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Abstract— The detection of features from Light Detection
and Ranging (LIDAR) data is a fundamental component of
feature-based mapping and SLAM systems. Existing detectors
tend to exploit characteristics of specific environments: corners
and lines from indoor (rectilinear) environments, and trees
from outdoor environments. While these detectors work well
in their intended environments, their performance in different
environments can be very poor.

We describe a general purpose feature detector for LIDAR
data that is applicable to virtually any environment. Our
methods adapt classic feature detection methods from the
image processing literature, specifically the multi-scale Kanade-
Tomasi corner detector. Our resulting method is capable of
identifying stable features at a variety of spatial scales and
produces uncertainty estimates for use in a state estimation
algorithm. We present results on standard datasets, including
Victoria Park and Intel Research Center (both 2D), and the
MIT DARPA Urban Challenge dataset (3D).

Index Terms— Robot navigation, SLAM, LIDARs, Feature
detection, Corner Detector

I. INTRODUCTION

The Simultaneous Localization and Mapping (SLAM)

problem is at the heart of many robot applications, and

many approaches use laser range finders (LIDARs) due to

their ability to accurately measure both bearing and range

to objects around the robot. In the SLAM context, there

are two basic approaches to mapping with LIDARs: feature

extraction and scan matching. The first method extracts

features (also called landmarks) from the LIDAR data; these

features are added to the state vector and loops are closed

using data association algorithms like Joint Compatibility

Branch and Bound (JCBB) [1]. The features used often

depend on the environment: in indoor settings, lines, corners

and curves have been used [2], [3], [4], [5], [6]. Outdoors,

the hand-written tree detector originally developed for the

Victoria Park dataset [7], has been used almost universally

(see [8], [9], [10] for representative examples). Naturally,

tree detectors work poorly in offices, and corner detectors

work poorly in forests. The lack of a general-purpose feature

detector that works well in varied environments has been an

impediment to robust feature-based systems.

The alternative LIDAR approach, scan matching, directly

matches point clouds. This approach dispenses entirely with

features and leads to map constraints that directly relate two

poses. Scan matching systems are much more adaptable:

Fig. 1. Multi-scale feature extraction from LIDAR data. Our method
rasterizes LIDAR data and applies the Kanade-Tomasi corner detector to
identify stable and repeatable features. Top: the input image with overlaid
local maxima (prior to additional filtering). Circles indicate features, with
the radius equal to scale of the feature. Left: image pyramid of input. Right:
Corner response pyramid, where local maxima indicate a feature.

their performance does not depend on the world containing

straight lines, corners, or trees. But scan matching has a

major disadvantage: it tends to create dense pose graphs that

significantly increase the computational cost of computing a

posterior map. For example, suppose that a particular object

is visible from a large number of poses. In a scan matching

approach, this will lead to constraints between each pair of

poses: the graph becomes fully connected and has O(N2)
edges. In contrast, a feature based approach would have an

edge from each pose to the landmark: just O(N) edges.

Conceptually, the pose graph resulting from a scan

matcher looks like a feature-based graph in which all the

features have been marginalized out. This marginalization

creates many edges which slows modern SLAM algorithms.

In the case of sparse Cholesky factorization, Dellaert showed

that the optimal variable reordering is not necessarily the

one in which features are marginalized out first [11]: the

information matrix can often be factored faster when there

are landmarks. Similarly, the family of stochastic gradient

descent (SGD) algorithms [12], [13] and Gauss-Seidel re-
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laxation [14], [15] have runtimes that are directly related to

the number of edges. The extra edges also frustrate sparse

information-form filters, such as SEIFs [16] and ESEIFs [17],

[9].

Feature-based methods have an additional advantage:

searching over data associations is computationally less ex-

pensive than searching over the space of rigid-body transfor-

mations: as the prior uncertainty increases, the computational

cost of scan matching grows. While scan matching algo-

rithms with large search windows (i.e., those that are robust

to initialization error) can be implemented efficiently [18],

the computational complexity of feature-based matching

is nearly independent of initialization error. And finally,

feature-based methods tend to work better outdoors, because

they often reject ground strikes that result when the robot

pitches or rolls.

In short, feature-based methods would likely be preferable

to scan matching if they were able to offer the same

robustness and broad applicability to different environments.

In this paper, we describe a general-purpose feature de-

tection algorithm that generates highly-repeatable and stable

features in virtually any environment. Our approach builds

upon methods used in image processing, where the need

for robust feature detectors has driven the development of

a wide variety of approaches. In particular, we show how

the Kanade-Tomasi [19], a variant of the Harris corner

detector [20] can be applied to LIDAR data.

Our approach can be viewed as an alternative to the recent

work of Zlot and Bosse [21], which proposes a number of

heuristics for identifying stable keypoints in LIDAR data.

