) ρ̇θ̇1

−m2ρθ̇2 sin θ2
(

2θ̇1 + θ̇2

)
+m1g (ρ+ d1) sin θ1

+m2g (ρ sin θ1 + d2 sin (θ1 + θ2)) = 0
(3)

m2d2 sin θ2
(
θ̈1 + θ̈2

)
− (m1 +m2) ρ̈

+ (m1 (ρ+ d1) +m2ρ) θ̇21

+m2d2 cos θ2
(
θ̇1 + θ̇2

)2

+ (m1 +m2) g cos θ1 = T

(4)(
I2 +m2

(
d2
2 + ρd2 cos θ2

))
θ̈1 −m2d2 sin θ2ρ̈

+
(
m2d

2 + I2
)
θ̈2 + 2m2d2ρ̇θ̇1 cos θ2

+m2d2ρθ̇
2
1 sin θ2 +m2d2g sin(θ1 + θ2) = τ

(5)

where mi, Ii and di are respectively the mass, inertia and
location of the centre of mass of body i, T is the tension in
the cable, τ is the torque applied by the motor mounted at
the end of the cable and g is the gravitational acceleration.

Equation (3) is the most relevant motion equation of this
system since it does not include any control input as there
is no actuator at the first joint. Equations (4) and (5) will be
used to compute the actuator force and torque and to verify
that the tension is positive in the cable and that the actuator
torque is within its limits.

III. TRAJECTORY PLANNING

From the dynamic model presented in the above section,
and for given initial conditions, cable angle θ1(t) can be pre-
dicted for known trajectories of the actuated joints ρ(t), θ2(t)
by integrating (3). However, for the prediction to be correct,
the prescribed trajectories must also satisfy the following
conditions:

1) Positive tension is maintained
2) Actuator torque and joint limits are satisfied
3) Joint trajectories and their derivatives are smooth, to

prevent shocks
4) Prediction time is small enough so that the computa-

tional burden and the model errors are bounded.
From the latter point, it is clear that planning entire trajecto-
ries from zero initial conditions to large cable angles would
be very difficult. On the other hand, since the motion of the
robot is governed by pendulum-like dynamics, planning tra-
jectories over half-periods of oscillation is appropriate since
the prediction horizon is relatively small and the dynamics
are similar in-between zero-velocity states

(
θ̇1 = 0

)
.
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A. Trajectory of the Unactuated Joint

Defining a goal [xg, yg, φg] to be reached with a zero final
velocity, joint coordinates [θ1g, ρg, θ2g] are obtained from (2).
Since the actuated joint goals are easily reachable, the objec-
tive is to find actuated joint trajectories that allow the robot to
reach the desired cable angle or, at least, within half a period,
a cable angle which is closer to the prescribed goal. These
trajectories must also satisfy initial conditions to maintain
continuity and final conditions that satisfy the objectives.
Since the system is governed by complex dynamics, it is clear
that optimal trajectories are not obtainable within acceptable
computation time.

Thus, a technique similar to the one presented by Tor-
topidis and Papadopoulos [7] for underactuated space ma-
nipulators will be used here. Indeed, trajectories defined
using p + q parameters are used together with p boundary
conditions on each actuated joint thereby leaving q free
parameters. These free parameters can then be tuned through
optimization in order to produce the desired underactuated
joint behaviour. Here, there are p = 6 boundary conditions
(initial/final positions, velocities and accelerations) and, for
simplicity reasons, q = 1 free parameter is left for each
actuated joint.

Since a zero velocity is desired at the target configura-
tion (for smooth landing), extrema of θ1 are considered as
starting/ending point of trajectories. This leads to a cosine-
like function for θ1 (t) on a half-period. Moreover, since
a large workspace is desired, large values of θ1 must be
reachable and the robot must be able to efficiently excite
itself to achieve such motions. Special attention must then
be given to trajectory planning and this will be addressed for
each actuated joint independently.

B. Cable Extension

Considering a lumped end-effector (no actuator mounted
at the end of the cable), the system becomes similar to a
variable-length (Lorentz) pendulum whose swing-up motion
was studied in [8],[9]. It was suggested by Burns [10]
and proven optimal for instantaneous variation of length by
Piccoli and Kulkarni [11] that lengthening the cable when the
angular velocity of the cable is minimum and shortening it
when the angular velocity is maximum amplifies the system’s
energy.

