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Abstract—This paper proposes a PID type regulator that
achieves not only the global asymptotic convergence of the robot
joint velocities and position errors to zero but it also guarantees
a prescribed performance for the position error transient that
is independent of system constants and control parameters. The
proportional term of the control input uses a transformed error
(TP) which incorporates the desired performance function;
given sufficiently high proportional and damping gains, the pro-
posed TPID controller ensures the position error’s prescribed
performance irrespective of constant disturbances and choice of
control gains. Control parameter selection is merely confined
in achieving admissible input torques. Simulation results for
a three dof spatial robot confirm the theoretical analysis
and illustrate the robustness of the prescribed performance
regulator in case of time-variant bounded disturbances.

I. INTRODUCTION

The stabilization property of PID controllers for robot
manipulators has been established since the early ’90 through
a number of publications that deal solely with the stability
problem rather than the system transient performance [1]–[7].
Some works discuss appropriate PID gain tuning procedures
that are dependent on some robot prior knowledge but tran-
sient performance guaranties are not given. Although it has
been early recognized that transient performance guaranties
deserves further research, see for example [8], there are in
general few theoretical works that study this problem for
uncertain nonlinear systems. A sliding mode controller with
transient performance guaranties which are dependent on
control gains and system constants are proposed for systems
in semi-strict feedback form in [9], [10] and applied in robot
manipulators in [11]. A control methodology that achieves
tracking with prescribed performance for a class of nonlinear
systems with known relative degree is proposed in [12] and
applied in robots for a combined joint position and velocity
tracking error in [13]. Recently, prescribed performance
guaranties are achieved in [14] for uncertain MIMO nonlinear
systems by introducing an error transformation in a feedback
linearizable controller and by exploiting the approximation
capabilities of neural networks.

The idea of error transformation drawn from [14] has been
exploited in the controllers proposed in [15]–[18]. In fact,
prescribed performance adaptive controllers that are model
based are proposed in [15], [16] for the robot position/force
tracking and in [17] for the robot joint position tracking under
bounded disturbances. Last, a PID type robot regulator is
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proposed in [18] that guarantees prescribed performance of
the joint position error transient and a maximum steady state
error that cannot however be zero. In this work, we have
modified the error transformation and the control input of
[18] in order to ensure error asymptotic convergence to zero
as well as transient performance guaranties under constant
disturbances irrespective of system constants and control
parameters.

II. PROBLEM DESCRIPTION AND PRELIMINARIES

Consider a n degrees of freedom robot and let q ∈ �n be
the vector of the generalized joint variables. The dynamic
model of the robot is given by the following nonlinear
differential equation:

H(q)q̈ + C(q, q̇)q̇ + g(q) + δ = u (1)

where H(q) ∈ �n×n is the positive definite robot inertia
matrix, C(q, q̇)q̇ ∈ �n is the vector of Coriolis and cen-
tripetal forces, g(q) is the gravity vector, δ is any constant
disturbance and u is the vector of applied torques. Notice that
Ḣ(q) − 2C(q, q̇) is a skew-symmetric matrix and g(q) =
∂U(q)

∂q where U(q) denotes the potential energy due to the
gravity field. The aim of this work is to design an input
control law that achieves the regulation of the joint position to
the desired setpoint position qd ∈ �n in terms of asymptotic
stability as well as guaranteed prescribed performance for the
joint position error e(t) = q(t) − qd.

A. Properties of the Robot Dynamic Model

Some basic properties of the robot dynamic model are
given below:

Property 1: The positive definite inertia matrix H(q) sat-
isfies the following inequalities:

λhI ≤ H(q) ≤ λHI (2)

where λH = maxq∈�n [λM (H(q))] and λh =
minq∈�n [λm (H(q))] with λM (·) and λm(·) denoting
the maximum and minimum eigenvalue of a square matrix
respectively.

