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Abstract— This paper considers the problem of realizing a
6-DOF closed-loop motion simulator by exploiting an anthro-
pomorphic serial manipulator as motion platform. Contrary
to standard Stewart platforms, an industrial anthropomorphic
manipulator offers a considerably larger motion envelope and
higher dexterity that let envisage it as a viable and superior
alternative. Our work is divided in two papers. In this Part I,
we discuss the main challenges in adopting a serial manipulator
as motion platform, and thoroughly analyze one key issue: the
design of a suitable inverse kinematics scheme for online motion
reproduction. Experimental results are proposed to analyze the
effectiveness of our approach. Part II [1] will address the design
of a motion cueing algorithm tailored to the robot kinematics,
and will provide an experimental evaluation on the chosen
scenario: closed-loop simulation of a Formula 1 racing car.

I. INTRODUCTION

Over the last decades, the realization of realistic immer-
sions in virtual environments has been an active research
field [2]. In this context, simulators of vehicle motion rep-
resent one major application of interaction with a virtual
environment for training purposes [3], but also for educating
and entertaining as reported in [4]. The big challenge, in this
case, is to provide the user with all the sensory cues needed
to reproduce a perfect illusion of realism. While controlling
the simulated vehicle, the user should behave exactly as if
he/she was interacting with the real one.

When simulating interaction with a vehicle, visual cues
play a major role in achieving good realism, also thanks to
the recent developments in 3D computer graphics. Vision
alone, however, may not be enough to obtain a sufficient
simulation fidelity so that additional cues, such as motion
cues, are also often considered. In this case, the user ex-
periences motion by means of a suitably actuated motion
platform that tries to reproduce the linear accelerations and
angular velocities that would have been felt on the vehicle.

Most existing designs of motion simulators are based
on fully actuated hexapods (Stewart platforms). Although
with motion capabilities in 6 degrees of freedom (DOF),
these platforms suffer from their limited workspace and the
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impossibility to achieve large linear and angular displace-
ments and rates because of the the closed chain nature of
their actuation system. As a possible improvement to this
design, the idea of exploiting industrial robot manipulators
as motion platforms is drawing an increasing attention in the
scientific community [5], [6], [7]. Indeed, a serial 6-DOF
industrial manipulator offers higher dexterity, larger motion
envelope, the possibility to realize any end-effector posture
within the workspace, and the ability to displace heavy loads
(up to 1000 [kg]) with large accelerations and velocities. It
is then possible to attach a cabin carrying the user to the
robot end-effector. The large dexterity envelope of the robot
motions allows moving the cabin along complex coordinated
trajectories and reaching any attitude: the cabin could even
be placed upside down, thereby achieving sustained negative
vertical accelerations.

However, exploiting a serial manipulator as motion plat-
form for closed-loop vehicle simulation involves also several
challenges that will be extensively discussed in the rest of
the paper and its companion Part II. In few words, there are
two main issues: first, one must conceive a suitable inverse
kinematics scheme able to cope with an unpredictable and
arbitrary desired cabin motion, generated online as a function
of the (unpredictable) user inputs to the simulated vehicle.
Second, the design of washout filters, and in general of the
whole motion cueing block, must be tailored to the specific
motion envelope of a serial manipulator.

In this paper, we address the closed-loop control for the
CyberMotion Simulator, a 6-DOF anthropomorphic robot
arm based on the commercial KUKA Robocoaster [8]. In
previous works, we already presented some results on sim-
plified situations where only a small subset of robot DOF
were used to generate motion [9], [10], [11]. Goal and main
contribution of this paper and its companion Part II is to pro-
pose a general and rigorous framework to exploit the full 6-
DOF of the robot to realize closed-loop motion simulations.
Although our approach can be seamlessly applied to simulate
any vehicle dynamics, we selected a Formula 1 racing car
as testing scenario for obtaining an experimental evaluation.

This paper is structured as follows: after a description of
the CyberMotion Simulator in Sect. II, Sect. III will illustrate
the architecture of a typical motion simulation loop, and
give more details on the challenges inherent in adopting a
serial manipulator as motion platform. Section IV will then
tackle the core issue of this Part I, i.e., the design of the
inverse kinematics algorithm whose effectiveness will then
be discussed in Sect. V via experimental results. Section VI
will finally summarize the paper contributions, and indicate
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open points and future directions. Design of the motion
cueing algorithm, details of the Formula 1 car model, and
experimental evaluation of the whole architecture are given
in Part II.