Hence, given the mathematical form of θ1 prescribed
above, a sine-like function is choosen for the cable extension.
As shown in Fig. (2) —which was obtained through numer-
ical simulation—, exciting the system at twice its natural
frequency with a ±π/2 phase from cable angle position is
best-suited to increase (or decrease) the cable angle, which
is consistent with Burns’ results [10]. Since the cable angle
describes a cosine-like function between two zero-velocity
states (θ̇1 = 0), the following function is chosen for the
cable extension:

ρ (t) = A1 sin (2ωt) +B1 sin (3ωt) + C1 sin (4ωt)

+ρi +
(ρf − ρi)ωt

π
(6)

for 0 ≤ t ≤ π/ω.
In (6), indices i and f refer to initial/final conditions, t

is the time, ω is the system’s natural frequency and A1 is
a free parameter which is optimized for each half-period in
order to control the behaviour of angle θ1. Coefficients B1

and C1 are obtained by prescribing the time derivative of (6)
at times t = 0 and t = π/ω to be equal to the initial/final
velocities ρ̇ = ρ̇i and ρ̇ = ρ̇f . This leads to:

B1 =
ρ̇i − ρ̇f

6ω
(7)

C1 = −A1

2
+
ρi − ρf

4π
+
ρ̇i + ρ̇f

8ω
. (8)

For stability reasons, the boundary condition on accelerations
are chosen to be zero by definition of (6). Initial conditions
are measured from encoders while final conditions are de-
fined as follows:

ρf =

 ρg if |ρg − ρi| < ∆ρmax

ρi + ∆ρmax else if ρg > ρi

ρi −∆ρmax else
(9)

ρ̇f =

 0 if |ρg − ρi| < ∆ρmax

and θ1p = θ1g

2ωA1 else
(10)

where ρg is the target cable length and ∆ρmax is the maximal
cable length variation allowed by the maximum velocity of
the actuator. Hence, a target cable length is set at first and
maintained until the target cable angle θ1g is reached. The
final velocity is chosen to match the basic sine conditions
in order to limit accelerations and is set to zero for smooth
landing when the target point is reached.

C. End-Effector Swing

On the other hand, considering a fixed-length cable, the
problem becomes similar to a double pendulum with a
long first link. The swing-up problem of a double-pendulum
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Fig. 2. Average amplitude gain for θ1 by half-period for cable extension
ωn = 3.05(rad/s), ρ̄ = 1(m),∆ρ = 0.05(m), θ2 = 0(rad).
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with a passive first joint was widely studied in the context
of the Acrobot [12],[13],[14] and Brachiation Robots [15].
Spong [12] suggests that, in order to increase the system
energy, the motion of the lower link must be “in-phase” with
the upper link. Thus, a sine-like function is chosen for the
end-effector swing since the upper link motion is of this
form. As shown in Fig. (3) —which was obtained through
numerical simulation—, exciting the system at its natural
frequency is best-suited to increase (or decrease) the cable
angle, as pointed out by Spong. A phase of −3π/4 or π/4
from the cable angle is also preferable. However, in order
to synchronize the goal-reaching with the cable extension
and to impose zero boundary acceleration from the outset,
a sine function with a phase of ±π/2 is chosen since it
produces almost the same amplitude of excitation. Therefore,
the following function was chosen for the end-effector swing:

θ2 (t) = A2 sin (ωt) +B2 sin (2ωt) + C2 sin (3ωt)

+θ2i +
(θ2f − θ2i)ωt

π
(11)

for 0 ≤ t ≤ π/ω.
Similarly to A1, A2 is a free parameter used to adjust

the behaviour of angle θ1. Also, coefficients B2 and C2 are
obtained by prescribing the time derivative of (11) at times
t = 0 and t = π/ω for initial/final velocities θ̇2 = θ̇2i and
θ̇2 = θ̇2f . This leads to:

B2 =
θ2i − θ2f

2π
+
θ̇2i + θ̇2f

4ω
(12)

C2 = −A2

3
+
θ̇2i − θ̇2f

6ω
. (13)

For stability reasons, the boundary conditions on acceler-
ations are chosen to be zero by definition of (11). Initial
conditions are measured from encoders while final conditions
are defined as follows:

[
θ2f

θ̇2f

]
=


[θ2g, 0]T if |ρg − ρi| < ∆ρmax

and θ1p = θ1g

[0,−ωA2]T else

(14)

Similarly to the cable length, the final velocity is chosen
here to match the basic sine conditions in order to limit
accelerations and is set to zero for smooth landing when the
target point is reach. Since θ2g is always reachable within a
half-period, θ2f is kept to zero for symmetry reasons until
the goal is reached.