Property 2: There exists a positive constant cH so that the
following inequality holds

‖C(q, q̇)q̇ − Ḣ(q)q̇‖ ≤ cH‖q̇‖2 (3)

where ‖ · ‖ denotes the Euclidean norm of a vector and the
corresponding induced matrix norm.
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Fig. 1. Performance bounds

Property 3: There exists a positive constant cg so that the
following inequalities simultaneously hold:

U(q) − U(qd) − eT g(qd) ≥ −cg‖e‖2 (4)

eT (g(q) − g(qd)) ≥ −cg‖e‖2 (5)

B. Prescribed Performance

By prescribed performance, we mean that the minimum
speed of convergence, the maximum steady state error and
the maximum allowed overshoot are set a priori. In fact, we
define the overshoot index M with 0 < M ≤ 1 and a smooth,
strictly positive and decreasing function of time ρ(t), called
the performance function. An ideal performance function is
the exponential function given by:

ρ(t) = (ρ0 − ρ∞) exp(−lt) + ρ∞ (6)

where ρ0 = ρ(0), l defines the minimum speed of conver-
gence and ρ∞ is the maximum allowed steady state error
that can not be zero. The mathematical expression of the
prescribed performance for e(t) is given by the following
inequalities:

−Mρ(t) < ei(t) < ρ(t) ∀t in case of ei(0) ≥ 0
(7)

−ρ(t) < ei(t) < Mρ(t) ∀t in case of ei(0) ≤ 0
(8)

where ei(t) ∈ � denotes the i-th component of the joint
position error e(t) and is illustrated in Fig. 1 for a scalar e(t).
Notice that ρ(t) and Mρ(t) define the performance bounds
within which the error should evolve. It is implied that ρ0 is
chosen so that ρ0 > |ei(0)|, where | · | denotes the absolute
value of a scalar.

To satisfy both regulation and prescribed performance for
the joint position error we incorporate an error transformation

x x1 M

0

0

0 −1 0

κx

−M

T (x)
T (x)
κx

e(0) ≥ 0 e(0) ≤ 0

Fig. 2. Error transformation with natural logarithm

initially proposed in [14]. More specifically, we define:

ε (t) = T

(
e (t)
ρ (t)

)
(9)

where ε ∈ �n is the transformed error and T (·) is applied
element wise with respect to e(t) and it is a smooth, strictly
increasing function defining an onto mapping:

T : (−M, 1) → (−∞,∞) in case of ei(0) ≥ 0
T : (−1,M) → (−∞,∞) in case of ei(0) ≤ 0

Additionally, we here require T (0) = 0 in contrast to [18];
hence, T (x) belongs to the sector [κ,+∞) where κ is a
positive constant. The following functions

T [x(t)] = ln
(

M + x(t)
M [1 − x(t)]

)
in case of x(0) ≥ 0 (10)

T [x(t)] = ln
(

M [1 + x(t)]
M − x(t)

)
in case of x(0) ≤ 0 (11)

possess all required properties and thus may be used in (9).
A graphical illustration of these function is provided in Fig.
2. Notice that the inverse transformation T−1(·) exists and
is bounded as follows: |T−1(·)| < 1. Also notice that M
and ρ0 can not be set equal to zero and |ei(0)| in order to
avoid infinite initial values of the transformed error ε. Clearly,
owing to the properties of the error transformation, we satisfy
the prescribed performance (7), (8) for the position error
transient, by keeping ε bounded. Notice that the magnitude
of this bound is not related to the evolution of the tracking
error e(t) that is solely defined by (7) and (8). The controller
should therefore be designed to guarantee the boundedness
of ε in order to achieve the prescribed performance.

The derivative of the transformed error can be calculated
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as follows:

ε̇ = ∂T [q̇ + α(t)e] (12)

where ∂T � ∂T

∂ (e/ρ)
1
ρ

> 0 a diagonal matrix (13)

and α(t) � − ρ̇(t)
ρ(t)

with α̇(t) = − ρ̈(t)
ρ(t)

+ α2(t)

(14)

The positive diagonal matrix ∂T can be regarded as a
normalized Jacobian of the transformed error (9) over the
performance function. Notice that ∂T−1 is bounded.

Using (6) and (14) we can easily prove that: i) α(t) is a
bounded positive function with limt→+∞ α(t) = 0, ii) α̇(t)
is a bounded negative function with limt→+∞ α̇(t) = 0, as
well as:

|ρ̇(t)| ≤ l(ρ0 − ρ∞) (15)

α(t) ≤ α(0) < l (16)

|α̇(t)| <
l2

4
(17)

Using (10), (11) the following inequalities can be easily
proved:

|εi| >
4

(M + 1)ρ(t)
|ei| (18)

∂Ti >
4

(M + 1)ρ(t)
(19)

where εi and ∂Ti denote the i-th element of ε and of the
diagonal matrix ∂T respectively. Using (18) and/or (19) the
following inequalities can be proved:

eT ∂Tε ≥ c‖e‖2 (20)

‖ε‖2 ≥ c‖e‖2 (21)

where c =
(

4
ρ0(M+1)

)2

.