II. DESCRIPTION OF THE CYBERMOTION SIMULATOR

The CyberMotion Simulator consists of a standard six-
joint anthropomorphic robot arm, see Fig. 1(a). It is based
on the commercial KUKA Robocoaster [8] (a modified KR-
500 industrial robot with a 500 [Kg] payload), which was
originally designed for use in amusement parks. A cabin
with an onboard projection system is rigidly attached to the
robot end-effector, and can be equipped with different kinds
of input devices. In the case under consideration, we mounted
a force-feedback steering wheel and pedals, see Fig. 1(b–c).

The robot is equipped with a low-level controller able to
realize a given joint velocity command at a fast rate, so that
one can disregard any dynamical issue and consider joint
velocities as actual control inputs. In particular, by letting q ∈
R6 be the joint configuration vector, the low-level controller
accepts joint increment commands ∆qk = q(tk+1) − q(tk)
as inputs, and returns the measured joint configuration q(tk)
as output at a rate of Ts = 0.012 [s]. A structural delay of
0.04 [s] between the generation and actual execution of ∆qk
is also present in this control loop. We did not consider the
presence of this delay in the rest of the paper, and modeled
the joint motion as a pure integrator

q̇ = u, (1)

where u ∈ R6 represents the commanded joint velocity —
our control input. The effects of the delay, and possible ways
to compensate for it in the control design, will be addressed
in future studies. Therefore, all the following higher-level
control schemes will be built upon the ideal model (1).

The joint range is delimited by

qmin = [−130 − 128 − 30 − 180 − 58 − 180]T [deg]

and

qmax = [130 − 42 78 180 58 180]T [deg],

and there exist constraints on the maximum joint velocities
q̇max = [69 57 69 76 76 120] [deg/s] and maximum joint
acceleration q̈max = [98 70 128 33 95 77] [deg/s2].

III. PROBLEM FORMULATION

Figure 2 shows a block-scheme representation of a generic
motion simulation loop. Starting from the left side, the first
component is a software block that implements the dynamics
of the simulated vehicle. This block accepts user’s commands
as inputs, and yields as outputs the rendered virtual scene
and the relevant Cartesian motion profiles. These consist of
those linear acceleration and angular velocities that would
be experienced by a user onboard the vehicle.

The virtual scene is typically displayed 1:1 on a projection
screen or in a head mounted display worn by the user. As
for the motion data, some pre-filtering is usually required to
make the ‘ideal’ vehicle motion compatible with the limited

workspace of the chosen motion platform. Indeed, the motion
range of a platform fixed to the ground is in general too
limited to reproduce 1:1 any vehicle trajectory as, e.g., a
car or an airplane linearly accelerating over a long time.
Therefore, a so-called motion cueing block is inserted into
the loop. Its purpose is to transform the input motion profile
into a Cartesian trajectory compatible with the platform
workspace, but still inducing a realistic motion perception
onto the user. A classical example is the well-known tilt-
coordination algorithm [12] that exploits the gravity vector
in the user’s body frame to simulate presence of a sustained
linear acceleration. An overview of existing motion cueing
algorithms, as well as all the details of our implementation,
are given in Part II.

This filtered Cartesian trajectory must then, in our case,
be fed to an Inverse Kinematics algorithm for its actual
realization on the robot. A proper design of this component
is a fundamental and nontrivial task, and is the main scope
of this Part I. The problem lies in the fact that the classical
structure of a motion cueing algorithm does not allow to take
explicitly into account all the robot constraints expressed at
the joint level. Therefore, one has to assume that the output
of the motion cueing block can in general violate any (or all)
of the robot constraints over time. Moreover, such an output
trajectory is completely arbitrary (in terms of geometric path)
and unknown in advance — it eventually depends on the
unpredictable inputs of the user to the vehicle. Hence, the
sought inverse kinematics must be able to realize at best and
in real-time a Cartesian trajectory that 1) is geometrically
unpredictable and unknown in advance, and 2) may violate
any robot constraints over time.