IV. OPTIMIZATION OF THE FREE JOINT TRAJECTORY

As pointed out before, one free parameter Aj is used for
each actuated joint in order to adjust the behaviour of angle
θ1. However, since the robot dynamics are complex, there is
no analytical equation defining θ1(t) from the actuated joint
trajectories. Indeed, it must be predicted by integrating (3)
in real-time.
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Fig. 3. Average amplitude gain for θ1 by half-period for end-effector swing
ωn = 3.05(rad/s), ρ = 1(m), θ̄2 = 0(rad),∆θ2 = π/2(rad).

A. Optimization Function

The main objective is to minimize the difference between
the cable angle prediction θ1p and its desired value θ1g using
the free parameters (A1, A2) whose values can be tuned
without modifying the actuated joints’ final positions.

However, A1 and A2 affect the tension, the torque, the
joint maximal positions as well as the velocities, which must
be considered in the optimization. Indeed, fulfilling the asso-
ciated constraints must also be included in the optimization
function. This is accomplished here using penalty functions,
which are chosen to be combinations of ramps and step-
functions as follows:

Pj =

 0 if ηj ≤ ηj,max

K1 +K2 (ηj − ηj,max) else
(15)

where Pj is the penalty function associated to constraint ηj ,
ηj,max is the maximal allowed value for this constraint and
K1, K2 are positive constants tuned experimentally. Con-
straints include joint positions, velocities and accelerations
as well as cable tension and end-effector torque. Thus, the
optimization function is defined as:

min
A1,A2

∆, with ∆ = (|θ1g| − |θ1p|)2 +
c∑

j=1

Pj (16)

where c is the total number of constraints.
In this equation, the absolute value of the cable angle is

used since, from the pendulum-like dynamics, values of θ1p

will vary from positive to negative within each half-period.

B. Optimization Algorithm

For each step of the optimization process, given (A1, A2),
the optimization function can be computed using results
obtained by integrating (3). For solving in real-time, the
Nelder-Mead algorithm [16] is used since it requires no
derivative which, for our problem, can only be computed
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through finite differences. Moreover, this algorithm is fast
and convergence is guaranteed for strictly convex functions.
The three starting points needed for the algorithm are chosen
to be:

(A1, A2)1 =
(
−ρ̇max

4ω
,
θ2max

2

)
(A1, A2)2 =

(
−ρ̇max

4ω
,
−θ2max

2

)
(A1, A2)3 =

(
ρ̇max

4ω
,
θ2max

2

)
. (17)

When included in (6) and (11) for standard initial/final con-
ditions, these values correspond to reaching approximately
half of maximum cable velocity and half of maximal end-
effector angle which are associated with the most restrictive
penalty functions. Thus, the starting solutions are located in
the middle of the penalty-free zone which accelerates the
algorithm’s convergence.

C. Frequency Determination

As described in section III, the trajectories are defined as
functions of the system’s natural frequency. However, the
natural frequency is also a function of the cable length ρ.
Hence, the natural frequency must be determined while per-
forming optimization for the system to be well-synchronized,
i.e., for the goals for each joint to be reached simultaneously.

Since no analytical function is available to define the
system’s frequency, it must be computed while integrating
equations of motion. Since the half-period on which opti-
mization is performed is defined from zero-velocity states,
the frequency is obtained by finding the time of the next zero
velocity point

(
θ̇1 = 0

)
. Then, the actuated joint trajectories

are defined using the latter frequency and the optimization
algorithm is started. Moreover, the frequency is re-computed
throughout the algorithm since it is also a slow-varying
function of (A1, A2).

V. IMPLEMENTATION

A small prototype of the underactuated robot was built as
shown in Fig. 4 with the specifications presented in Table I.
The latter were obtained either by direct measurements or
CAD analysis and the robot was designed using a paral-
lelogram shape to ensure planar motion. DC motors with
encoders are used to actuate and measure both the end-
effector and the cables which are both wound on a single
reel to ensure that they have the same length. The cable
angle θ1 is measured using encoders mounted on the robot’s
supporting pulleys.

