
Searching and Mapping among Indistinguishable Convex Obstacles

Benjamin Tovar and Steven M. LaValle

Abstract— We present exploration and mapping strategies
for a mobile robot moving among a finite collection of convex
obstacles in the plane. The obstacles are unknown to the robot,
which does not have access to coordinates and cannot measure
distances or angles. The robot has a unique sensor, called the
gap sensor, that tracks the direction of the depth discontinuities
in the robot’s visibility region. Furthermore, the robot can only
move towards depth discontinuities. As the robot moves, the
depth discontinuities split and merge, and these changes are
encoded in a Gap Navigation Tree. We present a strategy for this
robot that is guaranteed to explore the whole environment, but
that cannot decide whether the exploration has been completed.
If in addition it is assumed that the robot has access to a pebble,
which is an identifiable point that the robot can manipulate,
then we prove that the robot can decide (in polynomial time
in the number of obstacles) whether the environment has been
completely explored. For this, the robot is able to distinguish
every obstacle using only the gap sensor and a single pebble.
These results are a continuation of our previous work on gap
sensing for multiply connected environments [23], in which we
reduce the sensing requirements for the robot by constraining
the shape of the obstacles.

I. INTRODUCTION

This paper focuses on developing systematic exploration

strategies for robots moving in unknown environments [4],

[8], [9]. This is inspired from the lost-cow problem, in which

a cow moves along a fence trying to find a gate to access

a pasture. The cow does not know where the entrance is, or

how far it could be. A solution to the lost cow problem is a

strategy for the cow that guarantees it will find the gate. This

problem is usually modeled by considering the fence as the

integer line, with the cow starting at the origin, and the gate

positioned at some number d, unknown to the cow. Consider

the strategy in which at each stage i, the cow walks 2i steps

in one direction, comes back to the origin, walks 2i steps in

the opposite direction, and finally comes back to the origin.

In the worst case, the cow takes 9d steps, and this in fact

minimizes the worst case distance traveled by the cow [1],

[13]. Note that the cow cannot determine the absence of a

gate in the fence. In such a case, no cow strategy terminates,

as the search for the gate continues forever.

In our case, the “cow” is a robot moving in the plane,

the “fence” is a finite collection of indistinguishable convex

obstacles, and the “gate” becomes a treasure, which is an

identifiable point in the environment, recognized as soon as

it enters the robot’s omnidirectional and unbounded field

of view. Here we assume that the robot has an abstract

B. Tovar is with the Department of Mechanical Engineering, North-
western University, 2145 Sheridan Road, Evanston, IL 60208, USA.
b-tovar@northwestern.edu

S. M. LaValle is with the Department of Computer Science, University
of Illinois, Urbana, IL 45435, USA. lavalle@uiuc.edu

sensor [7] that reports the order of depth discontinuities in

the robot’s visibility region. These depth discontinuities are

characterized by the obstacle they start at from the robot per-

spective, and by the side to which they hide the environment

to the robot. Two discontinuities with the same origin and

side are considered equivalent, and the equivalence classes

are called gaps. To characterize its environment, the robot

builds a dynamic data structure, called the Gap Navigation

Tree (GNT), entirely from online sensor measurements. Once

constructed, it encodes paths from the current position of the

robot to any place in the environment [23].

Can convex obstacles be distinguished with only gap

sensing? In Section III we present a strategy that systemati-

cally explore the environment reachable by the robot, using

uniquely a gap sensor. Even though this strategy guarantees

that all of the environment is eventually explored, it does not

terminate. In Section IV, we further assume that the robot

has access to one pebble, which is a special point that can

be detected and moved by the robot. We prove that with the

pebble, the robot can decide, in polynomial time, whether

the environment has been completely explored. This is done

by distinguishing obstacles using only the gap sensor and a

single pebble.

This work is a continuation of our study of minimal

robot models by sensing gaps. In [23] we presented an

exploration strategy for multiply connected environments

assuming the robot could distinguish among the obstacles.

In this paper we remove this assumption, but constrain the

obstacles to be convex. This constrain is only necessary

for deciding whether the environment has been completely

explored, since a systematic search of the environment is still

possible among non-convex obstacles. Our work is inspired

by minimal sensing for mobile robots from works such as

bug algorithms [10], [11], [12], [15], [16], in which a robot

that combines global knowledge with local information is

able to navigate among boundary components and reach

a known goal. In the case of bug algorithms, the robot

navigation capabilities are simple (movement towards bound-

ary components and wall-following), no representation of

the environment is maintained, and the global information

consists only of the position of the goal. These characteristics

allow the use of bug algorithms in robots that have very

limited sensing capabilities and unreliable motion control.

