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Abstract— In this paper, we provide a port-based mathemat-
ical framework for analyzing and modeling variable stiffness
actuators. The framework provides important insights in the
energy requirements and, therefore, it is an important tool
for the design of energy efficient variable stiffness actuators.
Based on new insights gained from this approach, a novel
conceptual actuator is presented. Simulations show that the
apparent output stiffness of this actuator can be dynamically
changed in an energy efficient way.

I. INTRODUCTION

When robots operate in a dynamic environment, unex-

pected collisions between the robot and the environment are

likely to occur. It is important that during these collisions,

both the robot and the object it is colliding with suffer as

little damage as possible. This becomes even more important

when the robot operates in an environment together with

humans. Human-robot collisions under several circumstances

have been thoroughly investigated and it was shown that

serious injury may occur due to high impact forces [1], [2].

In order to reduce the impact forces, several strategies have

been proposed in [3]. One solution is to use robotic joints

of which the output stiffness can be varied according to the

performed task, ensuring safe human robot interaction.

Variable stiffness actuators can also play a role in energy

efficient actuation, due to the presence of internal elastic

elements. While actuating periodic motions, for example in

locomotion, the kinetic energy can be temporarily store in

the springs and, thus, reduce overall energy costs [4].

A number of variable stiffness actuators, based on differ-

ent principles, have been developed. The ‘Jack Spring’TM,

proposed in [5], achieves a varying stiffness by changing

the number of active coils of a spring. Other actuators, like

AMASC [6], VSA [7], VS-Joint [8] and MACCEPA [9], rely

on changing the pretension of a spring, put in series with the

joint, to change the apparent joint stiffness. All these variable

stiffness actuators require energy to change the stiffness, even

in unloaded configurations, as is shown in [10].

A solution based on an infinite variable transmission to

dynamically change the output torque, and thus the apparent

stiffness, without using any energy, has been proposed in [4].

Although in theory this actuator is highly energy efficient

when optimal control techniques are applied [11], currently

existing infinite variable transmissions rely on friction to

operate and, therefore, they inherently energy inefficient.
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In this work we present a port-based mathematical model

for variable stiffness actuators. This model is derived by

starting from an ideal variable stiffness joint and, then, by

generalizing this concept to a generic framework that can be

used to model variable stiffness actuators. This framework

provides important insights in the energy requirements of the

actuator and, therefore, we can derive design guidelines for

realizing energy efficient variable stiffness actuators. Based

on these guidelines, we present a new conceptual actuator

and show that, in theory, it does not require energy to change

the stiffness regardless of the state of the system.

The paper is organized as follows. In Sec. II, we formulate

the problem statement in a port-based setting and present

the mathematical framework. In Sec. III, we propose a novel

conceptual actuator based on the analysis of the mathematical

model. A control law for this actuator is presented in Sec. IV

and, in Sec. V, simulation results validate the theoretical

analysis. Finally, Sec. VI provides conclusions and recom-

mendations for future work.

II. PORT-BASED MODEL OF VARIABLE

STIFFNESS ACTUATORS

In this Section, we present a port-based mathematical

model of variable stiffness actuators. We use the bond graph

modeling language to visualize the concepts presented. This

port-based modeling approach provides important insights to

a more intuitive process for modeling, design and control of

energy efficient variable stiffness actuators.

The basic idea behind the bond graph modeling lan-

guage is that every physical system can be modeled by

interconnecting simple elements, which are characterized by

a particular port behavior [12]. The interconnections are

realized through bonds, which represent the power flow

between the different elements. Mathematically, the bonds

are characterized by two power conjugate variables, called

effort e and flow f . If F is the linear space of flows, then

the dual space E := F∗ is the linear space of efforts. For

e ∈ E and f ∈ F , the dual product 〈e|f〉 yields power. In

the mechanical domain, forces and torques are efforts, and

velocities are flows.

