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Abstract— Mobile robots using a 360◦ field of view LIDAR
ranging sensor can generate enormous 3D point clouds. To
reduce the quantity of data in memory a compression can
lead to unstructured environment models such as irregular
meshes. This kind of structure can contain deformed cells and
the path planning can be cumbersome. This paper presents a
path planning method based on fluid mechanics able to deal
with unstructured terrain models. The algorithm uses the finite
element method to compute a velocity potential function free
from local minima. Then, several streamlines are computed as a
road map and the optimal path is selected among the candidate
paths. The approach is implemented on the Canadian Space
Agency (CSA) Mars Robotics Testbed (MRT) rover and tested
at the CSA Mars Emulation Terrain (MET). To confirm the
feasibility of the method, the path planner has been tested on
284 LIDAR scans collected in a realistic outdoor challenging
terrain.

I. INTRODUCTION

Path planning has been a field of research in many

areas including mobile robotics, but also in video games,

numerical animation, computer aided design (CAD) and

even in computational chemistry. In the last few decades,

robotics researchers proposed many solutions to generate

collision-free paths and trajectories. Generally, these ap-

proaches can be classified in three categories : Road map,

Cell decomposition and Potential field methods [1]. The

current work presents a path planning method that falls into

the third category. Indeed, we propose to generate paths

from the streamlines of an inviscid fluid flow. This method

is mathematically equivalent to the harmonic potential field

approach. Presenting the method from a point of view of

fluid mechanics is more intuitive because it is based on a

physical phenomenon.

Using the finite element method (FEM) in path planning is

not new [2]. The major advantage of FEM is the possibility

of using it directly on unstructured data such as irregular

triangular meshes. That is why this paper also adresses the

issue of solving the Laplace equation for the computation of

the potential field by FEM. The novelty of the work lies in

the application of FEM for path planning on rough terrain

models.

The paper first presents the background of the research.

Then, a review of the potential flow theory is presented. Next,

a method to generate an unstructured terrain model from

LIght Detection And Ranging (LIDAR) data is described.

Then, the numerical computation strategy follows and the

application to path planning is presented in details. Sections

VII and VIII describe the results of offline tests and ex-

perimental tests conducted on the Canadian Space Agency

(CSA) Mars Robotics Testbed (MRT) rover and tested at the

CSA Mars Emulation Terrain (MET). Lastly, conclusions are

drawn and future directions for the research are proposed.

II. BACKGROUND

The potential field approach invented by Khatib [3] has

led the mobile robotics community to a new kind of path

planning method based on physical laws. Khatib has pro-

posed an electrostatic analogy where obstacles generate a

repulsive field and where the destination is attractive. The

article of Koren and Borenstein [4] has explained the well

known problem of local minima in the potential field that

occurs when the robot runs into a dead-end. Chang has

presented a reacting method to escape the trap [5]. On the

other hand, Connolly et al. presented a potential field based

on Laplace’s equation [6]. These authors have discussed

that if a potential field is a solution of Laplace’s equation,

then it is called harmonic function and it has no local

minima. After, Connolly presented some useful properties

of harmonic functions for robust control [7]. Real time

applications of harmonic functions have been presented by

Kim and Khosla [8].

The fluid mechanics analogy has been developed first by

Keymeulen and Decuyper [9]. They recalled the absence

of local minima in the harmonic function and the possible

presence of unstable stagnation points. Also, these authors

have studied the effect of the Dirichlet and Neumann bound-

ary conditions on the resulting potential field. Louste and

Liégeois [10] have explained how to take into account non-

holonomic contraints with the viscous fluid field method.

Several of the above-mentioned authors have demontrated

several advantages of using the potential field method based

on harmonic functions, such as the fluid analogy. This elegant

approach can easily generate collision-free paths. Moreover,

the resulting paths are continuous, smooth and more intuitive

than paths provided by other methods such as graph-based

search approaches. However, some authors have presented

methods to solve Laplace equation only for a structured

terrain model, such as constant resolution cartesian grids [6],
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[10] and [11]. Most of them use the standard finite difference
method to solve the Laplace equation. This approach is built

to work only on a structured grid which is not always the

best selection for a complex terrain model. This shortcoming

was adressed by Pimenta and co-workers [2] with the first

application of the FEM to robotics path planning.