More importantly, the memory required for the algorithms is

constant.

In this context, theoretical bounds have been found for the

competitive ratios for the lengths of paths in online strategies

against the offline, optimal ones [3], [5], [14], [8], [17].

In particular, if no prior information of the environment is

2010 IEEE International Conference on Robotics and Automation
Anchorage Convention District
May 3-8, 2010, Anchorage, Alaska, USA

978-1-4244-5040-4/10/$26.00 ©2010 IEEE 3569



available, then the performance of an online strategy can

be arbitrarily worse when compared to the optimal, offline

one [6], [18], [22].

II. BASIC DEFINITIONS

Let O be a nonempty finite collection of pairwise-disjoint

sets in the plane R
2, called the obstacles. Each O ∈ O is

compact (i.e., closed and bounded), and convex, meaning

that the closed line segment joining any two points in O

does not intersect R
2\O. Furthermore, it is assumed that the

boundary ∂O of each O ∈ O is piecewise-analytic. Let F ,

the free space, be the closure of R
2 \ O (i.e., the plane

minus the interior of the obstacles). We model the robot’s

configurations as the set X = F × S1 ⊆ SE(2). Observe

that F includes the boundary of the obstacles, therefore, the

robot can execute compliant motions (i.e., in contact) with

the obstacles.

For q ∈ F , let V (q) be the visibility region of q, in which

p ∈ V (q) if and only if the closed line segment joining p and

q does not intersect R
2 \O. The visibility region consists of

three kinds of segments:

1) Curve segments completely contained in ∂F .

2) Compact line segments collinear with q, and which

intersect ∂F only at their endpoints, both of which

belong to ∂F .

3) Half-lines collinear with q, which intersect ∂F only at

their unique endpoint.

Segments of the second and third kind are called depth

discontinuities. If a depth discontinuity d is a half-line, define

the origin of d, o(d), as the obstacle O ∈ O that contains

the endpoint of d in its boundary. Otherwise, if a depth

discontinuity d has two endpoints, define o(d) as the obstacle

O ∈ O that contains the endpoint of d closer to q in its

boundary. Each depth discontinuity d is directed, and starts

from the point in o(d). Every depth discontinuity d receives

a label s(d) of left or right, depending on which side of d

the set F \ V (q) is as seen from q. If depth discontinuities

are reported counterclockwise from a visibility region, then

the left label corresponds to a transition from far to near,

and the right label corresponds to a transition from near to

far [23]. This label also corresponds to the side of the depth

discontinuities on which the obstacle appears, as seen from q.

Now we define gaps in terms of depth discontinuities:

Definition 1: Two depth discontinuities di and dj are said

to be equivalent if o(di) = o(dj) and s(di) = s(dj). The

equivalence classes of depth discontinuities are called gaps.

We cannot use Definition 1 for gaps with non-convex

obstacles. This is because with non-convex obstacles, distinct

gaps may share the same origin, and have the same side label.

Every obstacle O ∈ O is the origin of exactly two gaps, one

labeled right, and the other labeled left. We say that these

two gaps are associated with obstacle O. Let r(O) and l(O)
be the gaps associated with O, with side label right and left

respectively.

Sensor: We consider a robot which is not able to

compute V (q), but that instead has a gap sensor, which is

able to track the gaps in V (q) at all times, reports them in

their counterclockwise cyclic order as they appear in V (q),
and determines their side labels. Note that the gaps’ size,

angle, origin, and distance to the robot are not reported by

the gap sensor.

Motion primitive: The robot moves by chasing gaps.

To chase a gap, the robot orients its heading with the gap,

and moves towards it.

A. The Gap Navigation Tree

Here we give a brief description of the Gap Navigation

Tree data structure. For the complete description please refer

to [23]. In a Gap Navigation Tree, the root represents the gap

sensor, and each vertex represents a gap. Children of the

root represent gaps currently detected, and are maintained

in the cyclic order in which they appear in the gap sensor.

