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Abstract— This paper presents a control theoretic formula-
tion and optimal control solution for integrating human control
inputs subject to linear state constraints. The formulation
utilizes a receding horizon optimal controller to update the
control effort given the most recent state and human control
input information. The novel solution to the corresponding
finite horizon optimal control problem with terminal constraint
is derived using Hilbert space methods. The control laws are
applied to two planar human-driven mass-cart pendula, where
the task is to synchronize the pendula’s oscillations.

I. INTRODUCTION

Despite the advances in autonomous robotics and automa-

tion, some tasks still require human intervention or guidance

to mediate uncertainties in the environment or to execute

the complexities of a task that autonomous robots are not

yet equipped to handle. Therefore, it is desirable to design

robot controllers that utilize the strengths of both autonomous

agents, adept at handling lower level control tasks, and

humans, superior at handling higher-level cognitive tasks.

Researchers in the Human-Robot Interaction (HRI) field refer

to this as mixed initiative interaction or human-in-the-loop

(e.g., [1],[2]). It can also be referred to as shared control, as

in [3] and [4], since both controllers (human and computer)

act on the same dynamic system.

Earlier work in mixed initiative interaction and human-in-

the-loop control have focused on graphical user interfaces or

haptic feedback to relay task-dependent data to the human

and to relay human control information to an automatic

controller or autonomous agent (e.g., [5], [6]). In this paper,

we largely ignore this issue. Instead we focus on the design

of the actual control laws.

In [7], a mixed initiative control utilizing navigation

function based controllers is combined with human input

to drive a differential drive robot around obstacles. The

navigation functions are cost functions with a global

minimum so the controllers drive to a specific goal state.

When human input is incorporated into the controller, the

human user can drive the robot away from the planned path

and once the user stops issuing commands, the controller

will drive the system towards the goal state again. Our

paper’s approach differs in that the goal state is not known

a priori. On the contrary, the goal state is chosen by the

controller to be a state that is closest to where the human

input would drive that satisfies the state constraint.

Previous work on designing shared control laws include

mobility aids, where the humans propel and steer a walker

in the desired direction, while the walker is equipped to steer

and apply brakes in order to prevent obstacle collisions and

falls [4]. These algorithms are rule-based, and need to be

experimentally tuned in order to smooth transitions between

user control and automatic control. In [3], shared control for

vehicle steering was examined using a motorized steering

wheel and human driver. An automatic controller applied

torque to the steering wheel to maintain a vehicle heading

that follows the road while the driver must overcome this

torque to make any corrections to the steering angle, relying

on the physical human force to impart the intended behavior

on the system. In this paper, we invert this relationship in

that the controller is guiding the human to reach a target

set. This allows the automatic controller to ensure that state

constraints on the system are satisfied, while the human can

direct the system to a solution, within the constraints, that

is suitable from a higher-level point-of-view.

Specifically, a novel control theoretic formulation of

the human-in-the-loop problem is presented by framing

it as a receding finite horizon optimal control problem

with a terminal state constraint and presenting a Hilbert

Space-based solution to the corresponding optimal control

problem. This resulting control law is then applied to the

problem of two humans each driving a mass-cart pendula

such that their pendula oscillations are synchronized.

The outline of the paper is as follows: Section 2 introduces

the receding horizon problem formulation that incorporates

human control input and a linear state constraint, while

Section 3 details the solution to this optimal control problem

using Hilbert’s projection theorem. In Section 4, we show

that the control indeed converges to a solution that satisfies

the terminal constraint. This is followed by Section 5, in

which the control law is applied to a simulation of two planar

mass-cart-pendula, each partially controlled by a human

operator seeking to synchronize the two pendula oscillations.

II. PROBLEM STATEMENT

Given a discrete-time linear dynamic system,

xk+1 = Axk + Bvk (1)

with xk ∈ R
n, a human operator issues the commands

vk ∈ R
m. However, if part of the task is to satisfy certain

linear state constraints, commanding the system to do so may
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not be a trivial task. On the other hand, it is certainly possible

to design an automatic controller that can handle the task of

satisfying linear state constraints, as in [8]. However, the

problem we wish to address in this paper is to implement a

controller that drives the system in such a way that both

the state constraint is satisfied and the human operators

intentions for the system behavior are respected as much

as possible.

In order to preserve the human operators’ intentions for

the system behavior, we wish to design a control law

that minimizes deviations from the human input while also

ensuring that the linear state constraint will be satisfied.

