
Performances of the Central-Axis Approach in Grasp Analysis

B. Bounab, D. Sidobre and A. Zaatri

Abstract— In this paper, we consider a 3D grasping problem.
In previous work, we presented the central-axis approach and
proven its capability to analyze multifingered grasps. In the
present paper, we extend our study by developing and ana-
lyzing modified force-closure algorithms, and giving rigorous
theoretical demonstrations. Through numerical simulations, we

show that the proposed approach is computationally efficient
when comparing with the qualitative ray-shooting algorithm.
The proposed quantitative force-closure test offers a good quality
metric without computing the convex hull of the primitive
contact wrenches in R

6, which efficiently reduces the amount
of computation. Several simulation examples showing the ef-
ficiency of the proposed approach are included in the paper.

I. INTRODUCTION

BECAUSE force-closure grasps are reliable, it is de-

sirable to design or synthesize such grasps. Hence,

several researches in grasping and manipulation are inter-

ested in developing force-closure tests and associated grasp

planners. This paper focuses on grasp analysis for which we

present a fast quantitative test algorithm. The proposed test is

computationally competitive compared with the known qua-

litative ray-shooting algorithm [13]. Moreover, the proposed

approach can offer a quality measure without computing the

convex hull of the primitive contact wrenches in R
6.

The most useful characterization of grasp restraint is

force-closure [1]-[4]. A given grasp achieves force-closure

if the fingers can apply appropriate contact forces on the

object to produce wrenches in any direction, and hence, they

compensate any external wrench (up to a certain magnitude).

Salisbury and Roth [5] characterized the force-closure by

the geometric condition : the primitive contact wrenches

positively span the entire wrench space. This condition

is equivalent to saying that the origin of wrench space

lies strictly inside the convex hull of the primitive contact

wrenches [6]. Ponce et al. [7] illustrated that 4-finger force-

closure grasps fall into three classes : concurrent, pencil

and regulus grasps, and developed techniques for computing

them. Jia-Wei Li et al. [8] proposed a geometric algorithm
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for computing 3-finger FC grasps. Chen et al. [9] developed a

qualitative test algorithm for any number of contacts. Trinkle

[10], [11] proposed a linear programming formulation of

the force-closure problem by checking the existance of any

positive null vector of the primitive contact wrench matrix.

Han et al. [12] pointed out that friction constraints have

the form of Linear Matrix Inequalities (LMIs) and formu-

lated the grasping force optimization problem as a convex

optimization problem involving LMIs. Liu [13] formalized

qualitative test of force-closure grasps as linear programming

problem based on the duality between convex hulls and

convex polytopes. This qualitative test is considered as the

most efficient algorithm [14]. For grasp quality, Kirkpatrick

et al. [15] defined the quantitative measure as the radius of

the largest sphere inscribed inside the convex hull of contact

wrenches. This measure has been proposed in several forms,

but it is best described by Ferrari and Canny [16]. In [19], we

proposed to use the central-axis theory to study mutlifingered

grasps and we developed a linear programming formulation

of the force-closure problem.

In this paper, we will extend our study of the central-axis

approach by developing modified force-closure algorithms

and giving rigorous theoretical demonstrations. Through nu-

merical simulations on multifingered grasping, we confirm

the real-time efficiency of the proposed approach when

compared with the qualitative ray-shooting algorithm [13].

The advantage of the proposed approach is its capability

to give a good quality measure of the force-closure grasp

without computing the sphere in six-dimensional wrench

space, which efficiently reduces the computational cost.

The paper is organized as follow : In Section II, we present

an overview of the relevant pieces of grasping and central

axis theories. In Section III, we put forward the necessary

and sufficient condition for n-finger equilibrium and force-

closure grasps and we present the proposed algorithms. In

Section IV, we show an implementation of the proposed

approach with numerical simulations on multifingered gras-

ping. Section V concludes the paper.

II. BACKGROUND

This section briefly describes the background of grasping,

introducing the concept of the central-axis approach.