As the robot moves in F , V (q) changes combinatorially. In

particular, the number of gaps in ∂V (q) may decrease or

increase through the following critical events:

• Gaps merge. For gaps gi and gj assume that q is closer

to o(gi) than it is to o(gj). If gj becomes collinear with

gi, so that gj is no longer contained in ∂V (q), then we

say that gj merged into gi.

• Gaps split. Let gi and gj be two gaps, so that gj became

part of ∂V (q) by first being collinear with gi. We say

that gi split, or that gj split from gi.

Note that since every O ∈ O is compact and convex, gaps

may only split or merge, but they cannot appear or disappear.

If a gap splits, then the corresponding child of the root is

replaced with two children. When two gaps merge, the two

corresponding children of the root become the children of

a new vertex, and this new vertex becomes a child of the

root. A sequence of vertices from the root to a leaf define

a sequence of gaps, that if chased, follows a path in the

shortest-path graph of F .

III. SYSTEMATICALLY EXPLORING THE ENVIRONMENT

Now we develop a strategy with the guarantee that every

point in F appears eventually in the visibility region of the

robot. To present the strategy, we define a special point

in F , called the treasure, and show that independently of

which point of F is defined to be the treasure, the robot will

eventually see it.

Strategy 1: Looking for a treasure among indistinguish-

able convex obstacles with a gap sensor

Description: We construct a GNT according to the updates

in Section II-A. Additionally, the leaves of the tree are

labeled according to a counter, i. We call this label the

exploration label of the vertex. The exploration labels of

the m vertices corresponding to the initial m gaps observed

are set 1 through m, and i is set to m + 1. The search

for the treasure proceeds by systematically chasing the gap

g corresponding to the leaf with the minimum exploration

label. Gap g is chased until its descendants are not known

(that is, until the corresponding leaf in the tree splits). In this

case, two new vertices are added to the root of the GNT, one

corresponding to g, and the other to the gap, g′, that split

3570



from g. These two new vertices are labeled i and i + 1,

respectively, and i is set to i + 2 (see Figure 1). Note that

when two gaps merge, the internal vertex created is never

labeled for future exploration. If at any point the treasure

becomes visible, then the strategy successfully terminates.

Theorem 1: If there is a treasure, Strategy 1 is guaranteed

to find it.

Proof: Assume that from the initial position of the

robot, the treasure is found by following the shortest se-

quence of gaps [g1, g2, . . . , gk]. Initially, for j = 1, gj is

visible, and therefore its vertex is labeled for exploration.

Recursively, when gj is chased, gj+1 will split from it, and

the corresponding vertices are labeled for future exploration.

Eventually, gk is chased and the treasure is found.

Note that Strategy 1 is easily extended to non-convex

obstacles. In such a case, gaps are chased until they split or

disappear, and the leaves corresponding to gap appearances

do not need to be labeled according to the counter.

Strategy 1 is terribly inefficient. Gaps are chased over and

over again, as exemplified in Figure 1. Suppose that from

the initial position of the robot, the shortest sequence of

chasing motion primitives that finds the treasure has length k.

Strategy 1 is a breadth-first search, in which each node

has a branching factor of 2 (when a gap splits, two more

nodes are added to the search queue, which is implemented

through the exploration labels). Therefore, if it performs k

chasing motion primitives in the optimal case, Strategy 1

performs O(2k). Each vertex in the GNT corresponds to a

bitangent complement [23] of F . Two vertices in the tree are

said to be redundant if they correspond to the same bitangent

complement. The issue here is that when a gap without

known descendants splits, the newly created descendants

may already be in some other branch of the tree. How can

the robot detect redundant vertices?

IV. DISTINGUISHING OBSTACLES

We define a left loop over obstacle O as the process of

the robot reaching some point of ∂O, and chasing l(O)
until ∂O is transversed exactly once. Similarly, a right

loop over obstacle O is defined by chasing r(O). Consider

the sequence of gap critical events as the robot performs

a left loop on some obstacle O, and compare it to the

sequence of gap critical events should the robot perform a

right loop on that same obstacle. We should expect these

sequences to be similar. To make this apparent, we define

four stacks of gaps, merge(l(O)), merge(r(O)), split(l(O)),
and split(r(O)), which are initially empty. When the robot

performs a left loop over O, gaps merging with r(O) are

pushed into merge(r(O)), and gaps splitting from l(O)
are pushed into split(l(O)). The stacks merge(l(O)) and

split(r(O)) are used similarly for a right loop over O.