To accomplish this, we must predict where the human

operator intends to drive the system which, in turn, requires

a prediction on future human operator input. We linearly

extrapolate the human input over a time horizon of N
discrete-time steps, based on the current and previous input

values. Thus, at every time instant, we have a predicted

sequence of human input values, {vk} = {vk, . . . , vk+N−1},

for which we now want to find a control sequence, {uk} =
{uk, . . . , uk+N−1}, that minimizes its deviations from {vk},

while ensuring that the state resulting at the end of the

sequence satisfies the linear constraint. Now, the linear state

constraint can be defined as a terminal state constraint for the

following receding horizon optimal control problem, PN :

min
{uk}

VN ({vk}, {uk}) (2)

where

VN ({vk}, {uk}) =

k+N−1
∑

i=k

L(vi, ui), (3)

L(vi, ui) = (ui − vi)
T (ui − vi), (4)

with {vk} = {vk, . . . , vk+N−1} and {uk} =
{uk, . . . , uk+N−1} denoting the control sequences, such

that

xk+1 = Axk + Buk, (5)

subject to

xk+N ∈ Xf = {x | Mx = b}, (6)

with xk ∈ R
n, M ∈ R

l×n, b ∈ R
l, and uk ∈ R

m. The

control, uk, applied to (5) is the first element in the sequence

{uk}
In this formulation, the cost penalizes deviations from

the human command over the time horizon. The terminal

constraint (6) guarantees that the state constraint, which was

required for the task, is enforced at the end of the control

horizon. Without the terminal constraint, (6), the control

would simply equal the predicted human input. However,

the terminal constraint may cause the control to deviate

from the human input in order to ensure that the terminal

constraint is satisfied. The receding horizon also allows for

recalculating the control at each time instant when new

human input and state information is available.

The choice of finite horizon, N , is crucial in that a large

N requires that the linear approximation of the human input

be accurate, otherwise the control input will not reflect

the intent of the user. If N is too small, the control effort

attempts to reach the constraint set within a small amount of

time, so deviations from the human input can be large. As

such, N must be chosen short enough such that the linear

approximation of the user input is valid and long enough

that user intention for the state is maintained.

III. CONTROL LAW DERIVATION

Methods for utilizing Hilbert Spaces as representations of

control signals to find solutions to optimal control problems,

as found in [9] and [10], are used in this derivation. The

following Hilbert Space solution to the finite horizon optimal

control problem within the receding horizon formulation is

an augmentation of the work in [9].

The solution begins by defining the human input and

control input sequences over the horizon, N , as being in

the Hilbert space, ll2[k, k + N − 1], which we will denote as

l2 from now on.

Let H = l2 with the norm squared defined as 〈y, y〉 =
∑k+N−1

i=k yT
i yi and the inner product given as 〈y, w〉 =

∑k+N−1
i=k yT

i wi for all y, w ∈ H. The following steps are

taken to find the projection of the human input signal, point

v = {vk}, on the affine variety representing the space

of control inputs for which the terminal state constraint is

satisfied, Vα. We will, first, find a subspace of H, V0, that

is parallel to Vα and then find a subspace that is orthogonal

to V0, which is also orhogonal to Vα. Then, we can translate

that subspace so that it passes through point v. The point

that lies in both Vα and the translated orthogonal space is

the unique minimizer. This is shown graphically in Figure

(1) as in [9].

Fig. 1. Hilbert Space Diagram showing the unique minimizer, u
∗

Now that we have point v, the next step is to define the

constraint space as the affine variety. The state at the end of

the control horizon N is given by

xk+N = ANxk +

k+N−1
∑

i=k

Ak+N−1−iBui (7)
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and it is required that this state satisfy the linear terminal

constraint (6). The linear operator L : l2 → R
n is defined

such that

Lu =

k+N−1
∑

i=k

Ak+N−1−iBui,

xk+N = ANxk + Lu

with u = {uk}. Hence, we can rewrite (6) as

MLu = b − MANxk. (8)

Let L∗ : R
n → l2 denote the adjoint operator

L∗
i = BT (Ak+N−1−i)T

for i = k, . . . , k + N − 1. Furthermore, the grammian LL∗

is given by

LL∗ =

k+N−1
∑

i=k

Ak+N−1−iBBT (Ak+N−1−i)T .

Next, (8) will be used to construct a subspace and the affine

variety. Let V0 be defined as a subspace of H and Vα be the

affine variety such that

V0 = {u | MLu = 0},

Vα = {u | MLu = b − MANxk}.

We now have the point v, the affine variety Vα, and

the subspace V0, so next, we will find a subspace that

is orthogonal to V0, which is also orthogonal to Vα. The

orthogonal complement V ⊥
0 to V0 is

V ⊥
0 = {s | 〈u, s〉 = 0, ∀u ∈ V0}.