The main contribution of this Part I is to propose a
rigorous solution to this general problem. This solution will
then be exploited in Part II to realize our closed-loop motion
simulator.

IV. DESIGN OF THE INVERSE KINEMATICS

A. Preliminary definitions

With reference to Fig. 1(a) , let F0 : {O; ~X0, ~Y0, ~Z0} be a
world reference frame fixed to the robot base, with ~Z0 point-
ing upwards and ( ~X0, ~Y0) spanning the horizontal plane.
A moving reference frame FP : {OP ; ~XP , ~YP , ~ZP } is
attached to the the pilot’s head (supposed fixed to the cabin)
and has its axes aligned with the pilot’s forward/left/upward
direction, respectively.

Furthermore, let RP be the rotation matrix from frame
F0 to frame FP , and η = [ρ θ ψ]T ∈ R3 the usual set of
roll-pitch-yaw Euler angles parameterizing RP . Let also p =
[x y z]T ∈ R3 represent the coordinates of OP in F0. With
these settings, we will call JCE(q) ∈ R6×6 the Jacobian
matrix representing the mapping from joint velocities q̇ to
Cartesian/Euler velocities[

ṗ
η̇

]
= JCE(q)q̇. (2)

Derivation of JCE(q) follows from any standard robotics
textbook, see, e.g., [13].
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Fig. 1: A snapshot of the CyberMotion Simulator setup (a), and some details of the steering wheel and pedals mounted on the cabin
(b–c)

Fig. 2: A block-scheme representation of the system architecture

For reasons related to the design of the motion cueing
algorithm (see Part II), we will transform the Cartesian
coordinates p into cylindrical ones ξ = [R α z] defined
as  R =

√
x2 + y2

α = atan2(y, x)
z = z

,

and take r = [ξT ηT ]T ∈ R6 as task variables to be
controlled. Being Ṙ = ẋ cosα+ẏ sinα and α̇ = (−ẋ sinα+
ẏ cosα)/R, one can easily obtain the mapping between q̇ and
ṙ

ṙ =


cosα sinα

− sinα

R

cosα

R

0

0 I

[ ṗ
η̇

]
= T (ξ(q))JCE(q)q̇ = J(q)q̇.

(3)
Hereafter, J(q) will be referred to as task Jacobian matrix.
To simplify the notation, dependence on q will be dropped
unless strictly necessary.

B. Differential Inverse Kinematics

In this subsection we will consider the problem of real-
izing a given reference task trajectory rd(t) output of the
motion cueing algorithm. Since the robot directly accepts
joint velocities q̇ as inputs, the problem can be naturally
formulated at the kinematic level, by exploiting the classical
concepts of kinematic inversion and kinematic control see,
e.g., [14]. The goal is to find a control law, or inversion
scheme, u = f(q, rd, r) that guarantees realization of the
task rd(t). As explained before, the chosen inversion scheme

must also comply with all the robot constraints. Formally, a) ∀i, ∀t ≥ 0, qi,min ≤ qi(t) ≤ qi,max

b) ∀i, ∀t ≥ 0, |q̇i(t)| ≤ q̇i,max

c) ∀i, ∀t ≥ 0, |q̈i(t)| ≤ q̈i,max

. (4)

Furthermore, the inversion scheme should avoid singularities
or, when not possible, soften their negative effect by passing
as ‘smoothly’ as possible through them.

Many past works have addressed kinematic inversion by
taking into account these issues. Broadly speaking, two
main approaches do exist: online (local) and offline (global)
algorithms. When the whole rd(t) is known in advance, or
at least the geometric path has a known structure, offline
methods can be used to modify the path or the associated
timing law so as to cope with the constraints. This is the
case, for instance, of the classical works of Slotine [15]
and Shiller [16] where an offline optimization guarantees
feasibility of the motion w.r.t. the actuator constraints.
Local methods are widespread for avoiding joint limits and
singularities. Joint limits can be avoided by resorting to
simple parabolic potential fields [13], or more sophisticated
ones [17]. The same applies to the avoidance of singularities
where suitable indexes, such as the manipulability mea-
sure [18], can be optimized. Mixed solutions, i.e., concurrent
avoidance of joint limits and singularities, have also been
explored [19], as well as strategies to soften the effect of
singularities when passing close to them [14], [20].