Lemma 2: For initially empty stacks merge(l(O)),
merge(r(O)), split(r(O)), split(l(O)), after left and right

loops, the sequence of gaps in merge(l(O) is the reversal

up to a cyclic shift of the elements in merge(r(O)), and

split(l(O)) is the reversal up to a cyclic shift of the elements

in split(r(O)).

Proof: Let p ∈ ∂O be the point at which the left loop

over O starts, and let G(p) = [r(O), g1, g2, g3, . . . , l(O)]
be the reading from the gap sensor at p. As the robot

chases l(O), gaps that were not visible from p, g′1, g′2, g′3,

etc., split from l(O); the same will eventually happen with

g1, g2, g3, etc. When the robot reaches p, split(l(O)) =
[. . . , g3, g2, g1, . . . , g

′

3, g
′

2, g
′

1]. Similarly, while chasing l(O),
gaps g1, g2, g3, etc. merge (in that order) into r(O),
as do the gaps not initially visible from p, g′1, g′2, g′3,

etc. At the end of the left loop over O, merge(r(O)) =
[. . . , g′3, g

′

2, g
′

1, . . . , g3, g2, g1]. Observe that split(l(O)) and

merge(r(O)) are the same sequence up to a cyclic shift.

Since split(r(O)) is the reversal of merge(r(O)), and

merge(l(O)) is the reversal of split(l(O)), the result follows.

Lemma 2 has important consequences for the structure of

branches in a Gap Navigation Tree:

Corollary 3: For O ∈ O, in a GNT without redundant

vertices, after left and right loops over O, the first descendant

of l(O) is the last descendant of r(O), and vice-versa.

Proof: This is just an alternative wording of Lemma 2

in terms of the GNT structure. After a left loop over

some obstacle, the length of merge(r(O)) determines the

maximum number of merges of l(O) and r(O) without

creating redundancies in the Gap Navigation Tree.

After a left loop over O ∈ O, consider the branch starting

at the root’s child associated with r(O). Observe that there

is a sequence of m consecutive vertices which correspond to

gaps merging into r(O). By Corollary 3, if more than m gaps

merged into r(O), then the tree contains redundant vertices,

and the branch can be pruned to the first m merges of r(O).
Another consequence of Corollary 3 is that the branch for the

root’s children associated with l(O) can be constructed from

the branch of r(O), and vice-versa. Note that in addition to

reversing the order of the merges, if a gap g merges to the left

(resp. right) of r(O), then it merges to the right (resp. left)

of l(O). Therefore, the branches corresponding to l(O) and

r(O) can be compared, and completed or pruned accordingly.

During the left and right loops over O, l(O) and r(O)
appear consecutively in the sensor reading. With this obser-

vation, we can identify when two gaps have the same origin:

Lemma 4: Let G(p) = [g1, g2, . . . , gn] be the reading

from the gap sensor from point p ∈ F . If s(gi) = left

and s(g1+(i mod n)) = right, then o(gi) = o(g1+(i mod n)).

Proof: Remember that the gap sensor detects gaps in

a counterclockwise order. By assumption, there are no gaps

between gi and g1+(i mod n), which means either that the

reading of the depth discontinuity sensor goes to infinity, or

that the portion of ∂F detected does not have any discontinu-

ities from the current point of view. The first case contradicts

that the obstacle o(gi) lies to the left of gi, and that obstacle

o(g1+(i mod n)) lies to the right of g1+(i mod n). The second

case implies that there is a connected portion of ∂F between

gi and g1+(i mod n). Therefore, o(gi) = o(g1+(i mod n)).

3571



(a) (b) (c) (d) (e) (f)

Fig. 1. Search for a treasure with Strategy 1. (a) The two vertices corresponding to the initially visible gaps are labeled for exploration, and the robot
chases the gap associated with the minimum exploration label (label 1). (b) The gap being chased splits, and the new children are label consecutively
for exploration, labels 3 and 4. The next gap chased corresponds to the vertex labeled 2. (c) Two leaves merge, and the resulting vertex is not labeled
for exploration. (d) The gap being chased splits, with the children labeled for exploration with 5 and 6. (e) The gap associated with the vertex labeled 3
is chased, and the events are updated in the tree accordingly. (f) The gap being chased splits, with the children labeled 7 and 8. Note that the vertices
labeled 5 and 8 are associated with the same gap, but such correspondence is not made by Strategy 1. The search continues by chasing the gap associated
with the minimum exploration label.