A. Problem statement

Let F be the generalized output force of a generic actuator,

either a linear force in case of a linear actuator or a torque

in case of rotational actuator, and x the generalized output

position, either a translational displacement or an angle. The

stiffness K, sensed at the output of the actuator, is given by

K =
δF

δx
(1)
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Fig. 1. Ideal variable stiffness joint - The MTF-element is an ideal trans-
mission, with a modulated transmission ratio n. The C-element represents
an ideal linear spring with a fixed stiffness k and it is interconnected to
the MTF through a bond with effort/flow (es, fs). The output port is
characterized by effort/flow (F, ẋ) and the stiffness felt at the output port
can be changed only by changing n.

where δF and δx denote infinitesimal changes in force and

position, respectively. The output stiffness K depends on the

internal structure of the actuator (e.g. axis stiffness, presence

of internal springs, etc.) and on the effects of the control

action. An ideal variable stiffness actuator allows the output

stiffness K to be changed without using energy.

B. Variable stiffness joint by using an ideal transmission

In the ideal case, a variable stiffness joint can be realized

by an ideal transmission together with a spring element. In

bond graphs, it is represented as shown in Fig. 1. The C-

element represents an ideal linear spring which is charac-

terized by an internal state s ∈ R, either the compression

or the elongation, a fixed stiffness k ∈ R, and an internal

energy H = 1
2ks2 stored in the spring. The port of the C-

element is characterized by the effort es = ∂H
∂s

and the flow

fs = ṡ. Note that, in the figure, the direction of the half

arrow determines positive power flow. The MTF- element

is an ideal transmission with a modulated transmission ratio

n ∈ R
+. If we denote its two ports by effort/flow (es, fs)

and effort/flow (F, ẋ), i.e. the force and the velocity of the

output port, the relation between the two ports is given by

F = n es → F = n
∂H

∂s
= nks

fs = n ẋ → ṡ = nẋ

(2)

This implies that δF = nk δs and δs = n δx. Since the

MTF-element is power continuous, i.e. 〈es|fs〉 = 〈F |ẋ〉, it

follows that

δF = n2k δx (3)

From Eqs. (1) and (3), it follows that, in the ideal case, the

apparent output stiffness is given by K = n2k. This means

that, ideally, the stiffness can be modulated by only changing

n and without using any energy.

Note that the ideal variable stiffness joint as it is presented

in this Section is passive with respect to the output port, i.e.

through the output port it cannot provide more power than

what is stored in the C-element.

C. Variable stiffness actuator

In the purpose of realizing a variable stiffness actuator, the

ideal MTF-element has to be replaced by a non ideal trans-

mission, as depicted in Fig. 2. The added port, characterized

by generalized forces τ and generalized velocities q̇, supplies

power that can either be used to change the transmission

ratio and, therefore, to change the apparent output stiffness,

F

ẋ

es

fs

τq̇

C : k Transmission

Fig. 2. Non-ideal variable stiffness actuator - The C-element represents
a linear spring with a fixed stiffness k and it is interconnected to the
transmission with effort/flow (es, fs). The output port is characterized by
effort/flow (F, ẋ). The power supplied through the external port (τ, q̇) can
be used to change the transmission ratio, and thus to change the apparent
output stiffness, or to do work on the output port (F, ẋ).
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Fig. 3. Generalized representation of a variable stiffness actuator - The
Dirac structure defines the interconnections between the different bonds and,
therefore, how power is distributed among the ports. The multi-bonds allow
any number of springs, i.e. the C-element, and any number of external inputs
(τ, q̇). The output port (F, ẋ) is characterized by a single-bond.

or to do work at the output port. Note that this mechanism

is power continuous.

The concept of the transmission shown in Fig. 2 can be

generalized by using a Dirac structure D ∈
{
D̄

}
, where

{
D̄

}

is the complete set of allowable Dirac structures, i.e.,
{
D̄

}
= {D̄ ⊂ E × F | 〈e|f〉 = 0 ∀ (e, f) ∈ D̄} (4)

as follows from the definition in [12]. The Dirac structure

is power continuous and defines the interconnection of the

power ports, i.e. it describes how the power through one port

is distributed to the other ports.