In our case, offline methods are not a viable option
because, as explained in Sect. III, rd(t) is both geometrically
arbitrary and completely unknown in advance. Therefore,
we must design an online solution able to realize the best
feasible motion. Whenever realization of rd(t) is compatible
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with all the constraints, then the robot should track it exactly.
For instance, proximity to a joint limit should not degrade
the robot motion until strictly necessary (as opposite to the
effect of many potential field methods). On the other hand,
whenever a constraint is violated, the robot should move as
best as it can, i.e., by minimizing the Euclidean norm of the
tracking error ‖e(t)‖ = ‖r(t)− rd(t)‖.

To the best of our knowledge, no previous work has rig-
orously considered the problem at hand in its completeness.
The next sections will illustrate the solution adopted in this
paper.

1) Singularities: singularities occur at those configura-
tions q̄ where the task Jacobian J(q̄) loses rank, i.e., in our
case when rank J(q̄) < 6. At a singular configuration it is
impossible to generate task velocities in certain directions,
namely those directions associated to the zero singular values
of J . It is also well-known that, apart from the loss of mo-
bility, any method based on the (pseudo-)inversion of J will
become numerically unstable close to a singularity, yielding
unbounded joint velocity commands as q(t) approaches q̄.

In this respect, a convenient way to deal with the occur-
rence of singularities is to resort to a Task Priority (TP)
inversion scheme [20]. The idea is to divide the main task
into several subtasks with different priorities. Away from
singularities the whole task is realized whereas, whenever J
is rank deficient, the lowest priority tasks are automatically
relaxed while still correctly executing those with highest
priority.

The peculiar nature of our problem (reproducing the
correct motion perception on the user) led us to partition the
main task as r = [rT

A rT
B ]T , with rA = [ρ θ]T ∈ R2 being

the higher priority subtask, and rB = [R α z ψ]T ∈ R4

the lower priority one. In this way, close to singularities,
realization of the correct orientation of gravity in FP (re-
sponsible for simulating sustained cues) is favored compared
to a correct execution of the other task variables (responsible
for simulating onset cues).

Among the different variants of the TP strategy, (see [20],
[21] for a survey), we chose to implement the following law

u = J∗AwA + (JB(I − J∗AJA))∗(wB − JBJ
∗
AwA). (5)

Here, JA ∈ R2×6 and JB ∈ R4×6 are the subJacobians
of J in (3) relative to the subtasks ri, i ∈ {A, B}, the
superscript ∗ denotes a matrix generalized inverse, and wi =
ṙdi

+ Ki(rdi
− ri), with Ki > 0 being a positive definite

gain matrix of suitable dimensions. The choice of vectors
wi follows the well-known CLIK paradigm [14] that ensures
recovery of numerical drifts or tracking errors during the
motion.

To avoid ill-conditioning when implementing (5), we
resorted to a singularity-robust pseudoinversion based on
numerical filtering [22] and implemented as

J◦ =
s∑

i=1

σi

σ2
i + λ2

i

viu
T
i , (6)

where J =
∑s

i=1 σiuiv
T
i is the singular value decomposition

of matrix J , and individual λi affect each singular value. By
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Fig. 3: Details of the scaling procedure. Top: if the supporting
line of the desired joint velocity vector q̇k+1 intersects the set of
feasible velocities B3, a uniform scaling solves the problem without
changing the direction of q̇k+1. Bottom: when this is not the case,
a change in the direction of q̇k+1 is necessarily needed

choosing [23]

λ2
i =

 0 if σi ≥ ε(
1−

(σi

ε

)2
)
λ2

max if σi < ε
(7)

where ε > 0 defines the size of the singular region, and
λ2

max > 0 sets the maximum damping value, one obtains
the remarkable result of introducing a tracking error only on
the unfeasible task directions while keeping exact tracking
on the feasible ones. Therefore, we chose to adopt (6–7) as
generalized inverse to be used in the Task Priority law (5).