Corollary 3 describes the structure of two branches when

the robot is at the boundary of some obstacle. To use

this result, the robot needs to perform left loops over the

obstacles. However, this is not possible in general, since the

robot cannot determine when it performed a complete loop

around an obstacle. If we extend the robot model with a

single pebble, which extra information can the robot deter-

mine? Can the robot distinguish the origin of all gaps using

only the gap sensor and the pebble? Since the robot does

not have a sensor that immediately identifies the obstacles,

distinguishing obstacles means here that they are assigned

arbitrary but consistent labels.

With the addition of the pebble, the robot is provided with

a new motion primitive, surround(O), which commands the

robot to transverse completely the boundary of O ∈ O once.

Consider the following strategy:

Strategy 2: Looking for a treasure among indistinguish-

able obstacles with a gap sensor and a pebble

Description: We keep two counters: counter i for the ex-

ploration labels, and counter j for naming obstacles. Both

counters are initially set to 1. Observe that there are three

cases for the information available regarding the origin of a

gap g recorded in a vertex of the tree:

1) The origin of gap g is unknown.

2) The origin of gap g is unknown, but it can be deter-

mined it is the same origin as some other gap g′.

3) The origin of gap g is some obstacle Ok, for 1 ≤ k <

j.

The robot may not determine immediately that some

gaps are associated with the same obstacle. Therefore, some

obstacle may be labeled more than once. To handle this, the

label for the origin of a gap is kept in the corresponding

vertex of the tree.

For exploration, the m gaps from the first observation are

labeled 1 to m, and i is set to m + 1. Next, a GNT is

constructed following the events in Section II-A, according

to the following iteration:

1) Moving to an obstacle. Let g be the gap corresponding

to the vertex in the GNT with minimum label for

exploration. If no such gap exists, then the exploration

is complete since F contains no treasure. Otherwise,

the gap g is chased until the robot is in contact with

some obstacle O.

2) Labeling an obstacle. Since O was reached by chasing

g, O is the origin of g, and g is one of l(O) or r(O).
First, the exploration labels for the vertices of l(O) and

r(O) are removed. Second, the origin in both vertices

is set to Oj , and j is incremented.

3) Left loop over the obstacle. The robot drops the

pebble, and performs a left loop over obstacle O.

Every time l(O) splits without known descendants, the

vertex corresponding to the gap splitting from l(O) is

labeled i, and i is incremented. If a gap besides l(O)
splits without known descendants, then the events of

these descendants are ignored. They will eventually be

labeled in a future iteration.

4) Modifying branches. The branches of the root’s chil-

dren corresponding to l(O) and r(O) are compared and

modified according to Corollary 3. The next iteration

proceeds with step 1.

If the treasure becomes visible at any point of the iteration,

then the strategy terminates with success. An example of this

strategy is shown in Figures 2 and 3.

We discuss the correctness of Strategy 2:

Theorem 5: If there is a treasure, strategy 2 is guaranteed

to find it.

Proof: Observe that the obstacles labels are a by-

product of Strategy 2, and do not determine the order in

which gaps are explored. Suppose that Strategy 1 finds the

treasure by chasing the sequence of gaps [g1, g2, . . . , gn]. The

vertex corresponding to g1 receives an exploration label in

the initial step before the iteration. Recursively, starting with

i = 1, a left loop is performed over o(gi), from which gi+1

splits (Lemma 2), and its vertex is labeled for exploration.

3572



(a) (b) (c) (d) (e) (f)

Fig. 2. Search for a treasure with Strategy 2 (I). For convenience, we will refer to l(Oj) and r(Oj), with l(j) and r(j), respectively. (a) The obstacle
corresponding to the first boundary reached is labeled 1. The left and right gap of obstacle 1 are identified accordingly. A left loop over obstacle 1 is
performed from (b) to (d). As l(1) splits, the vertices of the gaps that split from l(1) are labeled for exploration. (e) The left loop over obstacle 1 is
completed, and the branch of l(1) is constructed according to Corollary 3. (f) The exploration continues chasing the gap associated with the vertex labeled 2
(continuation in Figure 3).