The work presented in this paper uses an approach of

path plannig based on fluid mechanics, which is able to

take as input unstructured and uneven terrain models based

on irregular meshes. The motivation for using an irregular

mesh came from the compression of the enormous amount

of data provided by a 360◦ LIDAR scan. To store in memory

all the rover surrounding data, it is sufficient to generate

a mesh from LIDAR data and simplify it via a mesh

simplification algorithm, which reduces the number of cells

while preserving the shape and topography [12], [13] and

[14]. The resulting mesh is compact but unstructured because

it contains cells of different sizes and geometry. The standard

finite difference method cannot be used on this kind of terrain

model. That is why FEM is adopted here to solve the Laplace

equation. Differently from Pimenta et al., who also used

FEM, the present work generates a feasible road map and

selects an optimal path. Moreover, another improvement with

respect to previous works is the application of FEM to rough

and uneven terrain models.

III. POTENTIAL FLOW THEORY

Let us outline the mathematical model describing the

flow of an inviscid incompressible fluid. Assuming a steady

irrotational flow in the Eulerian framework, the velocity field

V obeys the relation

∇×V = 0. (1)

As a consequence, velocity is the gradient of a scalar

(potential) function φ , V =−∇φ . Conservation of mass for a

steady incompressible flow results in the expression ∇ ·V = 0,

so that the potential φ is harmonic (solution of the Laplace

equation)

∇2φ = 0, (2)

inside any volume where conservation of mass holds. A

localized fluid source (or a sink) can be modeled by a Dirac

term (δ ) added to the right hand side of (2). Assuming a unit

amount of fluid injected at point A during a unit of time and

the same unit withdrawn at point B, the velocity potential is

now solution of the Poisson equation:

−∇2φ = δA−δB. (3)

Equation (3) must be complemented by appropriate boundary

conditions. The fluid cannot flow through the boundaries, a

condition expressed by V ·n = 0 (n being a vector normal to

the boundary Γ). On Γ the velocity potential must verify:

∇φ ·n = 0, (4)

which amounts to the Neumann boundary conditions:

∂φ
∂n

∣∣∣∣
Γ

= 0. (5)

Resolution of the Poisson equation can be achieved by

several approaches. Section V explains how to obtain the

potential φ of (3) on an irregular triangular mesh (ITM).

The next step is the computation of the velocity field. As

explained before, the velocity of the flow can be computed

everywhere on the domain by the gradient of the potential.

For path planning purposes, the magnitude of velocity vec-

tors is not useful (only the direction is needed) and the vector

field V can be normalized.

IV. UNSTRUCTURED TERRAIN MODEL

This Section presents a strategy to get a terrain model

from a raw point cloud provided by a 360◦ LIDAR sensor

[14]. The model is an input of the path planning algorithm.

The complexity of the model must remain low in order to

limit the path planning computational time. The complexity

of the model is a tradeoff betwen computational time and

accuracy.

A. Mesh building and processing

When raw LIDAR data are acquired, an ITM is built from

the 3D point cloud. The approach is explained in details

in [14]. The triangular mesh is obtained using the Delaunay
triangulation [15] applied on the point cloud expressed in po-

lar coordinates. The resulting mesh can contain thousands of

triangles depending on the resolution of the raw scan. Then,

in order to reduce the quantity of redundant information, the

mesh is compressed via a simplification method using QSlim
algorithm [16].

To keep only the navigable region of the ITM, a filter

removes the triangles whose slope is too steep. This step

leads to a mesh without “walls” and “ceilling” and where

only the terrain without rocks and inclines is preserved. Then

a Laplacian smoothing filter is applied to improve the mesh

quality. Figure 1 shows an example of an ITM built from a

real LIDAR scan taken by the CSA MRT at the MET.

Fig. 1. ITM and the corresponding LIDAR scan (black point cloud)

In Fig. 1 a rover is also drawn to show the context of the

measurement. The point cloud contains 110,000 3D points.

The colored surface is the resulting mesh that contains 3,960

triangles. The maximum radius of the LIDAR scan is 10 m.
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V. NUMERICAL COMPUTATION

This Section deals with the numerical approximation of

the velocity field on a triangular mesh . One has first to

compute the potential φ , solution of the Poisson equation,

deducing next the velocity field V .

A. Approximation of the potential

For decades, the finite element method has been widely

used for the computation of potential functions. This paper

does not provide details of the method (the reader can refer to

[17] for further details). The FEM splits the domain into a fi-

nite set of cells, assuming a given (usually polynomial) shape

of the state function inside each cell. This discretization

reduces the problem to the computation of a finite number of

unknowns, which is performed by solving a linear system. In

our case, we can make direct use of the unstructured mesh

data obtained in the previous step as input to a finite element

solver. Using a linear Lagrange interpolation inside each

triangle e with vertices (i, j,k), the approximated potential

takes the form:

φ e(x,y) = φiNe
i (x,y)+φ jNe

j (x,y)+φkNe
k (x,y), (6)

where the shape function Ne
i is linear inside each cell, Ne

i
takes the value 1 on vertex i and is equal to 0 for all other

mesh vertices. Fig. 2 presents an example of FEM problem

for a first order triangular mesh.