2) Maximum joint velocity and acceleration: the joint
velocities computed from (5) have no guarantees to respect
constraints b) and c) in (4). As discussed at the beginning of
this section, there exist several offline methods able to modify
or scale down the task reference motion rd(t) so as to make it
compatible with the actuator constraints. Since, however, we
assumed rd(t) to be unknown in advance and geometrically
arbitrary, we chose to rely on a simpler online scaling of
u with the aim of minimizing any Cartesian distortion.
Figures 3(a–b) illustrate our approach in a two-dimensional
case, the extension to six dimensions is straightforward. We
will also reason in terms of discrete quantities sampled with
a period of Ts [s] — the robot loop cycle, see Sect. II.
Therefore, q̇k = q̇(tk) will denote the joint velocity sent
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to the robot at time tk.
Let

B1 = {(q̇1, q̇2) ∈ R2 : |q̇1| ≤ q̇1,max, |q̇2| ≤ q̇2,max}

be the set of feasible joint velocities. Also, assume that a
command uk = q̇k was sent to the robot, and uk+1 = q̇k+1

represents the next velocity command output of (5). From
constraints c), we can easily determine a second set B2 that
represents the feasible velocities q̇k+1 attainable from q̇k
under the constraint of a maximum joint velocity increment
∆q̇i,max = Ts · q̈i,max. Formally,
B2 = {(q̇1, q̇2) ∈ R2 : |q̇1 − q̇k,1| ≤ ∆q̇1,max, |q̇2 − q̇k,2| ≤ ∆q̇2,max}.

Let also B3 = B1 ∩ B2 (the thick box in the picture), and
note that B3 is always a convex set, in particular a rectangular
box. If q̇k+1 lies inside B3, no scaling is clearly needed since
constraints b) and c) are met by construction.

Let us then consider the case in Fig. 3(a), in which q̇k+1

lies outside B3 but its supporting line still intersects the
region. By using standard tools of computational geome-
try [24], and owing to the convexity of B3, it is easy to
determine the intersection points between the supporting line
of q̇k+1 and B3. One can then apply a uniform scaling
˙̃qk+1 = σq̇k+1, σ > 0, to obtain a new joint velocity
˙̃qk+1 lying at the border of B3 and possessing the same
direction of the original q̇k+1. By doing so, the resulting task
speed ˙̃rk+1 = J ˙̃qk+1 will be uniformly scaled by a factor σ
w.r.t. the original ṙk+1, but the task motion direction will stay
the same. A straight line motion in task space will remain a
straight line, but it will traveled along at a lower speed. In
terms of motion perception, this will result in a lower motion
cue but, at least, along the correct direction.

Now consider the last case depicted in Fig. 3(b). Here,
no uniform scaling can solve the problem and a change
in the direction of q̇k+1 is unavoidable. We implemented
this change as follows: let ∆q̇k+1 = q̇k+1 − q̇k be the
desired joint velocity increment. Like before, it is possible
to determine the intersection between ∆q̇k+1 and B3, and
uniformly scale the velocity increment ∆ ˙̃qk+1 = σ∆q̇k+1

so that the resulting joint velocity command ˙̃qk+1 = q̇k +
∆ ˙̃qk+1 will lie at the border of B3. With this strategy, the
joint acceleration direction does not change but, clearly, the
direction of the original velocity command q̇k+1 is lost.
Therefore, a deformation in the task path will occur and, as
a comparison with the previous cases, a straight line motion
in task space will be transformed in a different path. We note
that other choices are possible to perform the scaling in this
case. For instance, one could pick the closest point of B3 to
the line supporting q̇k+1 (the lower-right vertex in the case
of Fig. 3(b)), and take as ˙̃qk+1 the vector joining the origin
with such point. However, assessing the pro/cons of this and
other possible choices in terms of motion perception quality
is out of the scope of this paper, and will be evaluated in
future studies.

Throughout the rest of the paper we will denote as ũ = ˙̃q
the joint velocity command computed from (5) and (when
needed) scaled according to the strategy presented in this
section.

3) Avoiding joint limits: the last problem of avoiding
joint limits is crucial for a successful design of our inverse
kinematics. To maximize the motion capabilities of the robot
and, thus, its ability to reproduce a generic acceleration on
the user, one should exploit the joint range at its maximum.
Intuitively,

1) joint motion should not be altered by the proximity
of a joint limit unless strictly necessary, i.e., until the
very last moment before being too late to stop the joint
without hitting the limit;

2) at the same time, each joint should deterministically
stop within its range, without any possibility of over-
shooting the limit.

