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Abstract— This paper presents a novel method to determine 

the multi-dimensional workspace boundary of parallel 
manipulators using a modified Particle Swarm Optimization 
(MPSO) framework. A generic objective (fitness) function that 
gives optimum value at points where a manipulator reaches its 
limit is formulated. By finding these points using MPSO, the 
workspace boundary of a parallel manipulator can be 
constructed. To demonstrate the method, the mapping of the 
boundary of a Stewart platform workspace is presented. The 
generic objective function can be modified easily to include any 
number of parameters and constraints, and this allows the 
method to be adapted for solving the workspace boundary 
problem of other parallel manipulators.  

Keywords— Parallel manipulator, workspace boundary, 
particle swarm optimization (PSO), multimodal optimization, 
Stewart Platform 

I. INTRODUCTION 
VER the last few decades, many researchers have 
studied the properties and physical behavior of parallel 

kinematic manipulators (PKM). Stewart platforms, which 
are one of the earliest PKMs invented, and other types of 
PKMs have been extensively studied and applied in many 
applications due to their high rigidity and payload-to-weight 
ratio. However, PKMs usually have coupled motion 
capabilities, therefore, their workspace representation 
becomes a problem [1]. In addition, it is impossible to 
visualize completely the workspace representation of PKMs 
that have more than three degrees of freedom (DOF). Large 
numbers of studies addressing workspace boundary mapping 
have been published, but most of them are limited to 3-DOF. 

The discretization method has been used in numerous 
research studies [2-4]. This method divides the configuration 
space based on a particular coordinate system into regular 
grid of nodes and the size of each node is specified as a 
sampling step. This method tests all the nodes to determine 
whether they belong to the workspace. Therefore, the 
sampling step determines the accuracy of the workspace 
boundary. The discretization method can be applied to many 
types of manipulators. However, this method has two main 
disadvantages [16], namely, it needs a longer computation 
time when a higher accuracy is required (smaller sampling 
step) and it usually fails to detect workspace voids. 

Another well-known method for finding parallel 

manipulator workspace has been proposed [5-8], and this is 
often referred to as the geometrical method. It is efficient 
and accurate in mapping the workspace boundary, which is 
obtained by intersecting geometrical objects that represent 
feasible ranges of motion of the actuated joints. However, in 
order to compute the reachable workspace, there is a need to 
transform constraints that limit the workspace (e.g., link 
interference, maximum range of passive joints) into 
geometrical representations. This transformation, however, 
is not always possible in general. 

Several researchers [9-11] have proposed an interesting 
method. Firstly, the kinematic constraint equations that 
describe the range of motion achievable by the manipulator 
are formulated. Next, if the Jacobian matrix of these 
equations is found to have a row rank deficiency, the 
corresponding configuration is at the boundary of the 
workspace. These researchers developed a numerical 
scheme that can find one of these configurations and use the 
continuation method to build the rest of the boundary. 
Similarly, Snyman et al. [12] proposed to build the boundary 
using a constrained optimization method. Merlet [13] 
proposed to use the interval analysis to determine the 
various types of workspace boundaries through the 
estimation of bisection boxes that represent the workspace. 
Although it can handle any number of DOF and constraints, 
the computation is quite time-consuming.  

In this paper, a simple and fast approach for mapping the 
multi-dimensional workspace boundary of a general parallel 
manipulator with any number of DOF and constraints is 
proposed. A criterion is defined for determining the 
boundary and a method based on a modified version of the 
particle swarm optimization (PSO) algorithm is developed 
[14] to map the points on the boundary. This method is 
illustrated using a Stewart platform (SP) mechanism. 

II. PROBLEM FORMULATION 
A configuration state of all the working bodies of a 

mechanism can be characterized by a generalized coordinate 
vector q∈Rnq that satisfies the following m independent 
holonomic kinematic constraint equations [12]. 

