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Abstract— We present a proof for the probabilistic com-
pleteness of RRT-based algorithms when planning with con-
straints on end-effector pose. Pose constraints can induce lower-
dimensional constraint manifolds in the configuration space
of the robot, making rejection sampling techniques infeasible.
RRT-based algorithms can overcome this problem by using the
sample-project method: sampling coupled with a projection op-
erator to move configuration space samples onto the constraint
manifold. Until now it was not known whether the sample-
project method produces adequate coverage of the constraint
manifold to guarantee probabilistic completeness. The proof
presented in this paper guarantees probabilistic completeness
for a class of RRT-based algorithms given an appropriate
projection operator. This proof is valid for constraint manifolds
of any fixed dimensionality.

I. INTRODUCTION

This paper focuses on the completeness properties of RRT-
based algorithms that plan paths for tasks involving pose
constraints on a manipulator’s end-effector. The pose of
a manipulator’s end-effector is represented by a point in
SE(3), the six-dimensional space of rigid spatial transforma-
tions. Many practical manipulation tasks, such as carrying a
pitcher of liquid or sliding a heavy object on a table, impose
constraints on the motion of a robot’s end-effector.

Our framework for planning with such constraints com-
prises of two parts: a representation of pose constraints which
we term Task Space Regions (TSRs), and a sampling-based
planner, the Constrained BiDirectional RRT (CBiRRT) [1]
that plans paths on constraint manifolds. Although we have
demonstrated that the TSR representation can describe many
useful tasks and the CBiRRT is capable of planning for these
tasks, we have yet to demonstrate that it is probabilistically
complete. A path planner is called probabilistically complete
if, given a problem that is solvable, the probability that the
planner solves the problem goes to 1 as the running time goes
to infinity. To our knowledge, probabilistic completeness
has yet to be shown for any sampling-based planner which
plans with pose constraints. The central difficulty lies in
the coverage of the constraint manifold. Depending on the
definition of an end-effector pose constraint, it can induce a
variety of manifolds in the robot’s configuration space (C-
space). If these manifolds have non-zero volume in the C-
space (see Figure 1f) it is straightforward to show that an
RRT-based algorithm is probabilistically complete because
rejection sampling in the C-space will eventually place
samples inside of the manifold.
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Fig. 1. Three pose constraints and their corresponding C-space constraint
manifolds for a 3-link manipulator. (a) The end-effector must be on the
line pointing downward. (b) The end-effector must be on the line with
an orientation ±0.7rad of downward. (c) The end-effector must be in the
green rectangle with an orientation±0.7rad of downward. (d-f) show graphs
created from sampling on the manifolds corresponding to the constraints in
(a-c), respectively. Black points are nodes and blue lines are edges. The
manifold in (f) has non-zero volume in the C-space, the manifolds in (d)
and (e) do not.

However, if a pose constraint induces a lower-dimensional
manifold, i.e. one that has zero volume in the C-space (see
Figures 1d and 1e), rejection sampling in the C-space will
not generate a sample on the constraint manifold. One way to
overcome this difficulty is to use the sample-project method.
This method consists of two steps: first we take a sample
in the C-space and then we project that sample to the
constraint manifold using a projection operator. Until now
the properties of the projection operator sufficient to achieve
constraint manifold coverage have not been known. Thus the
probabilistic completeness of RRT-based algorithms which
use the sample-project method has yet to be shown.

Our proof for probabilistic completeness has two parts:
first, we present a set of properties for the projection operator
and prove that these properties allow the sample-project
method to cover the constraint manifold. Second, we describe
a class of RRT-based algorithms (such as CBiRRT [1] and
TCRRT [2]), which use such a projection operator and prove
that they are probabilistically complete. We conclude with a
discussion of the implications of the proof for projection
operators and mixed-dimensional constraint manifolds.
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II. BACKGROUND

Our method of planning with pose constraints builds
on several developments in motion planning and control
research in robotics. The planning algorithms we describe
are based on the Rapidly-exploring Random Tree (RRT) al-
gorithm by LaValle and Kuffner [3]. For meeting constraints
on end-effector pose, this paper considers projection methods
similar to those used for inverse kinematics. Iterative inverse
kinematics algorithms use projection methods based on the
pseudo-inverse or transpose of the Jacobian to move a robot’s
end-effector closer to some desired pose (e.g. [4]).