V ⊥
0 is obtained by letting d be any point in R

l,

0 = 〈MLu, d〉Rl = 〈u, L∗MT d〉l2 i.e.

V ⊥
0 = {s | s = L∗MT d, d ∈ R

l}.

The orthogonal complement can be translated by v = {vk},

giving

V ⊥
0 + v = {w | w = s + v, s ∈ V ⊥

0 } such that

V ⊥
0 + v = {w | w = L∗MT d + v, d ∈ R

l}.

Now, to find the unique minimizer, the intersection of V ⊥
0 +v

and Vα gives

MLw = b − MANxk (9)

ML(L∗MT d + v) = b − MANxk

MLL∗MT d = b − MANxk − MLv.

So, we can solve for d with

d = (MLL∗MT )−1(b − MANxk − MLv). (10)

Therefore, plugging (10) back into (9), the optimal control

sequence is given by

u∗
i = L∗

i M
T (MLL∗MT )−1(b − MANxk − MLv) + vi

for i = k, . . . , k +N − 1. For the receding horizon formula-

tion, only the first element of u∗
i is applied to (5). Thus, the

optimal control law at time k is

u∗
k = L∗

kMT (MLL∗MT )−1(b − MANxk − MLv) + vk.
(11)

This control law minimizes the predicted cost over the

horizon and so, we state this as a theorem:

Theorem 3.1: Given the terminal constraint receding finite

horizon optimal control problem, PN , and the predicted

human input sequence, {vk}, the optimal control law is given

by (11).

However, since only the first element of the optimal control

sequence is used, we need to guarantee that the state will

actually converge to the state constraint.

IV. PROOF OF CONVERGENCE

This paper refers to previous works in model predic-

tive/receding horizon control to formulate conditions and

methods used to prove state convergence for the proposed

optimal controller (e.g., [11], [12], [13], [14] ). This paper

differs from these earlier works in that the proposed control

law does not result in asymptotic stability but in the conve-

gence of the state to a terminal constraint set not containing

an equilibrium point of the dynamic system.

Here, we adapt the stability proofs detailed in [11] and

[12] to show that the optimal control will indeed drive the

state to the terminal constraint set given by (6). Adapted from

[11], the following conditions are required:

Conditions:

C1 L(vk, uk) ≥ γ(‖(uk − vk)‖), where γ is a K-function

and L(0, 0) = 0 .

C2 L(vk, uk)=0 for all xk ∈ Xf .

C3 The set Xf is positively invariant under control vi such

that Axi + Bvi ∈ Xf ∀xi ∈ Xf , vi ∈ V(xi), where

V(xi) is an input constraint on the human input.

C4 A solution to PN exists for a set of initial states denoted

by F.

The input constraint set, V(xi), is a subset of R
m and

is a function of the state, xi, in that the human input is

only restricted to V(xi) when xi ∈ Xf . Conditions C1 and

C2 are clearly satisfied by our choice of stage cost (4).

Conditions C2 and C3 ensure that once the system reaches

the terminal set, the stage cost is zeroed and the system

will not be driven out of the constraint set, i.e. ui = vi

and xi+1 = Axi + Bui ∈ Xf ∀ xi ∈ Xf . These two

conditions imply a strong assumption in that we assume that

the bounds on the human operator control and the ability

of the operator is sufficient for keeping the state within the

constraint set once this set has been reached. In other words,

the human operator is trusted with the control to make Xf

invariant. This is a reasonable assumption because once the

system has converged to the state constraint set, it should be

obvious to the human operator that large incorrect command

inputs will force the system out of the constraint set.

The solution to PN exists for xk ∈ F, where F is the

set of initial states for which a feasible solution can be
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computed. From [12], a solution is feasible if the solution

results in the satisfaction of the state and input constraints

on the optimization problem. We should note that this does

not imply that the solution is optimal. The optimal control

law that solves PN , given Vk = {v0, v1, . . . , vN−1}, results

in the following control and state sequences,

Uopt
k = {uopt

0 , uopt
1 , . . . , uopt

N−1} (12)

X opt
k = {xopt

0 , xopt
1 , . . . , xopt

N−1, x
opt
N }, (13)

with xopt
N ∈ Xf .

A. Feasibility

We will show that for all xk ∈ F, the successive state re-

sulting from the first control in the optimal control sequence

at time k, xk+1, also has a feasible solution (i.e. xk+1 ∈ F).