( ) =q 0Φ . Ф: Rnq  Rm [ ], , T=q v u w  (1) 
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Vector q consists of the input, output and intermediate 
coordinate, denoted by v∈Rnv, u∈Rnu and w∈Rnw, 
respectively (nq = nv + nu + nw) [10]. The input coordinate 
v is the subset of q that can be changed to control a 
mechanism, and it corresponds to the actuated joints 
coordinates. The output coordinate u constitutes the subset 
of q that defines the useful functionality of the platform, and 
it corresponds to the end-effector pose (positions and 
orientations). The intermediate coordinate w is the subset of 
q, and it constitutes all the other uncontrolled passive joints 
coordinates. For PKMs, (1) can be rewritten explicitly as 
inverse kinematics, v=v(u) and w=w(u). Therefore, q=[v(u), 
u, w(u)]T.  

The workspace of a manipulator is a collection set A of all 
the reachable output coordinates. An output coordinate u is 
reachable if the manipulator configuration q=[v(u), u, w(u)]T 
satisfies all the constraints that limit the range of the 
manipulator movement (note that the constraints can also be 
imposed on u). Therefore, the boundary of the workspace is 
a collection set dA of the output coordinates, where the 
manipulator reaches any of its constraints. These constraints 
can be expressed by the constraint functions fCi, which have 
a generic form given below. 

( ) 1,
0,

th

Ci
if satisfies the i contraint

otherwise


= 


q
f q , i = 1…n (2) 

where n is the number of constraints imposed.  
Assume that an arbitrary reachable output coordinate c 

interior to the boundary is selected. To find the boundary, 
the multimodal optimization problem is formulated as 
follows. 

( ) . ....1 2.max C C Cnδ= −
u

f u u c f f f , ( ) 0≥f u  (3) 

To find N local maximum points uLi subject to: 
( ) ( ) ( ) , 1..Li i R i Nλ λ λ +≥ ∀ ∈ = + ∈ =f u f u u u c b  (4a) 

where δ is any real constant greater than zero, and ||.|| 
denotes the Euclidean distance. Equations (2) and (3) imply 
that the value of f(u) will be zero or minimum if any of the 
constraints is violated. Therefore, u(λ) that maximizes f(u) 
will be on the boundary dA (see Fig. 1). The value of λ is 
found from the optimization, which will be explained in the 
next section. New constraints can be added to (3) as long as 
they can be explicitly expressed as functions of q. For 
example, to create a singularity-free workspace boundary, a 
test function can be defined as an additional constraint: 

 ( ) ( )1, ( )
0,C

if C
otherwise

κ <
= 


J q
f q  (4b)  

whereκ is the condition number of the Jacobian matrix, and 
C is a limiting constant describing the allowable closeness of 
the end-effector to the singularities [6, 18].   

From Fig. 1, the constraint function fCi shapes the 
boundary accurately such that the value of f(u) is zero if any 
constraint is violated. Using (4a), the search space can be 
diversified such that during optimization, N local maximum 

points uLi on the intersections between the boundary dA and 
the straight lines u(λ)=c+λbi through the point c (see Fig. 2) 
can be found. The directions of the unit vector bi are selected 
such that the straight lines intersect dA at the broadest range 
and with approximately equal spacing so that the points uLi 
are located sufficiently dense to represent the boundary.  

III. FINDING THE POINTS ON dA USING A MODIFIED PSO 
PSO [14,15] can be implemented easily and it is 

computationally inexpensive in terms of both memory 
requirements and CPU speed. PSO is an iterative search 
process to find the optima of an objective function. It is a 
stochastic population-based search method where the 
population is referred to as a swarm S. The swarm consists 
of a number of individuals called particles. Each particle is 
characterized by its position in the search space that 
represents potential solution to the optimization problem. 
The position of each particle is updated based on the 
governing equation of PSO at each discrete time step t 
according to its own experience and that of its neighbors to 
find the optimum position.  

A modified PSO (MPSO) algorithm is proposed to solve 
the optimization problem described in (3), (4a), and (4b). 
The positions of the particles are the output coordinates ui 
and these positions are updated at every discrete time step t 
to search for local maximum solutions, according to the 
following equations. 