An alternative projection operator is Randomized Gradient
Descent (RGD) [5], which uses random sampling of the C-
space to iteratively project a sample toward a closed-chain
constraint. Stilman [2] showed that when RGD is extended
to work with more general pose constraints it is significantly
less efficient than Jacobian pseudo-inverse projection and it
is sometimes unable to meet more stringent constraints. Thus
we focus only on Jacobian-based methods in our proof.

Our proof only considers algorithms that plan in the C-
space, unlike the task-space planners in [6][7][8], which
assign a single configuration to each task-space point (from
a potentially infinite number of possible configurations).
Though these methods are often efficient, they are not
probabilistically complete.

Finally, our proof of manifold coverage hinges on the
concept of self-motion manifolds, which were described by
Burdick [9]. A self-motion manifold is the set of configura-
tions in C-space which place the end-effector of the robot in
a certain pose.

III. GENERAL PROPERTIES

Before we begin the proof for probabilistic completeness,
we discuss some general properties of manifolds that will be
useful in the proof. For brevity, we will only state parts of
definitions that are relevant to our proof.

A topological manifold is a second countable Hausdorff
space where every point has a neighborhood homeomorphic
to an open Euclidean n-ball, where n is allowed to vary.
Manifolds can be disjoint, with each piece of the manifold
called a connected component. Manifolds that have a fixed
n (i.e. n-dimensional manifolds) are called pure manifolds.
Lemma 3.1: Consider manifolds A and B. (A ∩ B) is n-
dimensional if the following conditions are true:

1) A and B are both n-dimensional
2) A and B are both submanifolds of the same n-

dimensional manifold.
3) (A ∩ B) 6= ∅

Proof: Consider a point p ∈ (A∩B). A and B both contain
the same n-dimensional ball centered at p by the first and
second conditions. (A ∩ B) is the union of all such n-
dimensional balls for all p. This union is n-dimensional.

Let µn be a measure of volume in an n-dimensional space.
If the volume of a manifold in an embedding space is zero,
then the probability of generating a sample on the manifold
by rejection sampling in the embedding space is zero. Con-
versely if the volume of a manifold in an embedding space

Name Symbol Dimension

C-space Q n
Configuration q 0

Constraint Manifold M m = n− (r − d)
Reachability R r

Pose x(q) 0
Task Constraint T d ≤ r

TABLE I
DEFINITIONS USED THROUGHOUT THE PROOF.

is not zero, then the probability of generating a sample on
the manifold by rejection sampling in the embedding space
will go to 1 as the number of samples goes to infinity.

Definition A sampling method covers a manifold if it gen-
erates a set of samples such that any open n-dimensional
ball contained in the manifold contains at least one sample.

IV. DEFINITIONS

Let the reachable manifold of end-effector poses of the
given manipulator be R ⊆ SE(3). R is defined by the
Forward Kinematics function of the robot:

x : Q → R (1)

where Q is the C-space. x is always surjective and can be
one-to-one or many-to-one, depending on the manipulator.

We restrict our proof to manipulators whose Q and R are
both pure manifolds. This restriction is necessary to meet
the conditions of Lemma 3.1, yet allows many manipulators
commonly used today, such as serial-chain manipulators
and humanoids. In this paper, we also restrict our focus to
manipulators with no non-holonomic constraints, though we
hypothesize that our proof can extend to the non-holonomic
case as well.

Let Q be n-dimensional, where n is the number of DOF of
the manipulator. We will parameterize SE(3) locally using
three variables for translation and three for rotation, i.e. a
pose will be a vector in R6. Let R be r-dimensional, where
r ≤ 6.

Let the manifold of end-effector poses allowable by the
task be T ⊆ R. Let this manifold have dimensionality d ≤ r.
We will assume that d is fixed, though we will discuss the
implications of allowing d to vary in Section VII. Let the
manifold of configurations that place the robot’s end-effector
in T beM⊆ Q.M is the union of all self-motion manifolds
that map to a pose in T :

M =
⋃
t∈T
{q ∈ Q | x(q) = t} (2)

M has dimensionality m = n− (r − d).
We will be using the (weighted-)Euclidian distance metric

on SE(3), which we will denote as dist. This distance metric
has the property that each pose in T has at least an (r− d)-
dimensional Voronoi cell in R. A Voronoi cell is the set of
points that are closer to a certain point than to any other
given a distance metric [10].
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Fig. 2. An example showing the process used to define x−1(N ). d = 1, r = 2, and n = 3.