Their methods begin with clustering connected components

and then either 1) computing the centroids of each segment,

2) computing the curvature of each segment, or 3) itera-

tively computing a locally-weighted mean position until it

converges. Our approach replaces these three mechanisms

with a single method. They additionally investigate descrip-

tor algorithms, which significantly simplify data association

tasks. These descriptor methods could also be applied to our

detector.

The central contributions of this paper are:

• We propose a general-purpose feature detector for 2D

and 3D LIDAR data by adapting the Kanade-Tomasi

corner detector.

• We show how to avoid false features due to missing

data, occlusion, and sensor noise.

• We present experimental evidence that our methods

work consistently in varied environments, while two

traditional approaches do not.

In the next section, we describe how we convert 2D and

3D LIDAR data into images for feature detection. In Section

III, we discuss how uncertainty information—critical for

SLAM systems—can be obtained. In Section IV, we present

experimental evaluations of our methods versus standard

methods.

II. RASTERIZATION OF LIDAR DATA

The core idea of our method is to convert LIDAR data

into an image that can then be processed by image pro-

cessing methods. This process must take into account the

fundamental differences between cameras and LIDARs.

A camera image samples the intensity of a scene at

(roughly) uniform angular intervals. Individual pixels have

no notion of range (and therefore of the shape of the surface

they represent), but the intensity of those pixels is assumed

to be approximately invariant to viewpoint and/or range. As

a consequence, the appearance of a feature is reasonably well

described by a set of pixel values.

LIDARs also sample the scene at uniform angular inter-

vals, but each sample corresponds to a range measurement.

Critically, unlike cameras, the value of each “range pixel”

is profoundly affected by the position and orientation of

the sensor. As a result, it becomes non-trivial to determine

whether two features encoded as a set of (angle,range) tuples

match.

As a consequence of these differences, we have chosen to

rasterize LIDAR data by projecting the LIDAR points into

a 2D Euclidean space. The resulting image roughly corre-

sponds to viewing the scene from above (see Fig. 2). This

choice of representation restores the invariance properties

upon which computer vision methods rely, though this choice

also creates new challenges. This section will describe how

we approach these challenges.

A. 2D Data

2D LIDAR data is rendered into an image by drawing

the data using a Gaussian kernel (see Fig. 2) using methods

similar to [18]. The variance of this kernel reflects both the

range uncertainty and the positional uncertainty that arises

from sparsely sampling a surface. Nearby points— ostensibly

part of the same physical object— are connected with a line,

which is also drawn with a Gaussian kernel.

The width of the Gaussian kernel is a function of the

LIDAR’s range noise σs, as well as the positional uncertainty

of each point arising from the distance between samples.

In other words, even if a sequence of three LIDAR points

implies the existence of a corner, the actual position of the

corner is masked by the spacing between the points. As-

suming that the LIDAR measures ranges at uniform angular

spacings, the spatial resolution of a measurement at range r

is just r sin(∆θ), where ∆θ is the angular resolution of the

sensor (typically 1 degree for a SICK sensor). The width of

the Gaussian kernel (which changes for every measurement)

reflects the sum of these uncertainties:

σ
2
≈ σ

2
s +(r sin(∆θ))2 (1)

The Gaussian kernel has several practical advantages. At

short ranges, the range noise of the sensor can cause smooth

surfaces to appear rough. This, in turn, causes false feature

detections. The Gaussian kernel essentially smooths these

surfaces, preventing features from being detected.

There are two other issues that must be addressed:
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Fig. 2. Intel Research Center rasterization. This indoor dataset has many rectilinear features. Rendering is performed for each contour individually as
illustrated by the black rectangular outlines; this dramatically reduces computation time. Ellipses indicate 3σ uncertainty bounds for detected features. At
the occlusion boundaries of each contour, the conservatively extrapolated contour is readily visible.

Fig. 3. Victoria Park Rasterization. This figure shows rasterization for a 2D LIDAR scan from an outdoor, tree-filled environment. The same rendering
parameters were used for both the Intel and Victoria Park datasets.

• Missing data: often, the full shape of a contour is

not visible, which can lead to feature detections at

the visibility boundary. In some cases, the absence of

LIDAR data is proof that a strong feature is present

(Fig. 4a), while in other cases, it is possible that there

isn’t a strong feature at all (Fig. 4b). While we could

attempt to explicitly measure and threshold the angle

of the hidden corner, this process would add a number

of hard-to-tune parameters. (Estimating the angle of the

observed contour, for example, is sensitive to noise in

the individual range measurements). Our approach is to

render the most conservative (i.e., the smoothest) con-

tour consistent with the observed data. This conservative

contour is then passed to our system without additional

modification.