∇2φ=0

q=+δ

∂φ
∂n=0

q=-δ

Fig. 2. Example of FEM problem with one source and one sink on a
simple mesh

Figure 2 outlines the problem of potential flow according

to (3). There are a source with a positive volumetric flow

(represented by ⊗ with q = +δ ) and a sink (indicated by

� with q = −δ ). Elsewhere, the Laplacian of the potential

is zero (q = 0). Moreover, homogeneous Neumann boundary

conditions are applied as required by (5). Figure 3 shows the

velocity potential φ of the example of Fig. 2 as computed

by FEM.

As shown in Fig. 3, there is no local extremum in any

region excluding the source and the sink. The source is at

a global maximum of the function and the sink at a global

minimum.

B. Computation of the velocity field

As proposed by the fluid flow analogy, the vector field

needed to guide the robot from an initial position to its

Fig. 3. Velocity potential (black isovalue lines) solved by FEM for the
example of Fig. 2

destination is identified with the fluid velocity, gradient of

the potential. To compute this direction inside a triangle, one

has simply to take the gradient of (6), that is:

V e =−∇φ e(x,y) =−φi∇Ne
i −φ j∇Ne

j −φk∇Ne
k . (7)

Figure 4 shows the velocity field of the example of Fig.

2. As expected, velocity vectors are nearly perpendicular to

potential isovalues. This vector field is used to generate paths

from the initial position to the destination.

Fig. 4. Velocity field for the example of Fig. 2

VI. PATH PLANNING

This Section describes how to extract a safe and optimal

path between an initial position and a destination from the

velocity field and the terrain model. The idea to generate a

path is to plot a streamline by following a fluid molecule

flowing from the source towards the sink. Following several

molecules leads to several streamlines and a road map can

be built. Then, an optimal path can be selected inside the

candidate paths available within the road map.

A. Streamline computation

In fluid mechanics, a streamline is the path followed by a

fluid molecule along its spatial displacement. For the steady

state case, streamlines are tangent to the velocity vectors.

Then, a streamline can be drawn by starting near the source

at an arbitrary location, following the velocity vector until the

vicinity of the sink. A number of streamlines can be plotted

by starting in several locations surrounding the source. Figure
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5 shows some of the streamlines computed from the velocity

field of Fig. 4.

Fig. 5. Streamlines (blue lines) of the flow for the example of Fig. 2

B. Road map building

In robotics, the concept of road map can be described as

a set of candidate paths between an initial position and a

destination. A road map can be built by projecting all the

2D streamlines on the 3D terrain model. To this end, the

elevation of each point of the streamlines is computed using

the Lagrange interpolation method as shown in Subsection

V-B. When all streamlines are converted into 3D lines, an

analysis of the feasibility of each of the 3D candidate paths

is performed. The feasibility of each waypoint of a path is

tested. If a waypoint reaches an obstacle, the whole path

associated to that point is rejected. When alls waypoints of

each path are verified, only safe paths are selected for the

road map. The path planner proposed in this paper deals with

three kinds of obstacle:

1) slope too high;

2) roughness too high (e.g. rocks, abrupt craters);

3) unknown area (not sensed by the LIDAR).

To detect these obstacles at a waypoint position, a discrete

rover footprint is used. Figure 6 illustrates an example of a

rover seen from the top along with its circular footprint.

Fig. 6. Robot and circular discret footprint

To test the feasibility of a waypoint, the footprint is

centered at the position of the waypoint and each discrete

point is projected on the ground. Lagrange interpolation

is used again to compute the elevation of every footprint

points. To apply the interpolation, first the triangle supporting

the discrete point has to be found. If there is no triangle

associated to a footprint point, it means that a part of the

footprint is outside the terrain model. So this tested position

rock

groun
d

footprintgravity

(a) Projection of the footprint on the ground

outlier

(b) Computation of a least square plane

normal

(c) Rejection of outliers and computation of the second least square plane

Fig. 7. Computation of a terrain slope with “intelligent” surface mean
plane approach

can be declared unsafe according to obstacle definition 3) if

the rover is not considered like a point-robot.