( ) ( ) ( ) ( ),1 () pbest ii i it t t rand tϕ α  + = + − . .v v u u  (5) 

( ) ( ) ( )1 1i i it t t+ = + +u u v  (6) 

c

1b2b

1Lu2Lu

dA dAA

( )uf

 
Fig. 1. Mapping of the value of  f(u) for nu=1 (1-dimensional workspace). 
Points at the boundary uL1 and uL2 are found by maximizing f(u). 
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Fig. 2. Mapping of the boundary dA using the intersections between the
parameterized straight lines u(λ)=c+λbi with the boundary. At each 
intersection point uLi, f(uLi) gives the local maximum value along the 
corresponding straight line.  
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where φ(t)∈ [0,1] is a positive single valued function that 
drops linearly after each time step and α is the cognitive 
acceleration constant. The function rand() generates a 
uniformly distributed random number in the interval [0,1]. 
Moreover, upbest,i is updated for each particle in each 
iteration. The best position of a particle upbest i is the position 
with the best objective value f(upbest i) that has been travelled 
by the ith particle. The search process will be considered 
successful if all the particles have found the best positions 
such that || upbest,i - uLi || < ε , where ε is a small number. 
Therefore, the boundary can be approximated by the 
locations of upbest,i.  

The following modifications are made to MPSO. 
1) Initial positions and velocities. All the particle 

positions are initialized as ui(0) = c and the initial particle 
velocities as vi(0) = v0bi, where v0 is the initial velocity 
constant. Therefore, the particles will move towards the 
boundary starting from the point c (the start point c is chosen 
arbitrarily and is interior to the boundary).  

2) Velocity update and position clamping. When the 
particle velocity vector vi(t) is updated as according to (5), 
only its magnitude changes (its direction is still parallel to 
bi). Therefore, the ith particle is assigned to search for a local 
solution only on the straight line ui (λ)=c+λbi. The unit 
vector bi determines the search direction of the ith particle. 
Furthermore, since λ cannot be negative (this is to avoid 
overlapping with another search direction), the ith particle is 
constrained from moving in the reverse direction of bi across 
the point c. Hence, for any particle position ui(t) that has a 
position where ui(λ) = c+λbi and λ < 0, ui(t) = c. 

3) Termination condition. In MPSO, more iterations tend 
to give a better result. However, the search process has to 
stop. A general stopping condition is when the maximum 
number of iterations has been exceeded. Another stopping 
condition is when no improvement in the best positions of 
the particles is observed over a number of iterations. In the 
examples in this paper, the maximum number of iterations in 
the MPSO was set as 40 based on an observation of the 
convergence speed of the MPSO simulation. The framework 
based on the MPSO algorithm to solve the workspace 
boundary for a general PKM is summarized in Fig. 3. 

IV. APPLICATION TO 6-DOF STEWART PLATFORM 
Based on the proposed method, the reachable workspace 

boundary of a 6-DOF SP (see Fig. 4) is determined. A 
coordinate frame A is fixed to the base and the coordinate 
frame M is attached to the mobile platform (end-effector) at 
a reference point OM. The generalized output coordinate u is 
the position and orientation of the frame M with respect to 
frame A and nu=6.  

( ), , , , , TX Y Z φ θ ψ=u  (7) 

The generalized input coordinate v is composed of six 
actuated prismatic joints lengths (leg lengths) li, i=1…6, and 

nv=6. 

( )1 2 3 4 5 6, , , , , Tl l l l l l=v  (8) 

It is well known that the inverse kinematics of the SP 
gives a unique solution. For a known complete description 
in the output coordinate system, the leg lengths or the input 
coordinate can be calculated using the following equation. 

, where   ; , 1..6A M
i i i i i iP Mi M A M M il − ⋅ == = = + RL L u  (9) 

Mi and Ai are the coordinates of the spherical and universal 
joints attached to the mobile platform and the base 
respectively with reference to frame A. The vector uP = (X, 
Y, Z)T is the position of the reference point OM

  with respect 
to frame A. The rotation matrix ARM is computed from the 
orientation of frame M with reference to frame A. Lastly, 
MMi is the coordinates of the spherical joints attached to the 
mobile platform with reference to frame M.  