Written another way, at time k, uopt
k is applied to the system

with state xk, to produce xk+1, for which a feasible solution

can be found given a human input sequence. A feasible

control and state sequence at time k + 1, given the human

input sequence Vk+1 = {v1, v2, . . . , vN−1, vN (xopt
N )}, is

Ufea
k+1 = {uopt

1 , uopt
2 , . . . , uopt

N−1, vN (xopt
N )} (14)

X fea
k+1 = {xopt

1 , xopt
2 , . . .

. . . , xopt
N−1, x

opt
N , Axopt

N + BvN (xopt
N )}, (15)

assuming v1, from Vk, is the human input at k + 1. Recall

that, by Condition C3, the human input control, vN (xopt
N ),

when xN is in the state constraint set, provides Xf with

invariance for all xN ∈ Xf , vN (xopt
N ) ∈ V(xN ). Hence, all

states starting in the set of feasible initial states, will always

stay in the set of feasible initial states.

B. Convergence

Lyapunov analysis is employed to show that the state will

converge to the terminal constraint set. The theroem and

proof utilized by [12] proves asymptotic stability and we

will use a similar approach to show convergence. The cost

VN ({vk}, {uk}) is used as a Lyapunov function and we will

show that the following properties hold, which is sufficient

to ensure convergence:

P1 VN ({vk}, {uk}) ≥ γ(||uk − vk||) for some K-function

γ(.) .

P2 VN ({0}, {0}) = 0 .

P3 V opt
N ({vk+1}, {u

opt
k+1}) − V opt

N ({vk}, {u
opt
k }) ≤

−γ(||uk − vk||) for all xk /∈ Xf .

Note that in Property P3, the cost, V opt
N ({vk+1}, {u

opt
k+1}), is

a result of applying the optimal control, uopt
k , to the system

at time k to get xk+1.

Theorem 4.1: Given Conditions C1-C3, all states, for

which a feasible solution exists, will converge to the con-

straint set, Xf , as k → ∞.

Proof: Properties P1 and P2 are satisfied by the choice

of cost function (3) and Condition C1. It remains to show

that Property P3 is satisfied. Using the sequences (12)-(15),

we can show that the value function decreases by at least the

initial stage cost,

V opt
N (Vk+1,U

opt
k+1) − V opt

N (Vk,Uopt
k ) ≤ −L(vk, uk),

by the following.

The optimal cost at k + 1 is bounded above by the

feasible cost as given by optimality (i.e V opt
N (Vk+1,U

opt
k+1) ≤

V fea
N (Vk+1,U

fea
k+1)), so the change in cost may be rewritten

as

V opt
N (Vk+1,U

opt
k+1) − V opt

N (Vk,Uopt
k ) ≤

V fea
N (Vk+1,U

fea
k+1) − V opt

N (Vk,Uopt
k ).

We can now continue by plugging in the sum of the stage

costs,

V opt
N (Vk+1,U

opt
k+1) − V opt

N (Vk,Uopt
k )

≤

k+N
∑

i=k+1

L(vi, u
feas
i ) −

k+N−1
∑

i=k

L(vi, u
opt
i )

= L(v1, u
opt
1 ) + · · · + L(vN−1, u

opt
N−1) + L(vN , vN ) −

. . . − L(v0, u
opt
0 ) − L(v1, u

opt
1 ) − · · · − L(vN−1, u

opt
N−1)

= L(vN , vN ) − L(v0, u
opt
0 ).

Given Condition 1, L(vN , vN ) = 0, vk = v0, and uk = u0,

the change in cost from time k to time k + 1 is given by

V opt
N (Vk+1,U

opt
k+1) − V opt

N (Vk,Uopt
k ) ≤ −L(vk, uk)

≤ −γ(||uk − vk||).

Hence, for all xk ∈ F, the state will converge to the constraint

set, Xf , as k → ∞.

V. SIMULATION RESULTS

A. Human Operation of Mass-Cart-Pendula

In order to demonstrate the viability of the presented

problem formulation and optimal control law, we apply the

control law to a MATLAB simulation of the two mass-

cart-pendula synchronization problem, as discussed in [8].

However, in this problem, a human operator is issuing force

commands to one mass-cart-pendulum, while another human

issues commands to the other. The human commands have

saturation limits while the automatic control effort does not.

The human operators try to drive the pendula in a certain

direction while the controller ensures the pendula oscilla-

tions synchronize with the carts maintaining a set distance

apart. The pendula synchronization and cart formation is

the linear state constraint for this problem. The operators

visually monitor the progress of the system through a graphic

display as seen in Figure 2. In the following subsections, the

dynamics and control are detailed and then the simulation

results are given for some specific simulated and actual

human commands.