Table I summarizes the definitions and dimensionalities of
manifolds used in the proof.

V. PROOF OF MANIFOLD COVERAGE BY THE
SAMPLE-PROJECT METHOD

When the manifold of allowable configurations in the C-
space is of the same dimensionality as the C-space, samples
on the manifold can be generated by rejection sampling in
the C-space. Rejection sampling is simply the process of
generating a sample in the C-space and then checking if it is
an allowable configuration. However, when M is of a lower
dimension than the C-space, the probability of generating a
sample on the manifold through rejection sampling is 0.

The sample-project method is an approach which can
generate samples on manifolds of a lower dimension. This
method first produces a sample in the C-space and then
projects that sample onto M using a projection operator
P : Q → M. In order to show that an algorithm using
the sample-project method is probabilistically complete, we
must first show that this method covers M.

This section will show that the sample-project method
does indeed cover M if the projection operator has the
following properties:

1) P (q) = q if and only if x(q) ∈ T
2) If x(q1) is closer to x(q2) ∈ T than to any other point

in T and dist(x(q1), x(q2)) < ε for an infinitesimal
ε > 0, then x(P (q1)) = x(q2).

The first property guarantees that a configuration that is
already in M will project to itself. The second property
ensures that any pose in T can be chosen for projection.
We will describe the underlying mechanics of the projection
operator in Section V-B.

If d = r then µn(M) > 0. By the first property of
P , a sample placed in M will project to itself. Thus the
sample-project method will cover M by the same principle
as rejection sampling.

The remainder of this section will focus on proving
coverage when d < r, i.e. when µn(M) = 0. Consider an
open m-dimensional ball Bm(q) ⊆M for any q ∈M. Note
that open in this context refers to the openness of the set with
respect to M. For notational simplicity, let Bm represent
any Bm(q) for any such q. We will show that the sample-
project method places a sample in any Bm as the number of
iterations goes to infinity, thus covering of M.

Consider an n-dimensional manifold C(Bm) = {q :
P (q) ∈ Bm, q ∈ Q}. If such a C exists for any Bm,
the sample-project method will place a sample inside C
with probability greater than 0 (because C is n-dimensional)
and that sample will project into Bm. This will guarantee
coverage of M as the number of iterations goes to infinity.
But how do we guarantee that such a C exists for any Bm?

We will show that C can be defined as the intersection
of two n-dimensional manifolds, x−1(N ) and UH, both of
which must exist for any Bm (notation will be explained in
subsequent subsections). The following subsections describe
each of these manifolds and show that (x−1(N )∩UH) must
be n-dimensional and all configurations in (x−1(N ) ∩ UH)
must project into Bm. Thus (x−1(N ) ∩ UH) meets the
requirements of C, which completes the proof of coverage.

A. To Task Space and Back Again: Defining x−1(N )
In this subsection we will define a manifold x−1(N ),

which projects into a set of self-motion manifolds S ⊆ M
that intersects Bm. We will do this by mapping Bm into
task space, constructing a manifold of poses that project into
x(Bm) and then mapping that manifold back into C-space
(see Figure 2).

Mapping Bm into task space yields a d-dimensional
manifold x(Bm) ⊆ T . Let us define a task-space manifold
N (x(Bm)) ⊆ R. N is constructed in two steps. First, take
the union of a set of r-dimensional open balls centered at
every x(q) ∈ x(Bm). Second, remove all poses that are
closer to a x(q) ∈ (T − x(Bm)) than to any x(q) ∈ x(Bm)
and remove all equidistant poses. Formally, N is defined as:

U =
⋃

x(q)∈x(Bm)

Br(x(q))

N = U − {p ∈ U | ∃p1 ∈ (T − x(Bm))
dist(p, p1) ≤ inf

p2∈x(Bm)
dist(p, p2)}

(3)

where Br(x(q)) is an open r-dimensional ball centered at
x(q) with radius ε. N has the following properties:

1) N is r-dimensional.
2) N contains x(Bm).
3) x(P (q)) ∈ x(Bm) for all {q ∈ Q | x(q) ∈ N}
The first property follows from the fact that the Voronoi

cell of any x(q) ∈ T is (r−d)-dimensional and the fact that
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Fig. 3. An example of P (x−1(N )) = S. d = 1, r = 2, and n = 3.

x(Bm) is d-dimensional. The second property is clear by
construction. The third property is guaranteed by the second
property of the projection operator.