A. Grasp Wrench Space

This work assumes hard finger contact with Coulomb

friction model. Hence, the finger contact force fi must be

within the friction cone at each contact point ci (Fig. 1-

a). The static friction coefficient µ = tan(α) depends on
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(a) (b)

Fig. 1. Interpretation of the friction law : (a) Spatial-friction cone, (b)
Quadratic cone approximated by an m-sided polyhedral cone.

materials that are in contact. In this situation, the tangential

force f t
i must satisfy the following constraints

f t
i =

√

f 2
ix + f 2

iy 6 µ fiz , (i = 1 · · ·n) (1)

where fix, fiy are the orthogonal tangent elements, and fiz is

the normal element of the ith fingertip contact force fi at the

contact ci.

The non-linear friction constraints given by (1) can be

relaxed using polyhedral approximation. Each cone is lineari-

zed by an m-sided polyhedral convex cone (Fig. 1-b). Under

this approximation, grasp force fi, expressed in the object

coordinate frame, is given by

fi =
m

∑
j=1

ai jvi j ; vi j = Ri si j ; ai j ∈ R
+ (2)

The matrix Ri specifies the location of the ith coordinate

frame w.r.t. the object coordinate frame. si j denotes the jth

edge vector of the polyhedral convex cone expressed in

the ith coordinate frame and satisfies sT
i jzi = 1. The sum

∑m
j=1 ai j specifies the amplitude of the normal component

of the contact force fi.

A hard finger at ci applies the moment ti/o = ci × fi w.r.t.

the origin o. The force and the corresponding moment are

stacked into a six-dimensional vector called wrench. The

wrench induced on the object by the grasp force fi, denoted

wi, applied at the origin o, is given by

wi =
[

fi , ti/o

]T
=

m

∑
j=1

ai jwi j (3)

Where wi j denotes the primitive contact wrenches of the ith

finger. They are given, w.r.t. the object coordinate frame, by

wi j = [vi j , ci ×vi j]
T

(4)

The net wrench applied by the hand on the grasped object

is the sum of all primitive contact wrenches. It is given by

wg =
n

∑
i=1

m

∑
j=1

ai jwi j =
[

fg , tg/o

]T
; ai j > 0 (5)

B. Equilibrium

In equilibrium study, we consider only the grasp forces

applied by the n fingertips of the robotic hand. Therefore,

a set of nm primitive contact wrenches are said to achieve

equilibrium when there convex hull in R
6 contains the origin

[20]. In other words, a grasp achieves equilibrium when

the equation wg = 0 admits a nontrivial and non-negative

solution. The equilibrium condition w.r.t. o is given by
{

∑n
i=1 ∑m

j=1 ai jvi j = 0

∑n
i=1 ∑m

j=1 ci ×ai jvi j = 0
; ai j > 0 (6)

C. Force-Closure

A grasp is force-closure when the contact forces fi are

able to produce any wrench in R
6. In other term, the

fingers can apply appropriate contact forces on the object

to produce wrenches in any direction and hence, they

compensate any external wrench. We notice that the force-

closure property considers only the direction of wrenches

while the magnitude is neglected. Intuitively, a system of

wrenches achieves force-closure when any external load

can be balanced by a non-negative combination of the

primitive contact wrenches wi j. The term positively span

R
6 is reserved to represent force-closure property.

Definition 1 : A set of vectors positively span R
6 if

any vector in R
6 can be written as a positive combination

of the given vectors.

This is equivalent to saying that the origin of wrench

space lies strictly inside the convex hull of the primitive

contact wrenches. The most developed force-closure tests are

based on this definition. The test proposed by Liu [13] uses

the duality between convex hulls and convex polytopes to

propose an equivalent ray-shooting problem. This test cannot

provide a quality measure of a force-closure grasp because

the primitive contact wrenches are normalized in order to

save the time of computing the convex hull of the primitive

contact wrenches. The most known quality measure is the

radius of the largest sphere inscribed inside the convex hull

of contact wrenches [15] [16], though computing the sphere

in R
6 space is computationally expensive [13].

D. Wrench Central-Axis

Poinsot’s central-axis theorem states that every system of

wrenches is equivalent to a single force plus a single moment

acting on the same line. The central axis ∆g of the grasp

wrench wg is defined as follows [17] :

∆g =

{

fg × tg/o

‖ fg ‖2
+ λ fg : λ ∈ R

}

(7)

The moment about ∆g is equal to the component of tg/o

exerted by the system in the fg direction, it is given by

tg/I =
fT
g tg/o

‖ fg ‖2
fg (8)

The main advantages in using the concept of the central

axis is its ability to reduce any system of forces to an
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arbitrary point. We have shown in [18] that the central

axis can construct directly the locus of resultant forces

without any geometric transformation. In [19], we have given

many examples that illustrate the relationship between force-

closure property and the central axis of the grasp wrench.