The generalized representation of a variable stiffness actu-

ator through a Dirac structure is depicted in Fig. 3, in which

the minus signs are to comply with its formal definition.

The multi-bonds allow any number of springs, i.e. the C-

element, and any number of external inputs (τ, q̇). The output

port (F, ẋ) is characterized by a single-bond, i.e. the output

is one-dimensional. Note that the Dirac structure is not

necessarily constant.

The Dirac structure of Fig. 3 can be represented by a

skew-symmetric matrix D(q, x) of the form




ṡ

τ

F



 =





0 A(q, x) B(q, x)
−A(q, x)T 0 C(q, x)
−B(q, x)T −C(q, x)T 0





︸ ︷︷ ︸

D(q,x)





∂H
∂s

q̇

ẋ



 (5)

where A(q, x), B(q, x) and C(q, x) describe the relations be-

tween the power conjugate variables of each port connected

to the structure.

In the specific case of a variable stiffness actuator, we

assume that

• The actuator has some internal degrees of freedom,

denoted by the configuration variables q, which are
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Fig. 4. Bond graph representation of the Dirac structure of a variable
stiffness actuator - The MTF-elements are modulated as given by Eq. (6)
and, thus, they define the power flow.

actuated through the port (τ, q̇).
• The apparent stiffness at the output port (F, ẋ) is related

to the configuration of the internal degrees of freedom.

• Friction is neglected.

• There is no coupling between the output force F and

the velocities of the internal degrees of freedom q̇,

i.e. C(q, x) = 0, because such a power continuous

transformation between forces and velocities cannot be

realized in the mechanical domain.

Following these assumptions, it follows




ṡ

τ

F



 =





0 A(q, x) B(q, x)
−A(q, x)T 0 0
−B(q, x)T 0 0





︸ ︷︷ ︸

D(q,x)





∂H
∂s

q̇

ẋ



 (6)

Eq. (6) can be represented in bond graphs as shown in Fig. 4.

D. Analysis of the model

From Eq. (6), it is easy to derive the variation of the energy

stored in the system, which is given by

dH

dt
=

∂H

∂s

ds

dt

=
∂H

∂s
(A(q, x)q̇ + B(q, x)ẋ)

= −τT q̇ − FT ẋ

(7)

Note that energy can be added to or removed from the system

via the output port (F, ẋ) or the port (τ, q̇). This corresponds

to the power continuity of the Dirac structure in Fig. 3.

In the purpose of designing an energy efficient variable

stiffness actuator, we can state that the most energy efficient

variable stiffness actuator is such that the amount of energy

stored in the system does not change due to power supplied

through the port (τ, q̇). This condition is accomplished if the

term A(q, x)q̇ in Eq. (7) is zero, i.e. if

q̇ ∈ ker A(q, x) ∀ q, x (8)

Note that taking A = 0 reduces the system to the ideal case

depicted in Fig. 1.

From this analysis, we can derive a design guideline

for energy efficient variable stiffness actuators: the design

of the internal configuration should include a number of

internal degrees of freedom such that it is possible to change

the apparent output stiffness while satisfying Eq. (8). This

corresponds to decoupling position and stiffness control on

α

−φ

q1

q2

x

−s
k

ℓ

Fig. 5. An energy efficient variable stiffness actuator - The end effector is
constrained to move only in x-direction. The internal degrees of freedom
q1 and q2 are used to change the effective transmission ratio and to control
the end effector, respectively.

a mechanical level. Due to the provided insights in power

flows, the port-based framework, described by Fig. 3 and

Eq. (6), provides an important tool for the design of energy

efficient variable stiffness actuators.

III. A NOVEL VARIABLE STIFFNESS ACTUATOR

CONCEPT

Following the design guideline presented in Sec. II-D,

we introduce an innovative concept of a variable stiffness

actuator. The design achieves a decoupling of position and

stiffness control on a mechanical level, as was concluded

from Eq. (8). The functional concept is based on a linear

spring connected to a lever arm of variable effective length.