Define the C-space manifold x−1(N ) = {q ∈ Q | x(q) ∈
N}. Since N is r-dimensional, x−1 will map it to an n-
dimensional manifold of configurations in C-space (recall
that x is surjective). x−1(N ) has the following properties:

1) x−1(N ) is n-dimensional.
2) x−1(N ) contains Bm

Now the question becomes, where do configurations in
x−1(N ) project to? It would be convenient if P (x−1(N )) =
Bm, however this is not always the case. The reason is that
a single pose can correspond to more than one configuration
in C-space, i.e. to a self-motion manifold. This occurs when
the manipulator is redundant, for instance.

Let us now define where x−1(N ) projects to. By the third
property of N , we know that all poses in N will project into
x(Bm). The analog of x(Bm) in C-space will be a manifold
S ⊆M. S is defined as the manifold of configurations which
map into x(Bm); i.e. S = {q ∈ M | x(q) ∈ x(Bm)}. Thus
we can state a third property of x−1(N ) (see Figure 3):

3) P (x−1(N )) = S.
We will use S to show coverage ofM in Section V-C, but

first we must show that S contains all self-motion manifolds
that intersect Bm and only those self-motion manifolds.
Lemma 5.1: S has the following properties:

1) If a self-motion manifold intersects Bm, it is a subset
of S.

2) If a self-motion manifold does not intersect Bm, it is
not a subset of S.

3) S 6= ∅.
Proof of 1st Property: Recall that, for any self-motion
manifold s ⊆ M, x(s) = x(q) for any q ∈ s; i.e. all
configurations on the self-motion manifold map to the same
pose. If there exists q ∈ (s∩Bm), then x(q) ∈ x(Bm), which
entails x(s) ∈ x(Bm). Thus by definition of S, s ⊆ S.
Proof of 2nd Property: We will show this by contradic-
tion. Suppose there is a self-motion manifold s ⊆ S that
does not intersect Bm. By definition of S, x(s) would have
to be in x(Bm). However, if x(s) ∈ x(Bm), there is some
configuration q ∈ Bm such that x(q) = x(s). This entails
that q ∈ s and thus q ∈ (s ∩ Bm), but this contradicts the
assumption that s does not intersect Bm.
Proof of 3rd Property: M is composed of all self-motion
manifolds for all poses in T . Since µm(Bm) > 0, Bm must
intersect at least one self-motion manifold and by the first
property of S, S 6= ∅.

B. Projection onto a ball on a self-motion manifold

We have shown that P (x−1(N )) = S and described
some properties of S, however we have not stated where
on S a projected configuration will go. It is possible that a
q ∈ x−1(N ) will project to a configuration outside of Bm

because S may contain configurations outside of Bm.
In order to show that the probability of placing a sample

inside Bm using the sample-project method is greater than 0,
we need to show that there exists an n-dimensional manifold
around a ball on a self-motion manifold that projects into that
ball. The purpose of this subsection is to prove this property
of self-motion manifolds. The remainder of this subsection
will consider a self-motion manifold in isolation in order to
show this property.

Let us now look closer at the mechanism of projection
used by P . In this paper, we focus on projection operators
based on Jacobian pseudo-inverse or Jacobian transpose.
These kinds of projection operators step towards a pose target
and this process can be written as a differential equation:

dq

dt
= f(q(t)), t ∈ [0,∞) (4)

f satisfies the Lipschitz condition:

‖ f(q1)− f(q2) ‖≤ L ‖ q1 − q2 ‖ (5)

where ‖ · ‖ denotes any p-norm and L is the Lipschitz
constant [11].

An equilibrium point q̄ of Eqn.4 satisfies f(q̄) = 0.

Definition The equilibrium point q̄ is
• stable if, for each ε > 0, there is a δ = δ(ε) > 0 such

that

‖ q(0)− q̄ ‖< δ ⇒‖ q(t)− q̄ ‖< ε,∀t ≥ 0

• unstable if it is not stable
• asymptotically stable if it is stable and δ can be chosen

such that

‖ q(0)− q̄ ‖< δ ⇒ lim
t→∞

q(t) = q̄

Asymptotic stability guarantees that any point inside a
δ neighborhood of q̄ will converge to q̄. We will use
Lyapunov’s stability theorem to define a domain around q̄
where asymptotic stability is valid.
Theorem 5.2: Let q̄ be an equilibrium point for Eqn.4 and D
be a domain containing q̄. Let V : D → R be a continuously
differentiable function such that

V (q̄) = 0 (6)
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V (q) > 0 for q ∈ (D − {q̄)} (7)

dV (q)
dt

< 0 for q ∈ (D − {q̄}) (8)

then q̄ is asymptotically stable.
In this paper, we focus on systems of the form

dq

dt
= A(q)(xo − x(q)) = Ae (9)

where xo is a target pose and A(q) : Rr → Rn is a
configuration-dependent linear map. The error e decreases
linearly as the pose approaches the target.