When the whole 3D footprint is obtained, the local average

slope can be computed. The “Intelligent” surface mean plane
approach discussed in [18] leads to a computation of a

local slope without the disturbance stemming from high

roughness. Basically, the method computes first a mean

plane passing through the point cloud using least square

method. Then, the point/plane distance is computed for each

point. High roughness obstacles like rocks are detected by a

statistical analysis of the point/plane distance. Points outside

a few standard deviations are rejected. Finally, a second plane

is computed without the influence of high roughness. Figure

7 gives an example of the approach used to compute an

approximation of the local slope.

The local slope of the ground is given by the angle

between the gravity vector and the surface normal vector.

The local roughness can be analysed also with the point/plane

distance. The distance between each point of the 3D foot-

print and the “intelligent” surface mean plane is computed.

The maximum point/plane distance is the highest roughness

located in the radius of the footprint.

As a final result, the road map contains only safe paths

with waypoints where the local average slope and the highest

roughness are below the thresholds imposed by the rover’s

operational limits. The last step is the selection of the optimal

path among the candidate paths of the road map.

C. Optimal path selection

The road map contains a list of safe paths. The number

of candidate paths depends on the number of streamlines

generated (based on the 2009 field test campaign, this

number is 20). The selection of the optimal path available

can be based on several criteria (length, energy, curvature,

etc.). This project uses only the following criteria for paths

analysis:
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1) total length, and

2) energy consumption.

For each path of the road map, both criteria are computed

and two numbers can be associated to each path. One is

associated to the total length and the other is proportionnal

to the energy consumed to follow the path. The 3D length

l is simply computed as the sum of segments composing a

path:

l =
n

∑
i=2

‖Pi−Pi−1‖, (8)

where Pi is the 3D position vector of the waypoint i, and n
is the number of waypoints for a path. For the analysis of

energy consumption, only the gravitational potential associ-

ated to change in elevation is considered. So for every paths,

the elevation gain lz+ is computed by:

lz+ =
n

∑
i=2

αi, (9)

where αi is defined as follows:

αi =
{

Piz −Pi−1z , Piz −Pi−1z > 0 (10a)

0, otherwise. (10b)

The term Piz is the elevation of waypoint i. When all paths of

the road map are analysed with each criterion defined by (8)

and (9), a cost can be associated to each path. The values of

length and energy are normalized and indicated by l̂ and l̂z+.

The cost C can be computed for each path with the following

expression:

C = βl l̂ +βlz+ l̂z+ , (11)

where βl et βlz+
are weighting positive values. Finally, the

selected path is the one with the lowest cost.

VII. REAL WORLD IMPLEMENTATION

This Section describes an implementation of the above

described path planner on the Canadian Space Agency Mars

Rover Testbed (MRT). The MRT is operated in an outdoor

laboratory (MET) of 60 m by 30 m that emulates the

topography of a martian terrain. MET features several rocks

of different dimensions, craters along with a mountain, a

plain, a cave and a cliff. The MRT is a modified Pioneer

P2AT mobile robot manifactured by ActivMedia. The rover

is equipped with a SICK LIDAR mounted on a rotating pan

unit leading to a 360◦ field of view vision sensor. The robot

has onboard a Panasonic Toughbook laptop with Intel Core

2 processor running Linux operating system. Figure 8 (a)

shows the CSA testbed. The high level autonomy algorithms

are coded in JAVA and implemented in Eclipse 3.5. The

path planner and the terrain modeler are coded in Matlab

scripts and deployed to JAVA with the Builder-JA Toolbox

of Mathworks. The finite element solver is coded in C-mex
script.

Figure 8 presents the data collected in the field. The black

point clouds shown in Fig. 8 (b) and Fig. 8 (c) are the raw

LIDAR data, the colored surface is the processed mesh used

by the path planner and the blue line is the path computed.

Figure 8 (a) is a photo of the experimental set-up. Figure 8 (a)

shows the tracks left by the rover on the ground. This pattern

follows the path generated by the planner algorithm. The

experiment1 presented at Fig. 8 used the rover parameters

shown at Table I. For the optimal path selection, the path

planner used a length weight βl of 2.5 and energy weigth

βlz+ of 1.0. Also, the planner has generated 20 streamlines

for the contruction of the road map.