A controller was implemented on a real-time QNX com-
puter with a servo-rate of 500 Hz. Closed-loop PID were
used to control the actuated joint positions and a 12-step
fixed-step fourth order Runge-Kutta formula [17] was used
to integrate the equations of motion. M = 4 iterations of
the Nelder-Mead algorithm were computed for each step
and a total of N = 6 steps (0.012s) were used to define
the free-parameters (A1, A2). Nevertheless, even through

Fig. 4. Prototype of the 3-dof underactuated cable-driven robot.

TABLE I
SPECIFICATIONS OF THE PROTOTYPE

Description i = 1 i = 2
Mass mi (kg) 1.291 0.404
Inertia Ii (kgm2) 4.0× 10−3 4.8× 10−3

Location of CoM di (m) 0.046 0.033
End-Effector Length L (m) 0.300

optimization, the closed-loop PID is operated at 500 Hz. The
structure of the controller is shown in Fig. 5.

At each time step k, if the number of steps performed n is
less than maximum number N , an M -iteration optimization
algorithm including the definition of parameters (A1, A2),
the integration of the equations of motion, the frequency
computation and the computation of the optimization func-
tion, is started using the previous values of (A1, A2) as a

Fig. 5. Controller structure for an N-step, M-iteration-by-step controller.
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Fig. 6. Joints trajectories for point-to-point motion

starting point. Then, the desired trajectories are sent to a
PID controller driving the actuators. The joint coordinates are
measured and the next time step is processed. The number of
steps performed is reset to zero and starting points from (17)
are used when zero-velocity is reached for the cable angle.

In practice, it was difficult to make predictions for small
cable angles since the dynamics are slightly different [18].
Indeed, when θ1 is small, the system is more subject to cable
flexion and vibrations. Therefore, pre-designed excitation
trajectories with fixed amplitude and frequency were used
for end-effector swing in order to initiate the motion.

A. Experimental results

A series of end-effector Cartesian coordinates [xi, yi, φi]
T ,

for i = 1..r simulating point-to-point trajectories are used
to evaluate performances. Points were chosen to include
increasing and decreasing amplitudes of θ1 as well as short-
ening and lengthening of the cable.

Using the controller structure and the trajectory planning
described above, actuated joint trajectories and cable angle
predictions were computed in real-time for these objectives.
Fig. 6 presents joint trajectories for point-to-point motion,
Fig. 7 presents cable angle prediction vs. measurements for
the goal region and Fig. 8 presents cable angle prediction
errors. The robot motion from which these graphs were
obtained can be seen in the accompanying video.

Cable angle predictions for the underactuated robot were
generally sufficient for great controllability. Goal-reaching
precision was excellent since joint motions were well-
synchronized with the frequency estimation for pick-and-
place actions. Predictions were sligthly less accurate when
decreasing the system’s energy since the tension in the
cable was then reduced. This causes off-axis rotations which
cannot be predicted by our model. Nevertheless, the experi-
mental results were sufficient to confirm the accuracy of the
method presented above.
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Fig. 7. Cable angle prediction in goal region for point-to-point motion
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Fig. 8. Cable angle prediction error for point-to-point motion

VI. FUTURE WORK

The next step in our project is to perform x − y path-
tracking trajectories. Even if the system is limited by un-
deractuation, it is still overdetermined for 2-dof positioning
tasks which gives great flexibility for complex operations. It
is now planned to develop a method defining path-following
trajectories for actuated and unactuated joints by choosing
the best possible initial conditions and optimizing path
control. Initial conditions can be obtained using the point-
to-point controller presented above and path-tracking can be
accomplished similarly by combining path points in a global
objective.
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VII. CONCLUSION

A three-degree-of-freedom planar robot combining the
advantages of cable-driven actuation and underactuation was
presented. The actuated joint trajectory design for swing-
up as well as an optimization technique used to control the
behaviour of the free joint were presented. Actuator and joint
limitations as well as positive tension were also included in
the problem. Finally, a small prototype of the robot and its
real-time controller were presented. It was shown through
experimentation that the strategy developed was successful
at reaching objectives and that precision was sufficient for
point-to-point trajectories. Further developments on x − y
path-tracking trajectories was also discussed.
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