III. CONTROLLER DESIGN

We propose the following independent joint controller:

u = −Kv q̇ − Kε∂Tε(t) − KI

∫ t

0

y(τ)dτ (22)

where Kv , Kε, KI are positive definite diagonal gain matri-
ces, ε and ∂T are defined by (9) and (13) respectively, and
y is given by:

y = q̇ + (α(t) + β) e (23)

where β is a positive control constant. Notice that compar-
ing with the conventional PID global asymptotically stable
controller [3], the proportional term in (22) involves the
transformed error ε instead of the actual error and a time
varying gain Kε∂T while the output vector y is enriched
with the term α(t)e that vanishes at infinity.

Substituting the input control law (22) into the robot
dynamic equation (1) and adding and subtracting the gravity
vector at the desired target i.e. g(qd) we can write the closed

loop system as follows:

H(q)q̈+C(q, q̇)q̇+Kv q̇+Kε∂Tε+[g(q)−g(qd)]+KIz(t) = 0
(24)

where

z(t) =
∫ t

0

y(τ)dτ + K−1
I (g(qd) + δ) with ż(t) = y(t)

(25)
Taking the inner product of the closed loop system (24) with
y given by (23) we get:

dV

dt
+ W = 0 (26)

where

V =
1
2
q̇T H(q)q̇ + [α(t) + β] eT H(q)q̇

+
1
2
[α(t) + β]eT Kve +

1
2
zT KIz (27)

+
1
2
εT Kεε + U(q) − U(qd) − eT g(qd)

and

W =q̇T [Kv − (α(t) + β)H(q)] q̇

+ (α(t) + β)eT [C(q, q̇)q̇ − Ḣ(q)q̇]

+ (α(t) + β) eT [g(q) − g(qd)] + βeT Kε∂Tε

− α̇(t)eT H(q)q̇ − α̇(t)
1
2
eT Kve (28)

Notice that the first two terms of V can be written as follows:
1
2
q̇T H(q)q̇ + [α(t) + β] eT H(q)q̇ =

1
4

[q̇ + 2(α(t) + β)e]T H(q)[q̇ + 2(α(t) + β)e]

− (α(t) + β)2eT H(q)e +
1
4
q̇T H(q)q̇ (29)

Splitting the term 1
2εT Kεε of (27) into two equal parts and

using (4), (21) and (29), we can lower bound V as follows:

V ≥1
4
q̇T H(q)q̇ +

1
4
εT Kεε +

1
2
zT KIz

+
1
2
(α(t) + β) eT [Kv − 2(α(t) + β)λHIn] e (30)

+ eT
( c

4
Kε − cgIn

)
e

Function V is positive definite with respect to q̇, ε and z if
Kv and Kε gains are chosen sufficiently high to guarantee
the following inequality:

Kv ≥ 2(l + β)λHIn (31)

Kε ≥ 4
c
cgIn (32)

Examining the sign of W , notice that when the error stays
within the performance bounds, the second line of (28) can
be written as follows:

[−ρ̇(t) + βρ(t)]
(
T−1(ε)

)T
[C(q, q̇)q̇ − Ḣ(q)q̇]. (33)
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Using the bound of the inverse transformation i.e.
‖T−1(ε)‖ ≤

√
n, the Properties 1-3 as well the inequalities

(20) and −α̇(t)eT H(q)q̇ ≥ −|α̇(t)|λH

(
‖e‖2

2ξ + ξ
2‖q̇‖2

)
for

some positive ξ into (28), we can lower bound W as follows:

W ≥q̇T
(
Kv − d(t)In

)
q̇ + eT

[
βcKε − (α(t) + β)cgIn

]
e

+
1
2
|α̇(t)|eT

(
Kv − λHξ−1In

)
e (34)

where

d(t) = (α(t) + β)λH + (|ρ̇(t)| + βρ(t))cH

√
n + λH |α̇(t)| ξ2

(35)

is a positive function that can be upper bounded by using
ρ(t) < ρ0, (15)-(17) and setting ξ = 8(l+β)

l2 in order to
simplify the results, as follows:

d(t) < 2(l + β)λH + l(ρ0 − ρ∞)cH

√
n + βρ0cH

√
n

Hence W is positive definite with respect to q̇ and e provided
that the following conditions hold:

Kv >
{
2(l + β)λH + [l(ρ0 − ρ∞) + βρ0] cH

√
n
}

In (36)

Kv >
λH l2

8(λ + β)
In (37)

Kε >
l + β

cβ
cgIn (38)

Condition (36) is dominant with respect to (31) and (37);
in particular, condition (31) is more restrictive than (37)
since l2 < 16(l + β)2 and condition (36) is clearly more
restrictive than (31). Furthermore, for compact presentation
we can combine (32) and (38) into the following condition:

Kε > max
[
4, β−1(l + β)

]
cgc

−1In (39)

If (36) and (39) hold, then function V (q̇, z, ε, e) is globally
positive definite while its derivative dV

dt is non-positive when
|ei(t)| ≤ ρ(t); hence, V ≤ V (0) which implies V (t) ∈ L∞.

It is possible to prove by contradiction that |ei(t)| ≤
ρ(t) ∀ t ∈ �+, given |ei(0)| < ρ0. Let us assume that
there exists a time instant tb at which the solution ei(t)
reaches the performance bounds and ε(tb) goes to infinity as
implied by (10), (11). On the other hand, the continuity of
the solution implies that during this time interval V̇ (t) ≤ 0
and subsequently V (tb) ≤ V (0) that in turn implies ε(tb)
is bounded which contradicts ε(tb) is infinite. Hence, there
exists no tb for which ei(t) will cross the performance bound
and thus V can be used as a Lyapunov-like function in order
to prove the following global result:

Theorem 1: The control law (22) applied to system (1)
achieves the global asymptotic convergence of joint velocity
and position error to zero with guaranteed position error
prescribed performance given by (7), (8) provided that the
controller gains Kv and Kε satisfy (36) and (39) for a choice
of β.

Proof: Since dV
dt = −W ≤ 0, V (q̇, z, ε, e) ≤ V (0)

and consequently q̇, z, e, ε ∈ L∞. The boundedness of

ε implies that e is bounded by the performance function
according to (7), (8) as well as that ∂T is bounded. Since
q̇, z, e, ε ∈ L∞, from (24) we get q̈ ∈ L∞. The bounded-
ness of q̈, and q̇ implies that q̇ and e are uniformly continuous.
Furthermore, from (36), given (39) and (34), there exist
positive constants γ1 and γ2 such that W ≥ γ1‖q̇‖2+γ2‖e‖2

and hence by integrating dV
dt ≤ −γ1‖q̇‖2 −γ2‖e‖2 along the

time interval [0,+∞) we get:

V (0) − V (+∞) ≥ γ1

∫ +∞

0

‖q̇‖2dτ + γ2

∫ +∞

0

‖e‖2dτ

that clearly implies: q̇, e∈ L2. Since q̇, e are uniformly
continuous and belong to the L2 space, it follows from
Desoer and Vidyasagar (1975) that q̇ → 0 and e → 0.

Alternatively, it is possible to use the integral of the joint
error e instead of y in the control law (22) and to prove the
following theorem:

Theorem 2: Consider the control input:

u = −Kv q̇ − Kε∂Tε(t) − KI

∫ t

0

e(τ)dτ (40)

and the closed loop system (24) where z(t) is given by:

z(t) =
∫ t

0

e(τ)dτ + K−1
I (g(qd) + δ) with ż(t) = e(t)

(41)
and Kv , Kε and KI are positive definite diagonal matrices.
If the control gains are chosen in order to satisfy condition
(36) and:

Kε > max
[
4, 16

15β−1(l + β)
]
cgc

−1In (42)

KI <
βc

16
Kε (43)

with β being a free design positive constant, then global
asymptotical convergence of the joint velocity and position
error to zero with guaranteed position error prescribed per-
formance given by (7), (8) is achieved.