The constraints that limit the workspace of the SP are 
modeled, namely, the ranges of the prismatic joints, 
collisions between the legs, and the physical limitations of 
the passive joints. These constraints are formulated as (2) 
and included in (3). Hence, the objective function f(u) will 
have a zero value if any of these constraints are violated. 

For conciseness, the calculations of the angles of the 
passive joints and the distances between the legs have been 

//Create and initialize an nu – dimensional swarm 
for each particle i = 1,….,N do 

// Set particle positions at starting point c  
ui = c 
// Set initial particle velocities 
vi = v0bi 

end 
// begin the iterative search process 
repeat 

for each particle i = 1,….,N do 
// set the personal best position  
if f(ui) < f(upbest i) then upbest i = ui 
update the velocity using (5) 
update the position using (6) 
// position clamping 
If ui (λ)=c+λbi and λ < 0, then  ui = c. 

end 
calculate the necessary variables for stopping condition (e.g., 
workspace size V) 

until stopping condition is true; 
Fig. 3. MPSO pseudo code (the time-step t is omitted for simplicity; 
however it is incremented in every repeat – until loop). 

 
Fig. 4. A Stewart platform diagram. 

4693



 

 

 

omitted. Please refer to [17] for more details.  

A. 2D workspace boundary  
For the 2D workspace of the SP, some components of the 

output coordinate are fixed, namely, the translational 
component Z and the three rotational components [Ф, θ, ψ]T. 

Therefore, a 2D workspace boundary on an XY plane will be 
determined. The MPSO parameters used in the simulation 
example are given in the appendix. Fig. 5 shows the result of 
the MPSO for a 2D workspace boundary of the SP. A 
discretization method was also used to generate the 
boundary (solid curve in Fig. 5) for comparison with the 
MPSO approach. The search direction is selected such that 
bi = [sin βi, cos βi]T where βi are distributed at equal angular 
interval, βi = i.360/N degree [12].   

Several improvements have been made to the proposed 
MPSO algorithm. 

1) Velocity boost. From a preliminary simulation, it was 
observed that due to the monotonically increasing objective 
function in (2), the particles start to converge (stop moving) 
before reaching the local maxima on the boundary. To avoid 
premature stagnation, a velocity boost is injected for every 
M iterations, agitating all the particles with a new velocity 
vi(0)=v1bi, where v1 is the velocity boost constant. 

2) Multi-Swarm MPSO. To find more points on a 

boundary, a multi-swarm MPSO is implemented. The multi-
swarm MPSO has multiple K swarms Sk, k=1…K, with a 
start point ck in each swarm. Each swarm works as a single 
MPSO outlined earlier. By using several swarms, a complex 
boundary can be traced. The center points ck can be selected 
arbitrarily or computed before the multi-swarm MPSO 
starts. The randomly scattered or equally spaced starting 
points within the search space can be used (see Fig. 6). The 
number of swarms, K, is determined by the users. The 
feasible ck is selected if and only if they satisfy the 
constraints and are within the boundary. 

3) Two-Phase Dynamic MPSO. One of the advantages of 
the MPSO-based workspace boundary mapping is the ability 
to store the states of the particles. After the particles have 
converged, the particle positions can be stored for further 
analysis. A two-phase MPSO is proposed. In the first phase, 
the search process begins from the zero state, which is when 
all the particles are at the initial starting point c. In the 
second phase, the particles continue the search process from 
the last positions when the first phase ends (the particles 
have converged). The two-phase MPSO has the ability to 
track changing local maxima on the boundary without the 
need for repeating the search process from the zero state. 
The second phase is used when the fixed pose parameters of 
u or the constraints imposed on q change slightly. For 
instance, in finding the 2D workspace boundary in this 
example, [Z, Ф, θ, ψ]T is fixed, and if any of these pose 
coordinates (Z, Ф, θ, or ψ) is changed on a small scale, the 
workspace boundary will be altered slightly. Therefore, the 
second phase can be used to search for this new boundary 
starting from the particle positions acquired from the 
previous search process (the first phase).  