The effective length of the lever arm determines how the

stiffness of the spring is felt at the output port. Using

the Dirac structure formulation in Eq. (6), we show that,

by changing the internal configuration, the apparent output

stiffness can be modulated without using energy.

The proposed mechanism is depicted in Fig. 5. The transla-

tional degree of freedom denoted by q1 controls the effective

transmission ratio from the spring to the end effector. It

should be noted that 0 < q1 ≤ ℓ, since q1 = 0 is a singular

configuration in which the transmission ratio is infinite. The

translational degree of freedom q2 is used to control the end

effector, which applies the force F and has position x (this

is the output port (F, ẋ)). Since the displacement s is small

compared to the lever length ℓ, we assume α = 0.

The state s of the zero free length spring is given by

s = ℓ sin φ = ℓ
x − q2

q1
(9)

where φ is defined positive in the counter clockwise direc-
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tion. The rate of change of s, denoted by ṡ, is given by

ṡ =
d

dt

(

ℓ
x − q2

q1

)

= −
ℓ

q1

[
sinφ 1

]
[
q̇1

q̇2

]

+
ℓ

q1
ẋ

(10)

From this equation it is possible to define the skew symmetric

matrix which describes the Dirac structure for this particular

concept. In this case, the matrix D is given by




ṡ

τ

F



 =





0 A(q, x) ℓ
q1

−A(q, x)T 0 0
− ℓ

q1

0 0





︸ ︷︷ ︸

D(q,x)





∂H
∂s

q̇

ẋ



 (11)

where

A(q, x) = −
ℓ

q1

[
sin φ 1

]
(12)

The energy stored in the spring is given by the energy

function H(s) = 1
2ks2, where k is the fixed linear stiffness

of the spring. Substituting Eq. (9) yields:

H (s(q1, q2, x)) =
1

2
k

(

ℓ
x − q2

q1

)2

(13)

The stiffness felt at the output port K is given by

K =
∂2H

∂x2
=

(
ℓ

q1

)2

k (14)

For this particular actuator, the stiffness K is only a function

of q1.

In order to have a energy efficient variable stiffness

actuator, no energy should be added to or removed from

the system when the stiffness is changed via the port (τ, q̇).
For this particular system, Eq. (8) can be written as

q̇ ∈ ker A(q, x) ∀ q, x ⇔ q̇2 = − sin(φ)q̇1 (15)

It follows that if q̇1 is such that the stiffness K changes

as desired, and if q̇2 satisfies the constraint in Eq. (15), the

stiffness is changed without using energy. This is valid even

when the system is in a loaded configuration (i.e. s 6= 0).

It should be observed that when the stiffness is changed,

the energy in the system might change. From Eq. (11) it

follows that, when q1 is changed, the force F at the output

port changes. If this change in force is not balanced, there is

a power flow through the output port. This power flow comes

from energy stored in the spring and not from the port (τ, q̇)
since there is no power flow through the port (τ, q̇), i.e.

q̇ ∈ ker A ⇒ τT q̇ =
∂T H

∂s
Aq̇ = 0 (16)

However, by expanding Eq. (16) we can notice that

τ1q̇1 =
∂H

∂s

ℓ

q1
sin(φ)q̇1

τ2q̇2 =
∂H

∂s

ℓ

q1
q̇2

(17)

This implies that, when the stiffness is changed and Eq. (15)

is satisfied, one actuator is doing positive work, while the

other one is doing the same amount of negative work. If

indeed two uncoupled actuators are used, the negative work

is lost. Assuming that Eq. (15) is satisfied, the absolute power

flow through the port (τ, q̇) is

|P | = |τ1q̇1| + |τ2q̇2|

=
∣
∣
∣
∂H

∂s

ℓ

q1
sin(φ)q̇1

∣
∣
∣ +

∣
∣
∣
∂H

∂s

ℓ

q1
q̇2

∣
∣
∣

=
∣
∣
∣
∂H

∂s

ℓ

q1
sin(φ)q̇1

∣
∣
∣ +

∣
∣
∣
∂H

∂s

ℓ

q1
sin(φ)q̇1

∣
∣
∣ by Eq. (15)

= 2
∣
∣
∣
∂H

∂s

ℓ

q1
sin(φ)q̇1

∣
∣
∣

(18)

It follows that the power needed to change the stiffness

is proportional to sin φ and q̇1. In the simulation results

presented in Sec. V, we show that the amount of energy

used to change the stiffness can be kept small.