Most classical approaches based on repulsive potential
fields are not a suitable choice. Usually, the distorting effects
of the potential (from the point of view of the desired task
motion) start well before the actual joint limits to ensure
safety in all conditions. One can try to shape the potential
so as to reduce its side-effects (see, e.g., [17]), but then it
may become tricky to find the right set of parameters for
deterministically halting the joint motion in any situation.
Therefore, we adopted a different point of view and did not
rely on potential field methods for avoiding joint limits.

The main insight is that each joint has a bounded acceler-
ation limit q̈i,max by which it can stop. Hence, it is possible
to rigorously determine the very last moment to stop a joint
by exploiting the theory of bang-bang optimal control [25].
Consider the acceleration-level version of model (1) for the
i-th joint q̈i = ai, where ai = u̇i, |ai| ≤ q̈i,max, is the i-th
bounded acceleration command, and |ui| = |q̇i| ≤ q̇i,max the
bounded joint velocity taken as a state. Without dwelling on
well-known details, in order to stop at the very last moment
the motion of qi(t), one has to check for the intersection
with the switching curves

γ− : qi = − q̇2i
2q̈i,max

if q̇i > 0,

γ+ : qi =
q̇2i

2q̈i,max
if q̇i < 0,

(8)

and then impose a maximum acceleration/deceleration com-
mand

ai = ±q̈i,max (9)

until the origin is reached. All this can be straightforwardly
generalized for different set-points than the origin, i.e., in
our case the joint minimum and maximum values qi,min and
qi,max.

Let us then call u̇BB
i = f(qi, q̇i) the (acceleration-level)

bang-bang law able to stop the i-th joint in minimum-
time1, with the understanding that the velocity command

1Since implementation of the classical bang-bang controller has some
drawbacks in practical cases, namely overshooting and chattering around the
origin because of noise, delays, and discretization, we chose to implement a
slightly modified version. Indeed, as proposed in [26], one can avoid these
issues by suitably modifying the bang-bang controller behavior in a small
neighborhood of the origin, and keeping the same bang-bang characteristics
in large. We omit the details here for lack of space, see [26] and references
therein for a complete analysis.
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Fig. 4: Snapshots of the robot motion during the experiment

uBB
i actually sent to the robot is recovered by numerical

integration. The idea is to apply, for each joint i,
C1: the normal control action ũi from (5) when (8) does not

hold (unlocked joint);
C2: the bang-bang control action u̇BB

i as soon as (8) holds
(locked joint).

It is clear that, contrarily to standard potential fields, this
strategy will minimize the negative effects of approaching
a joint limit. Any joint will be free to move unless strictly
necessary, i.e., until the very last moment before being too
late to stop. At the same time, each joint will systematically
stop within its limit, thus ensuring a safe operation. In the
last part of this section we will analyze the details of this
strategy.

We will first focus on the issue of continuity of joint
velocity during a switching. Assume that, at some time t1,
condition C2 is met for the i-th joint that will become locked.
Since the control law u̇BB

i acts at the acceleration level, it
will automatically ensure continuity in the commanded joint
velocity (although with a possible discontinuity in the joint
acceleration). Hence, switching from C1 to C2 will preserve
continuity.

Let us then consider the other switching direction from
C2 to C1. We first note that, when a joint becomes locked,
no control action ũi can unlock it before coming to a full
stop under u̇BB

i . Indeed, the velocity command ũi is de-
signed so that it will always meet the maximum acceleration
constraints in (4), and thus it cannot change its sign before
u̇BB

i stops the joint at some t2 > t1, being | ˙̃ui| ≤ |u̇BB
i | by

construction during the halting phase.
After a locked joint stops its motion at time t2, only two
situations are possible for t ≥ t2. On one hand, ũi(t) can
keep the same sign of ũi(t1), implying that controller (5)
is still trying to move the joint in the direction of the joint
limit. In this case, condition C2 will hold and the joint will
stay locked (it will not move). On the other hand, ũi(t)
can change sign so that the locked joint would move away
from its limit. This will cause a switch from condition C2
to condition C1 but still preserving continuity in velocity. In
fact, owing to the intrinsic continuity of controller (5), the
change of sign of ũi(t) will occur smoothly and the locked
joint will start to gradually move from being at rest.