• Occlusion: A foreground object can occlude portions of

a background object (see Fig. 4c) making it appear as

though the background object has an abrupt boundary.

Our approach is simply to suppress feature detections

that are close to these occlusion boundaries.

In the case of many 2D datasets, the majority of the ren-

dered image is empty. It is possible to significantly accelerate

the feature detection step by rendering each contour into

separate, smaller images. On datasets like Victoria Park, in

which there are large amounts of empty space, this technique

provided an average speed up of 31.8 times.

Rendering each contour separately also makes it much

easier to suppress errant feature detections caused by the

conservative surface extrapolations described above; since

each contour is rendered separately, there is no possibility

that the extrapolated surface will intersect another contour,

creating a feature.

Rasterization inevitably introduces additional quantization

Fig. 4. Feature detection scenarios. The direction from which a surface
is viewed is critical to identifying sharp features. In case A, a sharp corner
must exist; in contrast, case B may not be a well-defined feature. Our method
addresses this issue by rendering the worst-case (most featureless) shape,
rather than attempting to threshold the angle of the hidden corner. In case
C, a foreground object’s shadow can cause a false boundary to appear on a
background object; this case is handled explicitly.

noise. However, this quantization noise is modest in com-

parison to the range noise of sensors, and negligible in

comparison to the uncertainty arising from sampling effects.

In our experiments, for example, we used an image resolution

of 2 cm per pixel.

B. 3D Data

We also tested our method on 3D Velodyne data from

the MIT Urban Challenge Dataset [22]. Perhaps counter-

intuitively, 3D data is much easier to process than 2D data,

since it is often possible to see over obstacles, reducing the

severity of the missing data problem.

However, we cannot render images based according to just

the (x,y) location of the LIDAR samples the way we do with

2D data, since the Velodyne sensor obtains samples almost

everywhere. Our approach, instead, is to render each pixel
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Fig. 5. 3D Scan Rasterization. Left: a Velodyne scan with points colored according to Z height. Right: rasterized image with superimposed extracted
features and corresponding uncertainties. 3D LIDAR data was rasterized by considering the range of Z values in each cell of a polar grid.

according to the range of heights collected for that pixel (see

Fig. 5). In other words, if three LIDAR samples are collected

in the area corresponding to a single (x,y) pixel with z =

1, 1.5, and 2.5, the maximum difference in height is 1.5.

This procedure effectively measures the visible height of the

objects around it and is invariant to viewpoint. However, this

procedure requires a fair number of LIDAR returns for each

pixel, which necessitates a coarser spatial resolution. We use

a polar grid with dimensions of 1 degree by 0.15 m.

Note that we assume that the robot can measure its pitch

and roll with respect to the gravity vector with reasonable

accuracy; the cost of such a sensor is inconsequential in

comparison to that of any laser scanner. When projecting

points, the pose of the vehicle is taken into account; as a

consequence, the resulting images are invariant to roll and

pitch.

III. FEATURE DETECTION

Once an image has been produced using the methods in

the previous section, the next task is to identify stable and

repeatable features. The Kanade-Tomasi corner detector [19]

is virtually identical to the Harris corner detector [20], with

the exception that the minimum eigenvalue of the structure

tensor is computed exactly, rather than approximated. We

achieved noticeably better results from the Kanade-Tomasi

detector.

Importantly, the KT corner detector is rotationally invari-

ant when the image has been convolved with a circular filter.

Our images naturally meet this condition, since they are

constructed using Gaussian kernels.

Our system detects features at a variety of scales so that

we can exploit features that are both physically small and

large. To do this, we perform KT corner detection on each

level of a power-of-two image pyramid, extracting corners

wherever local maxima occur.

This feature-detection scheme is very similar to that used

by the SURF detector [23]. Our implementation down-

samples images using a σ = 1.0 Gaussian kernel of width 5.

Corners are additionally subjected to a threshold of 0.2. This

design parameter is fairly robust: the system works well on

a variety of datasets over a range of values.

While we want to detect features at multiple scales, we

do not want to match these features in a scale invariant

manner: unlike cameras, LIDARs directly observe the scale

of the objects in the environment. Thus, unlike camera-based

methods, the scale at which we detect an object is useful in

data association.

The positional uncertainty of features is of critical impor-

tance to SLAM applications. Fortunately, it has been shown

that the covariance matrix of a Harris Corner is simply

equal to the inverse of the structure tensor [24]. Our use of

variable-sized Gaussian kernels when rasterizing the LIDAR

data encodes the spatial uncertainty in the image, and this is

reflected in the structure tensor. All that remains to be done

is to scale the covariance matrix according to the square of

the resolution of the image (in meters per pixel).

The covariance estimates produced by our system can be

seen in Fig. 2 and Fig. 3 for 2D data, and in Fig. 5 for

3D data. The ellipses correspond to 3σ confidence intervals.

