

A PSO Algorithm for Mapping the Workspace Boundary
of Parallel Manipulators

V.B. Saputra, S.K. Ong and A.Y.C. Nee

Department of Mechanical, Engineering, National University of Singapore
9 Engineering Drive 1, Singapore 117576

{g0600940|mpeongsk|mpeneeyc}@nus.edu.sg

Abstract— This paper presents a novel method to determine

the multi-dimensional workspace boundary of parallel
manipulators using a modified Particle Swarm Optimization
(MPSO) framework. A generic objective (fitness) function that
gives optimum value at points where a manipulator reaches its
limit is formulated. By finding these points using MPSO, the
workspace boundary of a parallel manipulator can be
constructed. To demonstrate the method, the mapping of the
boundary of a Stewart platform workspace is presented. The
generic objective function can be modified easily to include any
number of parameters and constraints, and this allows the
method to be adapted for solving the workspace boundary
problem of other parallel manipulators.

Keywords— Parallel manipulator, workspace boundary,
particle swarm optimization (PSO), multimodal optimization,
Stewart Platform

I. INTRODUCTION
VER the last few decades, many researchers have
studied the properties and physical behavior of parallel

kinematic manipulators (PKM). Stewart platforms, which
are one of the earliest PKMs invented, and other types of
PKMs have been extensively studied and applied in many
applications due to their high rigidity and payload-to-weight
ratio. However, PKMs usually have coupled motion
capabilities, therefore, their workspace representation
becomes a problem [1]. In addition, it is impossible to
visualize completely the workspace representation of PKMs
that have more than three degrees of freedom (DOF). Large
numbers of studies addressing workspace boundary mapping
have been published, but most of them are limited to 3-DOF.

The discretization method has been used in numerous
research studies [2-4]. This method divides the configuration
space based on a particular coordinate system into regular
grid of nodes and the size of each node is specified as a
sampling step. This method tests all the nodes to determine
whether they belong to the workspace. Therefore, the
sampling step determines the accuracy of the workspace
boundary. The discretization method can be applied to many
types of manipulators. However, this method has two main
disadvantages [16], namely, it needs a longer computation
time when a higher accuracy is required (smaller sampling
step) and it usually fails to detect workspace voids.

Another well-known method for finding parallel

manipulator workspace has been proposed [5-8], and this is
often referred to as the geometrical method. It is efficient
and accurate in mapping the workspace boundary, which is
obtained by intersecting geometrical objects that represent
feasible ranges of motion of the actuated joints. However, in
order to compute the reachable workspace, there is a need to
transform constraints that limit the workspace (e.g., link
interference, maximum range of passive joints) into
geometrical representations. This transformation, however,
is not always possible in general.

Several researchers [9-11] have proposed an interesting
method. Firstly, the kinematic constraint equations that
describe the range of motion achievable by the manipulator
are formulated. Next, if the Jacobian matrix of these
equations is found to have a row rank deficiency, the
corresponding configuration is at the boundary of the
workspace. These researchers developed a numerical
scheme that can find one of these configurations and use the
continuation method to build the rest of the boundary.
Similarly, Snyman et al. [12] proposed to build the boundary
using a constrained optimization method. Merlet [13]
proposed to use the interval analysis to determine the
various types of workspace boundaries through the
estimation of bisection boxes that represent the workspace.
Although it can handle any number of DOF and constraints,
the computation is quite time-consuming.

In this paper, a simple and fast approach for mapping the
multi-dimensional workspace boundary of a general parallel
manipulator with any number of DOF and constraints is
proposed. A criterion is defined for determining the
boundary and a method based on a modified version of the
particle swarm optimization (PSO) algorithm is developed
[14] to map the points on the boundary. This method is
illustrated using a Stewart platform (SP) mechanism.

II. PROBLEM FORMULATION
A configuration state of all the working bodies of a

mechanism can be characterized by a generalized coordinate
vector q∈Rnq that satisfies the following m independent
holonomic kinematic constraint equations [12].

() =q 0Φ . Ф: Rnq Rm [], , T=q v u w (1)

O

2010 IEEE International Conference on Robotics and Automation
Anchorage Convention District
May 3-8, 2010, Anchorage, Alaska, USA

978-1-4244-5040-4/10/$26.00 ©2010 IEEE 4691

Vector q consists of the input, output and intermediate
coordinate, denoted by v∈Rnv, u∈Rnu and w∈Rnw,
respectively (nq = nv + nu + nw) [10]. The input coordinate
v is the subset of q that can be changed to control a
mechanism, and it corresponds to the actuated joints
coordinates. The output coordinate u constitutes the subset
of q that defines the useful functionality of the platform, and
it corresponds to the end-effector pose (positions and
orientations). The intermediate coordinate w is the subset of
q, and it constitutes all the other uncontrolled passive joints
coordinates. For PKMs, (1) can be rewritten explicitly as
inverse kinematics, v=v(u) and w=w(u). Therefore, q=[v(u),
u, w(u)]T.