At the beginning of the second phase, the second initial 
velocity vi(0)=v02bi  is injected again but with a smaller 
magnitude than that of the first phase (v02 < v0). Since the 
initial velocity direction is always diverging from the start 
point, the PSO may fail to track the new local maxima if 
they are closer to the start point than the last positions. 
Therefore, the particles must be re-initiated closer to the start 
point before the second phase starts.  
xi(0) = γ(xi

*- c)+ c (10) 
where γ ∈ [0, 1] is the tracking coefficient and xi

* is the last 
particle position from the first phase. The lower the γ, the 
closer will be the initial positions to the start point c and the 
MPSO can track a greater variety in the new local maxima 
locations, but would require more iteration to converge. 

B. 3D workspace boundary 
To generate 3D workspace boundary, the three rotational 

components of [Ф, θ, ψ]T are kept constants. The subset uP = 
(X, Y, Z)T of u will be the input parameters to the MPSO (see 
Fig. 7).  

In 3D, it is convenient to use the spherical coordinate 
system with MPSO, where the parameterized straight line ui 
(λ)=c+λbi in (3) can be defined easily. The direction of bi 
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Fig. 5. 2D workspace boundary generation using MPSO (Z = -270 mm and 
[Ф, θ, ψ]T = [0,0,0]T. The MPSO searches from the start point c = [0, 0]T

denoted by the cross sign.  

dA
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Fig. 6. Illustration of boundary mapping with multi-swarm MPSO with 
three swarms and 8 particles in each swarm. The starting points c1, c2 and 
c3 are distributed randomly at initialization.  
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can be selected based on equal angular intervals of the 
inclination angle and the azimuth angle. Therefore, the 
particle positions are parameterized by the radial distance λ 
from point c.  

C. Higher dimensional workspace 
To generate the boundary of workspace such that nu > 3, 

the selection of the search direction bi must be viewed in a 
higher dimensional setting. Although there would be no 
graphical visualization available for these workspace 
boundaries, the method developed here can still be applied 
efficiently. From 2D workspace analysis in a XY plane, an 
additional variable Z in u is introduced so it becomes a 3D 
positional workspace (with a fixed orientation). Likewise, 
more variables can be introduced for analyzing a higher 
dimensional workspace. However, there is no specific 
coordinate system in this setting. Therefore, the direction of 
bi is selected by taking equally spaced values of coordinate 
variables as vectors and normalizing them. Then, the MPSO 
will proceed as in previous cases. This process can be 
extended to include any number of coordinate variables 
(e.g., 5D, 6D workspace).  

D. Comparison with other approaches  
The workspace boundary obtained using the MPSO was 

more accurate than the boundary obtained using the 
discretization method. This is because the constraints are 
defined exactly using equation (4a) such that the particles 
could find the optimum position precisely. In terms of speed, 
the MPSO is significantly faster than the discretization 
method as the search speed of MPSO is as fast as the 
velocities of the particles and is only constrained by the 
initial velocities v1 and v01.   

Regardless of the number particles used in MPSO, the 
boundary generated will contain some errors due to the 
approximation of the boundary (gaps between the real and 
the interpolated boundaries) and the randomness in MPSO. 
Therefore, more exact computations, such as the direct 
search or the interval analysis based methods, can be used 
to refine the result after the MPSO has found the near 
optimum solutions. Increasing the number of particles or 
iterations will lead to a decrease in the error. From a 
practical point of view, a full and accurate analysis may not 
be strictly necessary as a good approximate may be 
sufficient and the region near the boundary is generally not 
preferred for performing tasks.   

V. CONCLUSION AND FUTURE WORK 
The mapping of parallel manipulator workspace boundary 

is formulated as an optimization problem and solved using 
the MPSO algorithm. The performance in terms of speed is 
significantly better than the standard discretization method. 
However, in terms of accuracy, it is relatively less accurate 
than the geometric or other numerical approaches. 

Several aspects of MPSO have been addressed to tune the 
algorithm for this type of problem. Future work may address 
some of the following issues. 

A. Finding better start points  
The particles in MPSO will search for points on the 

boundary along the lines ui (λ)=c+λbi. It is possible that 
some regions of the workspace boundary are not 
represented. As illustrated in Fig. 6, some regions of a 
complex boundary dA are not covered when the multi-
swarm PSO is used. Therefore, a proper selection of the 
number of start points (ck) and  their locations are important 
issues to address.  