(a) Experimental set-up

x

z

y

(b) Data collected in the field

y

x

(c) Data seen from the top

Fig. 8. Path generated online by the rover move into a cave

Other experimental results are shown at Fig. 9, where

the colored surface represents the assembly of every meshes

1A video presenting this experiment is available online:
http://www.gel.usherbrooke.ca/icra2010/davidgingras
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Fig. 9. Closed path performed on MET

TABLE I

ROVER PARAMETERS USED BY PATH PLANNER

Rover radius Footprint res. Slope limit Roughness limit

35.0 cm 2.0 cm 25.0◦ 10.0 cm

collected on the way to destination. Only edges of the first

mesh are shown. The black lines are the isocontours of the

digital elevation map of MET. Paths are represented by blue

lines. The start configuration of the rover is at the bottom of

Fig. 9. The first requested destination is at the top left. The

robot took LIDAR scans, meshed the data, generated paths

and localised itself autonomously. The details of the whole

autonomy approach are explained in [19]. To make a closed

path, a second destination was sent to the rover to bring it

back to the initial position. Each local path generated by

the rover (there are 11 paths in Fig. 9) was computed with

the fluid mechanics approach described here. The rover has

autonomously traveled 63.9 m.

VIII. OFFLINE VALIDATION

To validate the functionality of the algorithm and to

characterize its performance, the path planner is tested offline

with a database of 284 LIDAR scans. Those scans have been

collected using the CSA MRT during the test campaigns of

2007, 2008 and 2009. During these campaigns, the autonomy

algorithms were tested and all experiment data were stored

including the LIDAR scans. A batch processing job executed

the following steps to test the path planner with every scans:

1) load a raw LIDAR scan;

2) generate a triangular mesh;

3) generate a random destination close to the mesh bound-

ary;

4) confirm the feasibility of the destination and find

another destination if it is needed;

5) run the path planner;

6) save the results;

7) restart from 1) until each scan is processed.

This offline experiment saves as results the values of:

• the number of points inside the LIDAR scan;

• the number of mesh triangles;

• the meshing computation time; and

• the path planning computation time.

A snapshot of the resulting scene is also generated in order to

allow a visual inspection of each generated path. The offline

tests were conducted with a Laptop Dell Latitude equipped

with a Intel Core 2 processor, 2.0 GB of RAM memory

and a Linux operating system. The numerical parameters

used are the same as Table I. To study the behavior of

the path-planning algorithm over different mesh accuracies,

the batch job is run thrice with a different number of mesh

triangles. For those experiments, the targeted number of mesh

triangles is 1,500, 4,000 and 8,000. The robot is assumed to

be centered in the middle of a 7 m radius mesh. The Table

II and III present the results.

The mesh processing time is almost the same for each

test. The path planning computation time shown in Table III

is associated to the number of mesh triangles. In fact, the

finite element solver embedded in the path planner has an

algorithm complexity of O(n3) where n is the number of

mesh vertices and there exists a link between the number

of mesh vertices and the number of mesh triangles. This
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TABLE II

MESH AVERAGE RESULTING VALUES OF THE BATCH PROCESSING TESTS

Exp. LIDAR scan nb. of pts. Triangle nb. Comp. time (s)

1 96,400 1,455 19.4

2 96,400 3,957 19.2

3 96,400 7,938 19.8

TABLE III

PATH PLANNER RESULTS OF THE BATCH PROCESSING TESTS

Exp. Average comp. time (s) Standard dev. (s) Faillure (%)

1 2.3 1.1 2.5

2 5.7 1.8 2.1

3 14.7 3.4 1.4

explains why the path-planning processing time grows with

the number of mesh triangles. Visual inspection of the failure

cases has revealed that the failures of the path planner were

due to the impossibility of safely driving the rover from start

to destination. Failure causes included disconnected cells or

untraversable terrain.

IX. CONCLUSIONS AND FUTURE WORKS

The purpose of this research project was to develop a

path planning approach that uses as input an unstructured

mesh that models an uneven terrain. Because of the possible

presence of deformed cells in this type of model, the artificial

potential field method is preferred to graph search. Path

planning based on graph search applied to an unstructured

mesh leads often to very jagged paths. To avoid the well-

known local minima problem of the potential field method,

we used a fluid mechanics analogy building an harmonic

potential field free of local minima. This kind of approach

relies on the solution of Laplace’s equation. The FEM was

used because of the irregular mesh.

To demonstrate the feasibility and to assess the perfor-

mance of our approach, the algorithms have been tested

on 284 LIDAR scans collected on an outdoor challenging

terrain. The path planner is currently deployed and used

by Canadian Space Agency on the Mars Robotics Testbed.

The CSA rover using the above outlined path planner was

operated from the International Space Station during the

Avatar Explore Space Mission that took place in 2009. For

more information about the Avatar project, the reader can

refer to the paper of Dupuis et al. [20].

Finally, we are currently developing a hybrid path planner

based on graph search and fluid mechanics to take advantage

of both methods. A graph search path planner can provide a

good first estimate of a path to follow and the fluid method

can refine and increase the quality of the resulting path.
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