IV. INTERNAL CONFIGURATION CONTROL

As stated in the Introduction, in order to ensure safe

operation in a dynamic environment, a moving manipulator

should have a low stiffness when moving at high velocities

so to reduce impact forces, while it can have a high stiffness

at low velocities for increasing accuracy of motion. This

approach requires that, while the end effector is moving,

the output stiffness is changed. Therefore, in this Section,

we derive a control law, with which the output stiffness and

the end effector of the proposed variable stiffness actuator

can be independently controlled. The control architecture is

depicted in Fig. 6 and described in details hereafter.

A. Control of the output stiffness

From Eq. (14), it follows that the apparent output stiffness

K is only a function of the internal configuration q1, i.e.

K = K(q1). Its time derivative K̇, i.e. the rate of change of

the apparent stiffness, is then given by

K̇ =
dK

dt
=

∂K

∂q1

dq1

dt
= −2

ℓ2k

q3
1

q̇1 (19)

This means that, if a desired stiffness profile Kd is required

and therefore a desired K̇d, the behaviour of the internal

variable q1, i.e. its desired configuration q1,d and its desired

rate of change q̇1,d, is fixed by

q1,d =

√

ℓ2k

Kd

q̇1,d = −
1

2

q3
1

ℓ2k
K̇d

(20)

These two equations realize a feedforward control, which is

denoted by FFq1
in Fig. 6. The set-points q1,d and q̇1,d are

inputs for a PID controller, denoted with PIDq1
in the figure.

The control output of the PID controller is directly applied

to the actuator and is denoted by κq1
.
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PIDq2

− sin φ Actuator

Fig. 6. Control of the internal degrees of freedom - The FFqi
blocks

calculate a feedforward control based on Eqs. (20) and (21), respectively.
Combined with feedback PID control, this yields the control signals κqi

.
By coupling the two controller outputs the constraint in Eq. (15) is satisfied.

B. Control of the end effector position

Let xd be a desired end effector position and ẋd its time

derivative. The behaviour of the internal variable q2, i.e. its

desired configuration q2,d and its desired rate of change q̇2,d,

is fixed by

q2,d = xd − sin(φ)q1

q̇2,d = ẋd − sin(φ)q̇1

(21)

These two equations realize a feedforward control, which is

denoted with FFq2
in Fig. 6. The set-points q2,d and q̇2,d are

inputs for a PID controller, denoted with PIDq2
in the figure.

The control output of the PID is denoted by κq2
.

This controller satisfies the constraint Eq. (15) and thus

allows the stiffness to be controlled without using energy.

When the stiffness is not changed, i.e. when κq1
= 0, the

control output κq2
steers the end effector to the desired

position. When the stiffness is changed, the power supplied

through the port (τ, q̇) is given by

τT q̇ = −
∂H

∂s
Aq̇

= −
∂H

∂s

ℓ

q1

[
sinφ 1

]
[
κq1

κq2

] (22)

Due to the definition of the control law and if the PID

controllers are properly designed, Eq. (22) shows that the

power supplied through the port (τ, q̇) is only used to do

work at the output port and no energy is used to change

the stiffness. If we assume that negative work is lost, the

absolute power flow through the port (τ, q̇) is

|P | =
∣
∣
∣
∂H

∂s

ℓ

q1
(sin(φ)κq1

+ κq2
)
∣
∣
∣ (23)

This shows again that in unloaded configurations (φ =
0), no energy is used to change the stiffness. In loaded

configurations, the power needed to change the stiffness can

be kept low by either slowly changing the stiffness (keep κq1

small), or only by changing the stiffness when φ is close to

zero. In both cases, the term in Eq. (23) corresponding to the

power consumption for changing the stiffness can be kept
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Fig. 7. Desired (continuous line) and simulated (dashed line) motion and
stiffness of the actuator - While the end effector is accelerated or decelerated,
the apparent output stiffness is smoothly varied to attain an appropriate level.
The achieved trajectories show that the actuator can be controlled to change
the stiffness and to move the end effector independently.

small compared to the power consumption for doing work

at the output.