Having analyzed the continuity issues, this final part is
devoted to assess how one can still preserve, as much
as possible, realization of the desired task rd(t) with a
possibly reduced set of unlocked joints. For simplicity, we

will consider the case of a single locked joint, being the
generalization straightforward. Let us then assume again that,
at some t1, the i-th joint switches to the locked condition. We
will use the subscript L to indicate a property belonging to
the set of locked joints, and subscript U for the unlocked
joints. Therefore, in this case, it is qL = qi and qU =
[q1 . . . qi−1 qi+1 . . . qn]T , while uL and uU will indicate the
generic locked and unlocked joint velocity commands.

Motion of qL is governed by uL = uBB
i , while qU is

driven by uU = [ũ1 . . . ũi−1 ũi+1 . . . ũn]T . Obviously, since
the i-th component of ũ is now replaced by uL, all the nice
properties of controller (5) are in general lost. A subset of
joints will still move accordingly to (5), but the effect of uL
will cause a degradation of performance. One can then try
to redesign uU so as to dampen the disrupting effects of uL.

Rearrange (3) as ṙ = JLuL + JUuU and bring the
contribution of uL to the l.h.s. to obtain

ṙ − JLuL = ṙ − ṙL = JUuU . (10)

Here ṙL represents the distorting effects of uL on the task
evolution. One can still solve (10) for a given ṙd(t) by
applying the same TP strategy used in (5), with JA and
JB now being the subtask Jacobian matrices of JU , and
wi = ṙdi + Ki(rdi − ri) − ṙLi . Inversion of (10) will
then generate a new joint velocity command u∗U , in general
different from the original uU obtained from (5), that will
try to realize task rd (in a least-square sense) despite the
presence of the spurious term ṙL. In other words, while the
locked joints qL are stopping or at rest, the unlocked joints
qU will move at best to compensate for the effect of ṙL.

Finally, we also note that at the switching time t1 it is
u∗U (t1) = uU (t1) so that, again, continuity in the commanded
joint velocity is ensured. This fact is a direct consequence
of the continuous switch between ũi and uBB

i as proven
before. Indeed, it is uL(t1) = uBB

i (t1) = ũi(t1). Hence,
solving (10) at t1 in the locked case is equivalent to solve (5)
in the full unlocked case, thus resulting in u∗U (t1) = uU (t1).

V. EXPERIMENTAL RESULTS

In this section, we will analyze the behavior of the
proposed inverse kinematics through an illustrative example
chosen to pinpoint all the relevant features of our approach.
This and other motion examples are also included in the
video attached to the paper. The interested reader can find
additional experimental data of the algorithm in Part II.

In this example, we chose as desired task a horizontal
linear trajectory with constant speed ξ̇d = [0.25 0 0]T [m/s]
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Fig. 5: Left: task velocities ξ̇. Right: task velocities η̇. Note the
small perturbation in the task velocities at time T2 = 3.4 [s],
represented by a vertical dashed line, due to the action of the bang-
bang controller
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Fig. 6: Top: saturation action of the joint velocities and acceler-
ations during the motion. Bottom: behavior of σP , σS and σT ,
i.e., the smallest singular value of JA, JB(I − J◦AJA), and J ,
respectively
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Fig. 7: Left: behavior of q(t) over time. At time T2 = 3.4, joint
2 (the lower curve) stops its motion and remains locked for the
whole motion. Right: task velocities ξ̇ when not compensating for
the spurious term ṙL. Note the larger disturbance peaks compared
to Fig. 5(a)

with an associated zero angular motion η̇d = [0 0 0]T

[rad/s]. The robot starts from the configuration q(t0) =
[0 − 90 70 0 20 0]T [deg] corresponding to an initial
task value r(t0) = [1.73 0 3.73 0 0 0]T with the cabin
being perfectly vertical (~ZP = ~Z0). This reference motion,
though artificially simple, is a good prototype of a partially
unfeasible task: it starts with a discontinuity in acceleration
that violates constraint c) in (4), and it travels along an
infinite path that will eventually lead the robot to reach
singularities and to hit joint limits.

In view of the forthcoming discussion, we will let σP be
the smallest singular value of the primary task Jacobian JA

in (5). Similarly, σS will denote the smallest singular value of
the secondary task ‘coupling’ matrix JB(I−J◦AJA), and σT

the smallest singular value of the whole J . We also note that
the inversion parameters in (7) were set to ε = λmax = 0.2.