B. Intelligent tuning of MPSO parameters 
From the examples in this paper, it can be seen that is  

feasible to use the MPSO approach with pre-defined 
parameters, which have been obtained through observations. 
However, these parameters may not work well for a parallel 
manipulator with a different geometric configuration. In 
future work, research will be conducted on the automatic 
tuning of these parameters based on the geometric 
configuration of a manipulator. For example, it was 
observed that there is a relationship between the initial 
velocities and the size of a manipulator. Thus, the algorithm 
to be developed will generate the workspace from the 
geometric data of a manipulator, such that automatic 
parameter tuning can be achieved by the algorithm itself.  

C. Extension to general manipulator 
The method presented in this paper can be extended to 

solve the workspace boundary of serial kinematic 
manipulators, which in this case, the forward kinematics is 
easier to be solved. Therefore, the input coordinate space is 
the search space for the MPSO to find the workspace 
boundary. However, the collections of the achievable input 
coordinates may be irregularly distributed over the search 
space. Therefore, the multi-swarm MPSO technique is 
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Fig. 7. 3D workspace boundary generation using MPSO ([Ф, θ, ψ]T = 
[0,0,0]T. The MPSO searches from the start point c = [0, 0, -270]T denoted 
by the cross sign. The surface boundary is shown as tessellated from the 
positions of particles.  
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essential for detecting all the feasible configurations. Future 
work will address the general framework for using the 
MPSO to generate the workspace boundary for a general 
manipulator. 

APPENDIX 
Table I shows the data for the SP geometry used in the 

example in this paper. In addition, the range of the allowable 
leg lengths is 327 mm < li < 280 mm. The maximum 
allowable spherical joints angle is 29 degrees, the maximum 
allowable universal joints angle is 45 degrees and D = 36.1 
mm. Table II summarizes the parameters used in the MPSO 
algorithm. These parameters are selected based on the 
MPSO simulations. 
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TABLE  II 
MPSO PARAMETERS 

Parameters Value 
Number of particles 20 (2D case), 200 (3D case) 
Number of max. iterations 40 
Number of swarms, K 3 (multi-swarm MPSO) 
M 15 
Initial velocity v0 10 mm/iteration 
Boost velocity v1 2 mm/iteration 
δ in equation (4a) 1 
φ in equation (5) From 0.9 gradually down to 

0.6 over t 
α  in equation (5) 2,1 
Number of local maxima N 20 (for 2D case), 8 (for 2D 

multi-swarm), 200 (3D case) 
Tracking coefficient γ 0.9 
Second initial velocity v02 4 mm/iteration 

TABLE  I 
GEOMETRY OF THE STEWART PLATFORM* 

i Ai MMi 
1 1 8 3 .3 5 0

1 5 8 .7 8 6
0 .0 0 0

− 
 − 
  

 7 7 .9 4 2
4 5 .0 0 0
0 .0 0 0

− 
 
 
  

 

2 1 5 8 .7 8 6
9 1 .6 7 5
0 .0 0 0

− 
 − 
  

 4 5 .0 0 0
7 7 .9 4 2
0 .0 0 0

− 
 − 
  

 

3 9 1 .6 7 5
1 5 8 .7 8 6
0 .0 0 0

 
 − 
  

 0 . 0 0 0
9 0 .0 0 0
0 .0 0 0

 
 − 
  

 

4 1 5 8 .7 8 6
9 1 .6 7 5
0 .0 0 0

 
 − 
  

 9 0 .0 0 0
0 .0 0 0
0 .0 0 0

 
 
 
  

 

5 9 1 .6 7 5
1 5 8 .7 8 6

0 .0 0 0

 
 
 
  

 7 7 .9 4 2
4 5 .0 0 0
0 .0 0 0

 
 
 
  

 

6 0 .0 0 0
1 8 3 .3 5 0

0 .0 0 0

 
 
 
  

 4 5 .0 0 0
7 7 .9 4 2
0 .0 0 0

− 
 
 
  

 

* all units are in millimetres. 
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