Rewriting the equilibrium condition of (6) w.r.t. the kth

contact point ck yields
{

∑n
i=1 ∑m

j=1 ai jvi j = −∑m
j=1 ak jvk j

∑n
i=1 ∑m

j=1((ci − ck)×ai jvi j) = 0
; i 6= k , ai j > 0 (9)

Poinsot’s central-axis theorem allows to define the follo-

wing two classes of central axes :

– ∆k : the central axes of the wrench wk, which is

associeted with the contact forces fk = ∑m
j=1 ak jvk j. ∆k

define all pure forces in the kth friction cone.

– ∆r : the central axes of the wrench wr which is associe-

ted with the other contact forces fr = ∑n
i=1 ∑m

j=1 ai jvi j

where i 6= k and the moment w.r.t. ck is zero. ∆r define

all pure forces that passes through ck.

According to the equilibrium condition (9), we can

immediately conclude the following proposition for n-finger

equilibrium grasps

Proposition 1 : A grasp can achieve equilibrium iff

the n−1 first fingers can generate, at least, one central axis

of class ∆r that is opposite to one central axis of class ∆k

generated by the last kth finger.

In planar grasps, a grasp that achieves non-marginal equi-

librium also achieves force-closure [20]. This is equivalent to

saying that, at least, one central axis of class ∆r is pointing

strictly within the negative kth friction cone. In other words,

the grasp achieves non-marginal equilibrium when the central

axes ∆∗
g = ∆r ∪∆k positively span R

3 (R2 for 2D grasps).

For the force R
3 subspace, [21] shown that at least four

vectors are needed to positively span R
3. The following

proposition describes a necessary and sufficient condition

for four vectors to positively span R
3 [21].

Proposition 2 : Four vectors positively span R
3 when

the negative of any of these vectors lies inside the interior

of the pyramid formed by the other three vectors.

Proposition 2 indicates that a necessary and sufficient

condition for force vectors to positively span R
3 at a contact

point ck is the ability of the force cones to generate one force

which is pointing strictly within the negative kth friction

cone (cone pointing outside the object). This is equivalent

to saying that a positive combination of the contact forces

generates pure force along the unit vector −zk, the inverse

normal at the contact point ck. Therefore, the contact forces

positively span R
3 at the first contact point c1 if they satisfy

the following system of equations :
{

∑n
i=1 ∑m

j=1 ai jvi j = −z1

∑n
i=2 ∑m

j=1((ci − c1)×ai jvi j) = 0
; ai j > 0 (10)

III. CENTRAL-AXIS APPROACH

Clearly, a force-closure grasp achieves equilibrium, and

the non-marginal equilibrium is a necessary and sufficient

force-closure condition for 2D grasps. However, this

condition is not sufficient to satisfy force-closure for 3D

grasps. Hence, a generalization of (10) summarizes the 3D

force-closure test in the following proposition :

Proposition 3 : Given an arbitrary point (eg. ci), an

n-finger grasp is force-closure iff :

(i)- all grasp-wrench central axes of class ∆∗
g = ∆r ∪∆k can

positively span R
3 at ci (forces along ∆∗

g are noted f∗g), and

(ii)- the torque applied by the n fingers tg/ci
, positively span

R
3 at ci.