In fact, the inner product of y (23) with (24) yields dVe

dt +
We = 0 where:

Ve = V + eT KIz (44)

We = W − eT KIe
T − 1

2
α̇(t)zT KIz (45)

with W given by (28) and V having the form of (27) with
the quadratic term of z (41) being replaced by α(t)+β

2 zT KIz.
Following the same procedure as before, Ve and We can be
lower bounded as follows:

Ve ≥1
4
q̇T H(q)q̇ + eT

( c

4
Kε − cgIn

)
e

+
1
2
(α(t) + β) eT [Kv − 2(α(t) + β)λHIn] e (46)

+
1
8
εT Kεε +

1
8

[
e
z

]T [
cKε 8KI

8KI 4KIβ

] [
e
z

]
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We ≥q̇T
(
Kv − d(t)In

)
q̇ + eT

[
15
16βcKε − (α(t) + β)cgIn

]
e

+
1
2
|α̇(t)|eT

(
Kv − λHξ−1In

)
e + eT ( 1

16cβKε − KI)e

(47)

Function Ve is positive definite and We is positive definite
with respect to q̇ and e provided that conditions (36), (42)
hold and Theorem 2 can be proved following the proof of
Theorem 1.

Setting a priori the prescribed performance indices, gain
tuning in both controllers (22), (40) is merely confined
to ensure that (36) and (39) or (42), (43) hold and that
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input torques are admissible. The choice of gains in order
to satisfy (36) and (39) or (42), (43) is dependent on the
approximate knowledge of the characteristic constants of the
robot dynamic model λH , cH and cg as well as the known
values of prescribed performance parameters ρ0, l and M .

Notice that the transformed error used in the proposed
controllers (22), (40) is derived by a modified transformation
function that maps zero position errors to zero transformed
errors as compared to that used in [18] and thus ensures that
the joint position error asymptotically vanishes. However, this
modified transformation restricts the prescribed overshoot

0 0.2 0.4 0.6 0.8 1

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

time (s)

q̇
(r

ad
/s

)

 

 

q̇1

q̇2

q̇3

Fig. 7. Joint velocity responses in case of disturbance

0 0.2 0.4 0.6 0.8 1
−10

−5

0

5

10

15

time (s)

u
(N

m
)

 

 
u1
u2
u3

Fig. 8. Input torque responses in case of disturbance

4141



index to arbitrarily small but non zero values. In [18] zero
overshoot was possible but a positive although arbitrarily
small maximum steady state error could only be guaranteed.

IV. SIMULATION RESULTS

We consider the spatial 3 dof robotic arm with masses
m1 = m2 = 1 kg,m3 = 0.5 kg, lengths l2 = 1 m, l3 =
0.5 m, inertias Iz1 = 4.15 10−4 kgm2, Iy2 = Iz2 =
0.021 kgm2, Iy3 = Iz3 = 0.0039 kgm2. The initial
position of the joints is 15 deg and the desired setpoint
is 0 deg. Hence the initial position error for each joint is
ei(0) = 0.262 (rad). The performance function is chosen as
follows: ρ(t) = (0.785 − 10−4)e−4t + 10−4. An overshoot
index M = 0.1 is chosen. Such a performance function
implies a 1 s settling time and a maximum steady state error
of 10−4 rad. We simulate the closed loop system using the
following control gains’ values: Kv = 200I3, Kε = I3,
KI = 0.5I3 and β = 0.5. The simulation results are shown
in Figs. 3-5. Notice that the joint position errors stay within
the prescribed position bounds and asymptotically vanish in
less than 1 sec (Fig. 3) while velocities converge to zero
in the same time period (Fig. 4). The desired goals have
been achieved by admissible control inputs shown in Fig.
5. We further examine the robustness of the controller in
time-dependent bounded sinusoidal disturbances by using
δ(t) = 5 sin(2πt)[1 1 1]T ; the results are given in Figs.
6-8. From Figs. 6 and 7, it is clear that both position
errors and velocities are slightly affected by the introduction
of the disturbance input. Notice how input torques (Fig.
8) adopt to disturbance in order to satisfy the prescribed
performance of the position error and convergence of the
velocities to zero. The simulation results of the closed loop
system with z(t) = e(t) are slightly affected as compared
to the previously presented and hence their presentation is
omitted.

V. CONCLUSIONS

This work proposes PID type robot joint controllers that
use an appropriately transformed joint position error. The
asymptotic convergence to zero and guaranties on prescribed
performance transients for position errors has been proved
under constant disturbances given that the gains exceed a
minimum value that is system and performance related. In
particular, the joint position error is guaranteed to evolve
within the prescribed performance bounds irrespective of the
values of robot parameters and gains. Performance bounds
are constructed by a priory setting the values for the desired
maximum overshoot and minimum speed of convergence.
Simulation results with the proposed controllers confirm the
theoretical findings and demonstrate their robustness in case
of time-dependent input disturbances.
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