Equilibrium points of Eqn.9 occur at

A(q)(xo − x(q)) = Ae = 0 (10)

If rank(A) = r, these occur at x(q) = xo. We define the set
of equilibrium points as the (n− r)-dimensional self-motion
manifold

Q̄ = {q ∈ Q | x(q) = xo} (11)

Consider an equilibrium point q̄ ∈ Q̄. We define a
candidate Lyapunov function of the form

V (q) =
1
2
e′(Ae) (12)

We know from Eqn.10 that V (q) = 0 at q = q̄, thus
satisfying the condition of Eqn.6.

However, if we define the domain D to be Q, the require-
ments of Eqn.7 and Eqn.8 are not met: V is not uniquely
0 at q̄. Rather, there is an entire set of equilibrium points
Q̄ ⊆ Q where V = 0. We address this issue by restricting
V to a domain where q̄ is the exclusive minimum.

For illustration, we first consider the case where A has no
functional dependence on q. We restrict the domain D of V
to the r-dimensional hyperplane

D = {q ∈ Q | q = q̄ +Ae, e ∈ Rr} (13)

Revisiting Eqn.7 and Eqn.8, we get V (q) = 0 and dV (q)
dt = 0

at Ae = 0 which occurs uniquely at q = q̄ when V is
restricted to D, thereby completing all the requirements for
Lyapunov’s theorem.

For the case where A does have a functional dependence
on q, the Taylor series approximation of A(q) in an n-
dimensional ball Bn(q̄) around q̄ gives

A(q) ≈ A(q̄) +
dA

dq
(q − q̄) + · · · (14)

We can then restrict the domain of V to the intersection
of the r-dimensional hyperplane with Bn(q̄)

D = {q ∈ Q | q = q̄ +A(q̄)e, q ∈ Bn(q̄)} (15)

The intersection restricts the domain D to an r-
dimensional ball Br(q̄) around q̄ (see Figure 4). Once
restricted, the situation is identical to the previous case.

To summarize, we have shown that, for any point q̄ ∈ Q̄,
there exists an r-dimensional ball Br(q̄) within which the
conditions for Lyapunov’s stability theorem hold.

Fig. 4. A self-motion manifold in C-space. r = 2 and n = 3.

The evolution of Eqn.4 results in the projection P (q1) = q̄
for all q̄ ∈ Q̄, for all q1 ∈ Br(q̄) if q(0) = q1. Note that this
is only valid for a self-motion manifold in isolation.

Let us now consider an open (n − r)-dimensional ball
BQ̄(q̄) ⊆ Q̄. Define H(BQ̄(q̄)) as the manifold Br(q̄) ×
BQ̄(q̄) embedded in Q (see Figure 4).
H has the following properties:
1) H is n-dimensional.
2) H contains BQ̄(q̄).
3) P (q) ∈ BQ̄(q̄) for all q ∈ H (conditional).
It is important to note that we have only described H for a

self-motion manifold in isolation. The third property of H is
only valid when x(q) is closer to x(Q̄) than to any x(k), for
a self-motion manifold k ⊆ (M−Q̄). I.e. the third property
holds only when Q̄ is “chosen” by the projection operator.

C. Putting it all together

We will now bring the concepts developed thus far to-
gether to show coverage ofM by the sample-project method.
Recall that, to show coverage of M, we must show that the
sample-project method places a sample inside any Bm ⊆M.

Section V-A showed that a configuration inside x−1(N )
will project into S, which consists of all self-motion man-
ifolds that intersect Bm. Let us construct an n-dimensional
manifold UH(Bm) by taking the union of the n-dimensional
H manifolds around every Q̄ ∩Bm for all Q̄ ⊆ S:

UH(Bm) =
⋃
Q̄⊆S

H(Q̄ ∩Bm) (16)

UH inherits the properties of H, as well as the condition
on the third property: A configuration q ∈ UH will project
to a configuration inside Bm by the third property of H if,
for some Q̄ ⊆ S, x(q) is closer to x(Q̄) than to any x(k),
for a self-motion manifold k ⊆ (M−S).
Lemma 5.3: Let C = (x−1(N )∩UH). C has the following
properties:

1) C is n-dimensional.
2) P (q) ∈ Bm for all q ∈ C.