(a) (b) (c) (d) (e) (f)

Fig. 3. Search for a treasure with Strategy 2 (II). Continuation of Figure 2. (a) When the new boundary is reached, the corresponding obstacle is labeled 2.
From (b) to (d) a left loop over obstacle 2 is completed. For convenience, we only show the visible sections of the branches at (b). In (f), the branches
are compared, and vertices labeled 4 and 5 are found to be l(1) and r(1) respectively. Also, the branch starting with l(2) is completed by mirroring the
branch starting with r(2). At this point, no vertex remains labeled for exploration, and it is guaranteed that the environment did not contain a treasure.

Eventually, a left loop is performed over o(gn), which makes

the treasure visible.

We conjecture that the breadth-first search implemented

by Strategy 2 labels each obstacle exactly once. Therefore,

it would take at most O(|O|) iterations to find the treasure.

More importantly, if every obstacle is labeled exactly once,

Strategy 2 always terminates, as it does for the example

presented in Figures 2 and 3. At the time of writing we

do not have a proof to support these claims. However, with

a small modification, Strategy 2 is guaranteed to label each

obstacle exactly once, deciding the presence of a treasure

in O(|O|3) time:

Strategy 3: Looking for a treasure among indistinguish-

able obstacles with a gap sensor, a pebble, and backtracking

Description: First, observe that once a left loop over some

obstacle O ∈ O has been performed, a pebble is not needed

anymore to implement the surround(O) motion primitive. By

counting the number of gap critical events along ∂O, it can

be guaranteed to be transversed exactly once.

We modify Strategy 2 as follows. Assume that the label

given to O ∈ O is j. Once the left loop is completed in

step 3, the robot drops the pebble at Oj . For i = j − 1

down to 1, the robot chases back a gap with origin Oi, and

performs surround(Oi). If during surround(Oi) the pebble is

found, then Oi = Oj , the branches of the tree are matched

accordingly, the counter j is decremented, and the iteration

proceeds with step 1 of Strategy 2. Otherwise, if the pebble

is not found by surround(Oi), Strategy 2 continues normally

with step 4.

This backtracking may avoid some unnecessary work. The

surround(·) motion primitive should be performed only on

obstacles with the same (cyclic) sequence of gap critical

events along their boundary as the sequence for ∂Oj .

Theorem 6: Strategy 3 decides in O(|O|3) time whether

there is a treasure.

Proof: An obstacle is only labeled with the current

value of the counter if it is found not to be labeled before.

Observe that for j > 1, surround(·) is performed j−1 times;

if no obstacle is reached twice, then Strategy 3 terminates

in Ω(|O|2) time. Otherwise, assume that for every O ∈ O,

l(O) splits O(n) times. In the worst case, O(n) gaps that

split from l(O) direct the robot to obstacles labeled before.

This means that Strategy 3 terminates in O(|O|3) time.

3573



V. CONCLUSIONS AND FUTURE WORK

In this paper we presented exploration strategies for a mo-

bile robot with limited sensing, moving among an unknown

collection of convex obstacles. We proved that a robot with a

gap sensor can systematically search the whole environment,

but it cannot decide whether every point of the free space

has been visible. With the addition of a pebble, the robot

can decide whether the environment has been completely

explored.

Assuming that the robot can distinguish among the collec-

tion of convex obstacles, the robot can recover the visibility

type [19] of the collection of obstacles, which encodes all

the information regarding critical changes in the visibility

region of a moving point among the obstacles. The visibility

type corresponds to cyclic sequences of bitangents along the

boundary of the obstacles. The visibility type determines

the tangent visibility graph [20], which is a generalization

of the visibility graph for obstacles whose boundaries are

not polygonal. In [19], based on the visibility type, pseudo-

triangulations are constructed. The sides of a pseudo-triangle

are free bitangents and arcs on the boundary of the obstacles.

Based on pseudo-triangulations, which are in fact oriented

matroids of rank 3 ([2]), the visibility complex [21] can be

constructed, allowing efficient visibility queries. Construct-

ing the visibility complex from the information gathered by

the robot described here seems feasible, and we consider it

as future work.

Acknowledgments.: The authors thank Lawrence Er-

ickson for insightful discussions. Our work was funded by

NSF grant 0904501 (IIS robotics), DARPA SToMP grant

HR0011-05-1-0008, and MURI/ONR grant N00014-09-1-

1052.