The fact that principled covariance estimates can be easily

derived is one of the strengths of our method.

IV. RESULTS

In a SLAM context, repeatability (the consistency with

which a given landmark is observed) is critical. Each re-

observation of a landmark creates a “loop closure”, improv-

ing the quality of the posterior map.

We measured the repeatability of our feature detector

using two well-known datasets: the Intel Research Center

dataset (indoor and rectilinear) and the Victoria park (outdoor

with clutter). For these datasets, we used posterior position

estimates produced by conventional SLAM methods; this

“ground truth” allowed us to test whether a particular land-

mark should have been observed given the location of the

robot. When evaluating whether a landmark was correctly

observed, we used a simple nearest-neighbor gating rule: if

a feature was observed within a distance d1 of an existing

landmark, the two were associated. If the feature was more

than d2 away from the nearest landmark, a new landmark

was created. Features between d1 and d2 were discarded. On

the Intel data set, we used d1=0.1 m, and d2=0.3 m, and on

the Victoria Park dataset, we used d1=1.0 m, d2=3.0 m.
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Corner Detector Tree Detector Proposed Method
Victoria Intel Victoria Intel Victoria Intel

Feature Detections 409 - 1585 31607 195 - 52545 + 6932 +
Number of instantiated landmarks 43 - 276 748 75 - 1939 + 1294 +
Number of re-observed landmarks 18 - 159 325 12 - 1089 + 777 +

Number of re-observations 201 - 807 24954 25 - 36281 + 4336 +

Fig. 6. Feature detection performance. Three detectors ran on two different datasets: Intel Research Center (indoor) and Victoria Park (outdoor). New
features were instantiated when a new detection was far away from any previous landmarks. A larger number of loop closures (re-observations) generally
leads to better maps. For each dataset, the best performing method is marked with a “+”, and the worst performing method is marked with a “-”. Our
method outperforms the other two methods even in the environments for which the specialized methods were designed.

Fig. 8. False Negative Rate. The plot shows the frequency with which a
landmark is not correctly detected as a function of how often the landmark
is detected. It illustrates that our method achieves very low false-negative
rates. There is also a clear trend: the more often a landmark is observed,
the lower the false positive rate. The very low false negative rates achieved
would allow systems to make use of negative information.

In addition to our proposed method, we provide two

comparison methods (both of which used the same data

association procedure):

• Corner detector: Line segments are extracted from

nearby points using an agglomerative method. If the

endpoints of two lines lie within 1.2 m of each other,

and the angle of between the two lines is between 75

and 105 degrees, a corner is reported. The particular

method is adapted from [5].

• Tree detector: The standard method of tracking features

in Victoria park is using a hand-written tree detector

with hand-tuned parameters [7]. We used this detector

with no additional modifications.

As shown in Fig. 7, the performance of the proposed

method is generally as good or better than the other detectors.

In contrast, while the performance of the tree detector is good

in the Victoria Park dataset, it is very poor indoors (where it

is in the “wrong” environment). Similarly, the performance

of the corner detector is good in the Intel dataset and poor

in Victoria Park. Our general-purpose method performs well

in both environments.

The false negative detection rate, as shown in Fig. 8,

was calculated according to following procedure: for every

landmark that is detected within the field of view of a

given LIDAR scan, we attempt to match it to previously-

known landmarks. If it is successfully associated with an

existing landmark, the observation count o for that landmark

is incremented. If a landmark should have been detected,

but was not (or was too far away), the failure count f for

that landmark is incremented. We compute the false negative

rate as f/( f +o). As shown in Fig. 8, our detector is able to

identify features which are highly stable: they are observed

many times with low false negative rates. The figure also

shows that some features are detected but are observed less

frequently and less consistently; empirically, these seem to

correspond to small and difficult-to-observe features. Still,

the graph illustrates that, in many cases, the false negative

rate is low enough to enable SLAM algorithms to make

use of negative information— to reject loop closures when

landmarks do not appear as expected.

V. CONCLUSION

We have described rasterization methods for 2D and

3D laser scans that allows computer vision methods to be

applied to LIDAR data. We demonstrate the general-purpose

applicability of the method on benchmark indoor and outdoor

datasets, where it matches or exceeds the performance of

specialized detectors. The method is also capable of pro-

ducing uncertainty estimates, a critical factor for SLAM

applications. In our future work, we plan to more deeply

explore the rasterization issues arising from 3D data and to

apply these methods to 3D data collected with a nodding

LIDAR (rather than a Velodyne). We also wish to determine

whether image-processing type feature descriptors, such as

SIFT [25] or SURF [23] could be adapted to LIDAR data.

In this case, the fundamental differences between cameras

and LIDARs pose significant challenges.
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