Proof : if conditions 3-(i) and 3-(ii) are satisfied w.r.t.

ci, the corresponding grasp wrench w∗
g/ci

=
[

f∗g , tg/ci

]T

can balance any external wrench at point ci. Hence, the

given grasp is force-closure at point ci. Now, w.r.t any

other point p ∈ R
3, the grasp wrench w∗

g is writen as

w∗
g/p

=
[

f∗g , tg/p = tg/ci
+(ci −p)× f∗g

]T
. The force f∗g

spans positively R
3 at ci and p, that implies that the torque

(ci −p)× f∗g can balance any external torques w.r.t. p except

those around the axis cip. An external torque around the

axis cip can be balanced by the grasp torque tg/ci
because it

spans positively R
3 at ci. Therefore, the grasp wrench w∗

g/p

can balance any external wrench w.r.t any point p ∈ R
3 and,

the conditions 3-(i) and 3-(ii) are sufficient. Furthermore,

if one of the two conditions of the Proposition 3 is not

satisfied, there exist external wrench that cannot be balanced

by the grasp wrench wg. Hence, the two conditions are

necessary. �

The second condition in the Proposition 3 states that the

torque applied by the n fingers must positively span R
3 at

ci. Mechanically, this condition can be satisfied if the first

condition 3-(i) is satisfied w.r.t. three non-collinear points.

Accordingly, we put forward the following force-closure

condition :

Proposition 4 : An n-finger grasp is force-closure iff

all grasp-wrench central axes of class ∆∗
g can positively

span R
3 w.r.t , at least, three non-collinear points (eg.

ci, i = 1,2,3) (forces along ∆∗
g are noted f∗gi).

Proof : When a grasp achieves force-closure, the contact

forces positively span R
3 w.r.t. any arbitrary point. Hence,

spanning positively R
3 w.r.t three points is a necessary

condition. Further, if the central axes ∆∗
g spans positively R

3

at point c2 then, the torque (c1 − c2)× f∗g2 can balance any

external torques w.r.t. c1 except those around the axis c1c2.

Also, if the central axes ∆∗
g spans positively R

3 at a third

point c3 where (c1 − c2)× (c1 − c3) 6= 0 (three non-collinear

points) then, the torque (c1 − c3)× f∗g3 can balance external

moments around axis c1c2. Therefore, propositions 3 and

4 are equivalent and, the condition of Proposition 4 is

sufficient to assure force-closure. �

A. Force-Closure Tests

Testing the force-closure is simplified using propositions

3 and 4. Based on Proposition 2 and the equations system
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(10), we formulate the condition 3-(i) as the following LP :

min
x=(a11,a12,··· ,a2m,··· ,anm)T

{

1T x : Ax = −z1, x > 0
}

(11)

the matrix A of dimension (6×mn) is given by

A =

(

v11 · · · v1m v21 · · · · · · vnm

0 · · · 0 t21 · · · · · · tnm

)

(12)

Where ti j = di × vi j, di = 1
r
(ci − c1). We normalize the

torques by r, the maximum radius from the wrench space

origin, often the centre of mass. This ensures that the quality

of a grasp will be independent of the object scale.

The second condition 3-(ii) states that the torques

applied by the n fingers tg/ci
positively span R

3 at c1.

We can compute the sphere in R
3 torque space to verify

this condition. However, another equivalent mathematical

statement is [23] 1 :

Proposition 5 : A set of vectors ti∈[1...k] ∈ R
3 positively span

R
nv (nv 6 3) iff, there exists λi such that the following two

conditions hold :

(i) rank(M) = nv with M = [t1 . . . tk] ∈ R
nv×k,

(ii) ∃ λi > 0 such that Mλi = 0.

We notice that if 3-(i) is satisfied and using torque

equations given by (10), there exist some non-zero torques

(λi > 0) w.r.t. c1 that verify ∑k
i=1 λiti = 0. Hence, according to

Proposition 5, the condition 3-(ii) is verified if rank(M) = 3.

However, when rank(M) = 2, we conclude that the non-

zero torques (λi > 0) can positively span a plane P at

c1. In this case, the condition 3-(ii) is verified if the other

torques (with coefficients λi = 0) can generate positive and

negative moments around the normal of P at c1 (noted NP ).

When rank(M) < 2, the condition 3-(ii) can be verified by

computing the sphere in R
3 torque space, which returns the

minimim moment mball w.r.t c1.

We summarize the proposed tests for n-finger force-

closure grasps as the following two algorithms (Alg. 1

and 2). The first algorithm Alg. 1, describes the two steps

advanced in Proposition 3 where the condition 3-(ii) is

verified using Proposition 5. For the second proposed force-

closure algorithm (Alg. 2), we perform the resolution of n

linear programs based on Proposition 4.