Proof of 1st Property: Bm ⊆ x−1(N ) by the second prop-
erty of x−1(N ). Bm ⊆ UH by the second property of H.
Both x−1(N ) and UH are n-dimensional. By Lemma 3.1,
x−1(N ) ∩ UH is n-dimensional (see Figure 5).
Proof of 2nd Property: A q ∈ (x−1(N )∩UH) will project
into S because q ∈ x−1(N ). Thus there exists a self-motion
manifold Q̄ ⊆ S such that x(q) is closer to x(Q̄) than to
any x(k), for a self-motion manifold k ⊆ (M− S). This
fact meets the condition required by the third property of H.
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Fig. 5. An example of C = (x−1(N ) ∩ UH). d = 1, r = 2, and n = 3.

Because q ∈ UH, and the third property of H is valid, P (q)
must be in Bm.
Theorem 5.4: The sample-project method places a sample
inside any Bm as the number of samples goes to infinity.
Proof: By the first property of C, µn(C) > 0. Thus the
probability of sampling a q ∈ C is greater than 0 and, as
the number of samples goes to infinity, the probability of
sampling a q ∈ C goes to 1. P (q) ∈ Bm by the second
property of C. Thus we have shown that the sample-project
method places a sample inside any Bm as the number of
samples goes to infinity, which entails that the sample-project
method covers M.

VI. PROBABILISTIC COMPLETENESS OF RRT-BASED
ALGORITHMS USING SAMPLE-PROJECT

We will use the fact that the sample-project method covers
M to prove that RRT-based methods that plan paths on M
are probabilistically complete. We focus on a class of RRT-
based algorithms that plan with end-effector pose constraints,
for example CBiRRT [1] and TCRRT [2]. These algorithms
grow trees on M by sampling near an existing node on M
and then projecting that sample to M (see Figure 6). We
will show that an RRT-based algorithm with the following
properties is probabilistically complete.

1) Given a node of the existing tree, the probability of
sampling in an n-dimensional ball centered at that node
is greater than 0 and the sampling covers this ball.

2) The algorithm uses a projection operator with the
properties of P to project samples to M.

Define Mc ⊆ M as the connected component of M
which contains the initial configuration. In order to be prob-
abilistically complete, we must show that the algorithm will
place a node in any m-dimensional ball inMc. Let the set of
RRT nodes already generated by the algorithm (including the
start and goal) be N ⊆Mc. A node of the tree is associated
with a configuration qn; nodes will be referenced by their
configuration. Let Bn(q) for a configuration q ∈ Mc be an
n-dimensional open ball centered at q.
Lemma 6.1: The algorithm covers Bn(qn) ∩ Mc as the
number of samples goes to infinity.
Proof: Consider a B′m ⊆ (Bn(qn) ∩Mc). From Theorem
5.4, we know that any B′m has an associated n-dimensional
manifold C such that all samples in C project into B′m. Both
C and Bn(qn) are n-dimensional and both contain B′m. Thus,
by Lemma 3.1, C ∩ Bn(qn) is n-dimensional. Because the
algorithm samples in Bn(qn) with probability greater than

Fig. 6. An example of an RRT-based algorithm using the sample-project
method. First a random sample qrand is generated in the C-space and the
closest node of the tree qnear is calculated. The algorithm then computes
an intermediate configuration by stepping from qnear toward qrand. If the
distance between qrand and qnear is smaller than the step size, qrand is
used as the intermediate configuration. The algorithm then projects this
configuration to the manifold and adds the resulting node to the tree.

0 and the samples cover Bn(qn), it will generate a sample
inside C ∩Bn(qn) as the number of samples goes to infinity
with probability 1. This sample will then project into B′m
by the second property of C. Thus the algorithm projects a
sample into any B′m ⊆ (Bn(qn) ∩Mc) as the number of
samples goes to infinity.