V. SIMULATION

To illustrate the independent control of the output stiffness

and the end effector position, the following simulation ex-

periment is performed. A mass is to be accelerated smoothly

by the actuator, then moved with constant velocity and, then,

smoothly decelerated to zero velocity. When the mass is not

moving, the actuator stiffness should be high. When the mass

is accelerated, the stiffness is to be smoothly decreased to

a certain constant low value when the mass is moving at

constant velocity. When the mass slows down again, the

stiffness is increased. In this simulation, a mass of 1 kg is

accelerated in 0.1 s from 0 m/s to 0.5 m/s. The velocity is

kept constant for 0.6 s and, then, the mass is decelerated

at the same rate. While accelerating, the actuator stiffness

is decreased from 2500 N/m to 500 N/m. The desired

trajectories are shown in Fig. 7 in continuous lines.

To control the internal degrees of freedom q1 and q2, the

control laws proposed in Sec. IV have been implemented.

The simulated end effector position and stiffness trajectories

are shown in Fig. 7 in dashed lines. It can be seen that the

desired trajectories are indeed followed with high accuracy.

Fig. 8 shows the energy used by each of the two actuators

q1 and q2, the total used energy and the kinetic energy of the

mass, given by Ekin = 1
2mẋ2. It can be seen that all energy

supplied through the port (τ, q̇) goes through the output port

(F, ẋ) and it is stored in the mass as kinetic energy. Note

that, since in Fig. 3 both ports are oriented towards the

Dirac structure, i.e. positive power flows into the structure

and negative power flows out of the structure, explaining

the opposite signs of the plots of the kinetic energy and

the actuator supplied energy. From the plots it can be seen

that both q1 and q2 are doing negative work at some time,
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all power supplied by the actuators is converted to kinetic energy, no energy
has been used to change the stiffness.
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Fig. 9. Absolute energy usage - Since negative work must be considered
to be lost, plotting the absolute power supplied by the actuators provides a
more realistic insight in the energy usage of the actuator. It can be observed
that the energy supplied by q1 is only a fraction of the total energy supplied
by the two actuators, illustrating that the actuator is energy efficient when
changing stiffness.

as was described in Eq. (17). In practice, this work is lost

and energy is required to change the stiffness. In Fig. 9 the

absolute energy usage is shown and it can be seen that the

energy used for q1 is very small if compared to the total

used energy. This is in correspondence with the argument

following Eq. (23).

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a mathematical framework

for the analysis of variable stiffness actuators in terms of

energy consumption. This framework provides conditions

that should be satisfied in order to be able to change the

stiffness of an actuator without using energy. Therefore,

the framework is an important tool in both modeling and

designing energy efficient variable stiffness actuators.

A novel variable stiffness actuator concept, which com-

plies with the restrictions set by the mathematical framework,

has been introduced. For the proposed concept, the apparent

output stiffness can be changed without using energy, even

in loaded conditions, but while allowing the internal degrees

of freedom to do negative work. Simulation results show that

the stiffness can be changed in a energy efficient way.

Future work will focus on finding performance measures

for variable stiffness actuators and integrate these measures

in the mathematical framework. In particular, since the

presented framework provides a tool for analyzing energy

efficiency of variable stiffness actuators, it is desired to derive

energy efficiency measures that are closely related to the

properties of the framework. These measures should give a

common basis on which variable stiffness actuators can be

objectively compared in terms of how energy efficient they

are in changing the stiffness during actuation.
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