We notice that the proposed algorithms allow to test the

force-closure of planar and spatial n-finger frictional and

frictionless grasps. In contrast of the qualitative ray-shooting

algorithm, the proposed approach gives a quality measure of

the force-closure grasp, which is important in grasp synthesis

and grasp optimization.

In order to give an idea about the execution run-time of

the two proposed algorithms versus the number of sides

linearizing the friction cones, we show in Fig. 2 two illustra-

tion examples from [13], [14]. The 4-fingered grasp achieves

force-closure when µ = 0.5 (Fig. 2(a)), the lower required

1This is the main difference between the present paper and the algorithm
advanced in our previous work [19]. The force-closure test algorithm Alg.
2 is also a new contribution of this paper.
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(b) Non-force-closure grasp.

Fig. 2. The run-time for testing 4-finger grasps.

run-time is obtained when the Alg. 1 is used. The force-

closure test advanced in Alg. 2 takes more computational

times. However, when the grasp is not force-closure, µ = 0.3
(Fig. 2(b)), we can see that the two proposed tests have

the same run-time and, the ray-shooting algorithm takes

more computational times in the case of non-force-closure

grasps [13], [14]. In general, a cone approximation with

12 6 m 6 20 sides leads to acceptable practical results and,

the percentage of discarded area is 4.51% with m = 12 and

1.64% when m = 20 [22].

Algorithm 1 : QP3 = FC Test P3(n, ci, zi, µ) ; (i = 1 . . .n)

Ensure: QP3

Require: n > 3

1: if (11) is inconsistent then

2: return +∞ {unfeasible LP, not FC grasp}
3: else

4: if rank(M) = 3 then

5: return 1T x∗ {the grasp is FC}
6: else if rank(M) = 2 and tg/c1

positively span NP

then

7: return 1T x∗ {the grasp is FC}
8: else if mball > 0 then

9: return 1T x∗ {the grasp is FC}
10: else

11: return +∞ {tg/c1
cannot positively span R

3}
12: end if

13: end if

1276



Algorithm 2 : QP4 = FC Test P4(n, ci, zi, µ) ; (i = 1 . . .n)

Ensure: QP4

Require: at least, three non-collinear points ci

1: for i = 1 to n do

2: LPi = min
{

1T x : Ax = −zi, x > 0
}

3: if LPi is inconsistent then

4: return +∞ {unfeasible LP, not FC grasp}
5: else

6: Q(i) = 1T x∗

n
{if i > 3 then the grasp is FC}

7: end if

8: end for

9: return ∑n
i=1 Q(i)
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Fig. 3. The proposed quality QP3 versus ε (4-contact grasps on ellipsoid).

B. Grasp Quality measure

When the grasp is force-closure, the optimal solution of

the proposed LP is QP3 = 1T x∗. The proposed quality gives

the minimal contact forces that contribute to obtain the

maximum of the force along axis −zi. The quality QP4 in

Alg. 2 is an average value that can give a better information

about the distribution of the contact forces on the object’s

surface. The proposed qualities can measure how far a grasp

is from loosing force-closure. We analyze the 4-fingered

grasps in order to compare the proposed quality measures

with the largest ball ε inscribed inside the convex hull of

contact wrenches. The grasped object is a spheroid with

the lengths of the principal axes set to R = 2 and r = 1,

respectively. The friction coefficient is set to µ = 0.4 and,

the friction cone is linearized by a pyramid of m = 12

sides. We vary randomly the locations of 4 contact points on

this ellipsoid and we compute 1000 grasps. The quantitative

check is carried out successfully and all grasps are tested in a

run-time of 0.735 seconds using algorithm 1. The qualitative

ray-shooting algorithm takes 0.858 seconds to test all grasps.

However, computing the sphere in R
6 wrench space needs

94.141 seconds to check these grasps. Hence, the proposed

test reduces efficiently the computational cost. In Fig. 3, we

plot the maximum radius of the sphere ε (using qhull library

[27]) versus the proposed quality measure QP3, we can

remark that the minimization of QP3 leads to maximizing ε .