We have shown that the algorithm covers Mc locally, i.e.
around existing nodes. We will now show that the nodes
of the tree(s) cover Mc as the number of samples goes to
infinity. We will be using the series-of-balls argument in the
subsequent proof. For a more detailed explanation of this
argument see [12] and [13].
Theorem 6.2: The algorithm will place a node in any Bm ⊆
Mc as the number of samples goes to infinity.
Proof: For any Bm ⊆ Mc, we can construct a series of
open m-dimensional balls starting at some qn ∈ N such
that subsequent balls overlap and the final ball overlaps
with Bm. The overlapping regions between the balls are
m-dimensional. By Lemma 6.1 a sample will be placed in
any B′m in the overlapping region if we sample in the Bn

centered at the center of the previous ball. This sample will
then be added to N as a node of the RRT. The algorithm is
guaranteed to place a node within each overlap by induction,
thus placing a node in any Bm as the number of samples goes
to infinity.
Theorem 6.3: The algorithm is probabilistically complete.
Proof: By Theorem 6.2, as the number of samples goes to
infinity any Bm ⊆Mc will be sampled and a corresponding
node will be added to N . As the radius of Bm goes to 0, N
will approach Mc in the limit. It follows that a path from
start to goal will be found if one exists.
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VII. DISCUSSION

We now discuss the implications of our proof for projec-
tion operators and mixed-dimensional constraint manifolds.

A. Projection Operators

Section V describes a projection operator that guarantees
probabilistic completeness for RRT-based algorithms. The
regularized Jacobian pseudo-inverse or Jacobian transpose
iterative inverse kinematics methods can be used to perform
the projection because they possess the requisite properties.
Unfortunately, there are some common iterative methods
which will not yield probabilistic completeness.

The null-space projection method [14] operates by using
the null-space of the primary task (placing the end-effector
in some pose) to satisfy secondary tasks such as collision-
avoidance or balancing. For this method, dq

dt = f(q(t)) is:

dq

dt
= J#ẋ+ (I− J#J)q̇null (17)

where J# is the generalized pseudo-inverse of the Jacobian,
ẋ is the error in pose, and q̇null is the error in meeting a
secondary objective. This type of projection attains optimal
configurations by sliding along a self-motion manifold when
ẋ = 0. The secondary task induces local minima on the self-
motion manifold which attract configurations from the rest of
the self-motion manifold. Thus, if a ball on the self-motion
manifold does not contain a local minimum of the secondary
task, configurations projecting to that ball may escape by
sliding along the manifold. It follows this projection operator
will not cover M. Though using this projection operator in
an RRT-based algorithm may yield an effective planner, it
will not be probabilistically complete.

B. Mixed-dimensional Constraint Manifolds

The proof of coverage and probabilistic completeness
assumed that the task constraint T had a fixed dimensionality
d. If we allow d to vary, then m (the dimensionality of
M) will vary as well. Since our proof of coverage used
only local properties of M, we can extend this proof to the
case of varying m simply by applying the proof to each
m-dimensional component of M for every m. However,
there is the case when a ball around a point on M contains
components of varying dimension. In this case, the ball can
be split according to the dimensionality of its components
and C can be shown to exist for one of these components,
thus guaranteeing a sample will be placed in this ball.

Though we can show that the sample-project method
covers M, the proof of probabilistic completeness for RRT-
based algorithms only holds when M is pure. The reason is
that mixed-dimensional manifolds can be constructed such
that all paths between two configurations must go through
a narrow passage, which is of lower dimension than any
component of the manifold. For instance, suppose M were
composed of two lines that intersect at some configuration qp.
To get from one line to the other, the algorithm would need
to find a path which contained qp. Yet there is 0 probability
of generating qp exactly, thus a path may never be found,

though one exists. This difficulty is not caused by the sample-
project method and is not limited only to pose constraints.
Rather this difficulty arises for all RRT-based planners when
they must find a path through a lower-dimensional narrow
passage. Coverage of M does not entail probabilistic com-
pleteness in this case. In order to guarantee probabilistic
completeness, the algorithm must be able to generate samples
in these lower-dimensional narrow passages, as in [15].

VIII. CONCLUSION

We have presented a proof of probabilistic completeness
for RRT-based algorithms when planning with end-effector
pose constraints, regardless of their dimensionality. We first
showed that the sample-project method used by these plan-
ners will cover the constraint manifold with samples. We
then showed how this entailed probabilistic completeness.
We also discussed the implications of the proof for projection
operators and mixed-dimensional constraint manifolds.
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