The behavior of the robot during the task execution can
be understood with the help of Figs. 4(a–d) and Figs. 5–
7. From its starting position (Fig. 4(a)), the cabin travels
along the desired horizontal straight line until realization
of the secondary task starts conflicting with the primary
task (algorithmic singularity, Fig. 4(b)). This event occurs
at approximately time T1 = 2.3 [s]. The cabin then keeps
moving forward until joint 2 hits its limit and becomes locked
(Fig. 4(c)). This second event occurs at approximately time
T2 = 3.4 [s] and is indicated by a dashed vertical line in
Figs. 5–7. From this moment on, joint 2 stays locked and the
cabin moves in a forward/downward direction until reaching
full stop (Fig. 4(d)).

Let us analyze more in detail the motion in terms of the
quantities reported in Figs. 5–7. First of all, note that during
the first phase of the motion an initial acceleration saturation
is present (Fig. 6(a)), and σS starts and remains below the
threshold ε before T1 (Fig. 6(b)). Nevertheless, the realized
task velocity Ṙ correctly reaches the nominal value of 0.25
[m/s] at the end of the saturation phase and keeps this value
until T1 (Fig. 5(a)). This proves that the initial ‘singularity’ of
JB(I−J◦AJA) (being σS < ε) does not affect the correct task
execution thanks to the numerical filtering strategy. Matrix
JB(I − J◦AJA) is close to singularity, but the desired task
direction belongs to the set of feasible ones.

After time T1, the singularity of JB(I − J◦AJA) starts
affecting the cabin motion yielding a decrease of task ve-
locity Ṙ and the appearance of a spurious negative task
velocity ż. The secondary task path results distorted (the
cabin moves forward and downwards), but the primary task
is still correctly executed as one can see from Fig. 5(b).
Indeed, σP remains well above the threshold ε during the
whole robot motion.

At time T2, joint 2 becomes locked and the bang-bang
controller u̇BB

2 stops its motion (Fig. 7(a)). This causes a
perturbation in the task velocities (Fig. 5(a)) that disappears
as soon as joint 2 is at rest. From this time on, only the 5
unlocked joints contribute to the cabin motion. In particular,
the cabin keeps moving forwards and downwards until the
robot reaches a configuration where no additional forward
motion is possible and then stops. In other words, the least-
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square solution of rd(t) yields a cabin motion that tries
to keep a desired forward motion component by accepting
undesired motions in other (secondary) task directions. Note
that, as expected, the primary task is still correctly realized
also during this phase, see Fig. 5(b).

Finally, we show in Fig. 7(b) the behavior of r(t) obtained
by neglecting the correction term ṙL in (10). The distorting
effects of the bang-bang controller u̇BB

2 are more evident
compared to Fig. 5(a), thus confirming the importance of
compensating for the effect of ṙL.

VI. CONCLUSIONS AND FUTURE WORK

In this Part I, we considered the problem of designing an
online inverse kinematics scheme able to reproduce as best as
possible an arbitrary and unpredictable desired task motion
by coping with the occurrence of singularities and several
robot constraints, namely joint limits, maximum joint veloc-
ities and accelerations. Such an inverse kinematics scheme is
a key component for realizing a 6-DOF closed-loop motion
simulation based on our anthropomorphic robot manipulator:
the CyberMotion Simulator. Part II will complete the picture
by introducing a motion cueing algorithm tailored to the
robot kinematics, and by presenting experimental results on
the chosen test scenario, simulation of a Formula 1 car, to
assess the performance of the whole architecture.

In the future, we plan to address several points to im-
prove the proposed approach. First of all, we will explicitly
consider the presence of the delay of 0.04 [s] in the control
loop (see Sect. II) in order to compensate for it at the design
level. Since the delay is known and constant, a Smith pre-
dictor [27] or similar techniques could provide a successful
solution. We will also investigate variations to the scaling
procedure presented in Sect.IV-B with the aim of identifying
the best one in terms of motion perception induced to the
user. More in general, we also plan to run an extensive
validation campaign of the whole proposed approach (inverse
kinematics and motion cueing) to improve the realism of the
simulation, and clearly assess the capabilities and limitations
of our CyberMotion Simulator.
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