Therefore, the proposed force-closure test can be considered

as a quantitative one without computing convex hull.

ith finger xh

qi2

Object's
coordinate
frame

qi1

q3

q3

yh

zh

o

zo

xo

yo

q1

q2

palm

oh

r h

q4

Fig. 4. The different parameters defining the starting posture of the Barrett
w.r.t the object coordinate frame : {q1,q4} ∈ [0,2π], {q2,q3} ∈ [0,π], qi1 ∈
[0,144]◦ and qi2 = 0.333∗qi1 +40 ◦ ; i = 1 . . .3 finger’s number.

(a) sphere (b) cube (c) cylinder

(d) glass (e) flask (f) lamp

Fig. 5. Some good grasps generated randomly. The obtained qua-
lities [QP3,ε ] are : (a)[0.875,0.604], (b)[0.741,0.492], (c)[1.960,0.302],
(d)[1.430,0.347], (e)[1.120,0.379], (f)[1.724,0.308].

IV. NUMERICAL RESULTS

In this Section, we use the 3-fingered Barrett hand [28]

to study the performances of the proposed approach by

evaluating multifingered grasps on various objects2. The si-

mulations were performed under the public simulator GraspIt

2.0 [24]. To generate a grasp, the Barrett hand is randomly

positioned at a starting configuration which is defined by

four parameters qi=1...4 (refer to Fig. 4). The hand is then

translated along the coordinate axis zh until it is prevented

from moving further by contact. Third, the fingers are closed

around the object until contacts or joint limits prevent from

further motion. If at least three contacts between the hand

and the object exist, the obtained grasp is evaluated. Fourth,

the angles of the proximal links are initialized, the hand

is slightly backed away from the object along the axis zh

with a small distance dback = 5mm and the fingers are closed

again. Finally, This backing off iteration continues until the

fingers reach the object and the corresponding grasp can be

2In this paper, all numerical results are obtained on a Pentium-M laptop
(processor 1.7 GHz, 1.5 Go of RAM, OS. Linux).
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TABLE I

PERFORMANCES OF THE PROPOSED QUANTITATIVE TEST

Object Grasps cpuCA(s) cpuRS cpuCH

sphere 209 0.179 0.244 32.879
cube 347 0.263 0.360 29.740

cylinder 409 0.327 0.407 38.169
glass 533 0.485 0.608 67.604
flask 565 0.470 0.609 66.287
lamp 578 0.534 0.677 68.296

run-time unit is second. CA : central-axis (Alg. 1).
RS : ray-shooting algorithm [13], [14].

CH : computing convex hull in R
6 [15].

evaluated. The friction coefficient is set to µ = 1.0 assuming

rubber finger covers. Friction cones are approximated by

m = 12 sides. The distance rh (Fig. 4) is selected sufficiently

high to assure collision avoidance.

Using this method, we generate 200 starting postures

randomly and we compute the resulting grasps on various

polyhedral objects. In figure 5, we present the best obtained

grasps and their corresponding quality measures. All grasps

in Fig. 5 have ε > 0.1, which confirm that they are good

power grasps [25]. Note that the possible ranges of the

largest ball ε depend on µ . The computational performances

of the proposed central-axis approach are depicted in Table

I. The number of tested grasps is depicted in the second

column. We can easily remark that the proposed approach

is computationally competitive compared to the qualitative

ray-shooting test and, more efficient then computing the

maximum sphere inscribed in the wrenches convex hull.

V. CONCLUSIONS AND FUTURE WORKS

This paper focuses on the proposition of modified force-

closure test algorithms based on the central-axis theory and

using friction cone linearization.

Other important research topic within the area of grasping

is grasp synthesis [23]. It is the problem of choosing the

posture of the robotic hand and contact point locations to

optimize a grasp quality metric. Many work are concerned

with this topic [24], [25], [26], and we must notice that

the the most significant amount of computation is spend

checking the feasibility and evaluating the quality of each

generated grasp. Therefore, The main contribution of the

present paper is the proposition of a real-time efficient quan-

titative force-closure test. Through numerical simulations on

multifingered grasps, we have confirmed the efficiency of the

central-axis approach in testing the force-closure property.

The proposed approach can be applied on-line to evaluate the

quality measures of force-closure grasps, which efficiently

reduces the amount of computation for grasp synthesis.

As generated grasps must perform different tasks in the

environment, our future works will be concentrated on the

development of oriented task qualities.
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