B. Dynamics and Control of Mass-Cart Pendula

As seen in Figure 3, the force, F applied in the Px

direction, is the control input, u, to the system. No damping

force is considered in this model as pendula can be approx-

imated as zero damping systems. The linearized continuous
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Fig. 3. Pendulum Diagram

dynamics about the hanging equilibrium point, gives the

single pendulum system as ẋi(t) = Ãixi(t)+B̃iui(t), where:

xi =









Px,i

Ṗx,i

θi

θ̇i









, Ãi =









0 1 0 0
0 0 0 0
0 0 0 1

0 0 −(M+m)g
Ml

0









, B̃i =









0
1
M

0
−1
Ml









.

Note that this pair, (Ãi, B̃i), is controllable.

For a 2 planar pendula system, the system can be written

as ẋ(t) = Ãx(t) + B̃u(t), where

x′ =
[

x′
1 x′

2

]

, u =
[

u1 u2

]′
,

Ã =

[

Ã1 0

0 Ã2

]

, B̃ =

[

B̃1 0

0 B̃2

]

.

Note that in this paper, Ã1 = Ã2 and B̃1 = B̃2, since the

pendula are assumed to be homogeneous. The system can

then be rewritten as a discrete system with a time step, dt =

0.01s. Hence, A = eÃdt and B =
∫ dt

0
B̃eÃdt giving the

discrete system dynamics,

xk+1 = Axk + Buk (16)

for xk ∈ R
8 and uk ∈ R

2.

The constraint for this problem is Px,1,N − Px,2,N = d,

Ṗx,1,N − Ṗx,2,N = 0, θ1,N − θ2,N = 0, θ̇1,N − θ̇2,N = 0,

i.e. MxN = b, where

M =









1 0 0 0 −1 0 0 0
0 1 0 0 0 −1 0 0
0 0 1 0 0 0 −1 0
0 0 0 1 0 0 0 −1









, b =









d
0
0
0









.

The users input force commands by using keyboard arrow

keys to increment or decrement the force in 0.1 N increments

with a maximum of 10 N and a minimum of −10 N. The up

arrow key will zero the force input. The control law, (11), is

applied to (16) given v being the sequence {vk, (vk−vk−1)+
vk, 2(vk−vk−1)+vk, . . . , (N−1)(vk−vk−1)+vk}. In other

words, we approximate future human commands by linearly

extrapolating to time k + N − 1.

C. Results

The following simulations were run with parameters: d =
−1 m, l = 0.3 m, m = 2 kg, M = 3 kg, g = 9.8 m/s2,

N = 1.0 s, with a sample time of 0.1 s.

Figures 4 and 5 contain a set of plots resulting from two

human subjects attempting to drive the mass-cart-pendula so

that the right most pendulum position was approximately at

the 10 m mark.

Note in Figures 4(c) and 5, the state converges to the

constraint set within 2 s. In Figures 4(a) and 4(b), we can

see how the control effort deviates from the human control

input. In Figure 4(a), the control responds to the input given

by Human Operator 2 at the 1 s mark and swings away

from the Human Operator 1 input. This of course will be

disconcerting for the Human Operator during operation.

In Figure 5(a), the Human Operators were able to drive the

right mass-cart-pendulum to the 10 m position. The plots in

Figures 5(a)-5(d) show that the system converges to the linear

constraint where both pendula oscillations are syncronized

and the carts distances are a fixed distance apart. In addition,

the human operators can drive the synchronized pendula left

or right, albeit not with the immediacy direct control would

allow for.

It should be noted that with a longer time horizon, the

applied control will more closely match the human input,

however, the system will take longer to converge to the

constraint set and large changes in human input delay con-

vergence further. In this case, the predicted human input used

in the controller is no longer an accurate approximation of

the human input over that time.

VI. CONCLUSIONS

This paper presented a receding horizon optimal controller

that integrates human input signals into an automatic control

signal such that a discrete linear system was driven to

satisfy a state constraint set. The controller still allowed

the human operators to control which solution within the

constraint set the system drives to. We demonstrated the

viability of this control law through a MATLAB simulation

where human input was incorporated into a control signal

that both synchronized pendula oscillations and allowed the

human to drive the coordinated pendula to any cart position

desired. Hence, a control theoretic solution to a specific class

of mixed initiative human-robot interaction, where one part

of the task can be modeled as a linear state constraint for a

completely controllable linear system, was presented.
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Fig. 4. Human Operator Input Pendula Result.
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(b) Velocity.
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Fig. 5. Human Operator Pendula Result.
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