REFERENCES

[1] R.A. Baeza-Yates, J.C. Culberson, and G.J.E. Rawlins. Searching in
the plane. Inf. Comput., 106(2):234–252, 1993.

[2] A. Björner, M. Las Vergnas, B. Sturmfels, N. White, and G. M. Ziegler.
Oriented matroids. Cambridge University Press, 1993.

[3] A. Blum, P. Raghavan, and B. Schieber. Navigating in unfamiliar
geometric terrains. In Proc. ACM Symp. Comp. Geom., pages 494–
504, 1991.

[4] M. Blum and D. Kozen. On the power of the compass (or, why
mazes are easier to search than graphs). In Proc. Annual Symposium

on Foundations of Computer Science, pages 132–142, 1978.

[5] A. Datta, C. A. Hipke, and S. Schuierer. Competitive searching in
polygons–beyond generalized streets. In J. Staples, P. Eades, N. Katoh,
and A. Moffat, editors, Algorithms and Computation, ISAAC ’95, pages
32–41. Springer-Verlag, Berlin, 1995.

[6] X. Deng, T. Kameda, and C. Papadimitriou. How to learn an
unknown environment I: The rectilinear case. Available from
http://www.cs.berkeley.edu/∼christos/, 1997.

[7] M.A. Erdmann. Understanding action and sensing by designing action-
based sensors. International Journal of Robotics Research, 14(5):483–
509, 1995.

[8] Y. Gabriely and E. Rimon. Competitive complexity of mobile robot
on line motion planning problems. In Workshop on the Algorithmic

Foundations of Robotics, pages 249–264, 2004.

[9] Y. Gabriely and E. Rimon. Cbug: A quadratically competitive
mobile robot navigation algorithm. IEEE Transactions on Robotics,
24(6):1451–1457, 2008.

[10] I. Kamon and E. Rivlin. Sensory-based motion planning with global
proofs. IEEE Transactions on Robotics & Automation, 13(6):814–822,
December 1997.

[11] I. Kamon, E. Rivlin, and E. Rimon. A new range-sensor based globally
convergent navigation algorithm for mobile robots. In IEEE Int. Conf.

Robot. & Autom., 1996.
[12] I. Kamon, E. Rivlin, and E. Rimon. Range-sensor based navigation

in three dimensions. In IEEE Int. Conf. Robot. & Autom., 1999.
[13] M.Y. Kao, J. H. Reif, and S.R. Tate. Searching in an unknown

environment: An optimal randomized algorithm for the cow-path
problem. In SODA: ACM-SIAM Symposium on Discrete Algorithms,
pages 441–447, 1993.

[14] J.M. Kleinberg. On-line algorithms for robot navigation and server
problems. IEEE Transactions on Software Engineering, 24, 1994.

[15] S.L. Laubach and J.W. Burdick. An autonomous sensor-based path-
planning for planetary microrovers. In Proc. IEEE International

Conference on Robotics & Automation, 1999.
[16] V. J. Lumelsky and A.A. Stepanov. Path planning strategies for a

point mobile automaton moving amidst unknown obstacles of arbitrary
shape. Algorithmica, 2:403–430, 1987.

[17] M.S. Manasse, L. A. McGeoch, and D.D. Sleator. Competitive
algorithms for on-line problems. In ACM Symp. on Theory of

Computing, pages 322–333, 1988.
[18] C. Papadimitriou and M. Yannakakis. Shortest paths without a map.

Theoretical Computer Science, 84:127–150, 1991.
[19] M. Pocchiola and G. Vegter. Order types and visibility types of

configurations of disjoint convex plane sets, 1994.
[20] M. Pocchiola and G. Vegter. Minimal tangent visibility graphs.

Computational Geometry: Theory and Applications, 6, 1996.
[21] M. Pocchiola and G. Vegter. The visibility complex. Int. J. Comput.

Geom. & Appl., 6(3):279–308, 1996.
[22] N. Rao, S. Kareti, W. Shi, and S. Iyenagar. Robot navigation in

unknown terrains: Introductory survey of non-heuristic algorithms.
Technical Report ORNL/TM-12410:1–58, Oak Ridge National Lab-
oratory, July 1993.

[23] B. Tovar, R Murrieta, and S.M. LaValle. Distance-optimal navigation
in an unknown environment without sensing distances. IEEE Trans-

actions on Robotics, 23(3):506–518, June 2007.

3574