The workspace of a manipulator is a collection set A of all
the reachable output coordinates. An output coordinate u is
reachable if the manipulator configuration q=[v(u), u, w(u)]T
satisfies all the constraints that limit the range of the
manipulator movement (note that the constraints can also be
imposed on u). Therefore, the boundary of the workspace is
a collection set dA of the output coordinates, where the
manipulator reaches any of its constraints. These constraints
can be expressed by the constraint functions fCi, which have
a generic form given below.

() 1,
0,

th

Ci
if satisfies the i contraint

otherwise


= 


q
f q , i = 1…n (2)

where n is the number of constraints imposed.
Assume that an arbitrary reachable output coordinate c

interior to the boundary is selected. To find the boundary,
the multimodal optimization problem is formulated as
follows.

()1 2.max C C Cnδ= −
u

f u u c f f f , () 0≥f u (3)

To find N local maximum points uLi subject to:
() () () , 1..Li i R i Nλ λ λ +≥ ∀ ∈ = + ∈ =f u f u u u c b (4a)

where δ is any real constant greater than zero, and ||.||
denotes the Euclidean distance. Equations (2) and (3) imply
that the value of f(u) will be zero or minimum if any of the
constraints is violated. Therefore, u(λ) that maximizes f(u)
will be on the boundary dA (see Fig. 1). The value of λ is
found from the optimization, which will be explained in the
next section. New constraints can be added to (3) as long as
they can be explicitly expressed as functions of q. For
example, to create a singularity-free workspace boundary, a
test function can be defined as an additional constraint:

 () ()1, ()
0,C

if C
otherwise

κ <
= 


J q
f q (4b)

whereκ is the condition number of the Jacobian matrix, and
C is a limiting constant describing the allowable closeness of
the end-effector to the singularities [6, 18].

From Fig. 1, the constraint function fCi shapes the
boundary accurately such that the value of f(u) is zero if any
constraint is violated. Using (4a), the search space can be
diversified such that during optimization, N local maximum

points uLi on the intersections between the boundary dA and
the straight lines u(λ)=c+λbi through the point c (see Fig. 2)
can be found. The directions of the unit vector bi are selected
such that the straight lines intersect dA at the broadest range
and with approximately equal spacing so that the points uLi
are located sufficiently dense to represent the boundary.

III. FINDING THE POINTS ON dA USING A MODIFIED PSO
PSO [14,15] can be implemented easily and it is

computationally inexpensive in terms of both memory
requirements and CPU speed. PSO is an iterative search
process to find the optima of an objective function. It is a
stochastic population-based search method where the
population is referred to as a swarm S. The swarm consists
of a number of individuals called particles. Each particle is
characterized by its position in the search space that
represents potential solution to the optimization problem.
The position of each particle is updated based on the
governing equation of PSO at each discrete time step t
according to its own experience and that of its neighbors to
find the optimum position.

A modified PSO (MPSO) algorithm is proposed to solve
the optimization problem described in (3), (4a), and (4b).
The positions of the particles are the output coordinates ui
and these positions are updated at every discrete time step t
to search for local maximum solutions, according to the
following equations.

() () () (),1 () pbest ii i it t t rand tϕ α  + = + − . .v v u u (5)

() () ()1 1i i it t t+ = + +u u v (6)

c

1b2b

1Lu2Lu

dA dAA

()uf

Fig. 1. Mapping of the value of f(u) for nu=1 (1-dimensional workspace).
Points at the boundary uL1 and uL2 are found by maximizing f(u).

dA

A
c

3b

1b
2b

1N −b Nb

3Lu

1Lu

2Lu

(1)L N −u
LNu

() 1λ λ= +u c b

() 3λ λ= +u c b

() 2λ λ= +u c b

() Nλ λ= +u c b

() 1Nλ λ −= +u c b

Fig. 2. Mapping of the boundary dA using the intersections between the
parameterized straight lines u(λ)=c+λbi with the boundary. At each
intersection point uLi, f(uLi) gives the local maximum value along the
corresponding straight line.

4692

where φ(t)∈ [0,1] is a positive single valued function that
drops linearly after each time step and α is the cognitive
acceleration constant. The function rand() generates a
uniformly distributed random number in the interval [0,1].
Moreover, upbest,i is updated for each particle in each
iteration. The best position of a particle upbest i is the position
with the best objective value f(upbest i) that has been travelled
by the ith particle. The search process will be considered
successful if all the particles have found the best positions
such that || upbest,i - uLi || < ε , where ε is a small number.
Therefore, the boundary can be approximated by the
locations of upbest,i.

The following modifications are made to MPSO.
1) Initial positions and velocities. All the particle

positions are initialized as ui(0) = c and the initial particle
velocities as vi(0) = v0bi, where v0 is the initial velocity
constant. Therefore, the particles will move towards the
boundary starting from the point c (the start point c is chosen
arbitrarily and is interior to the boundary).

2) Velocity update and position clamping. When the
particle velocity vector vi(t) is updated as according to (5),
only its magnitude changes (its direction is still parallel to
bi). Therefore, the ith particle is assigned to search for a local
solution only on the straight line ui (λ)=c+λbi. The unit
vector bi determines the search direction of the ith particle.
Furthermore, since λ cannot be negative (this is to avoid
overlapping with another search direction), the ith particle is
constrained from moving in the reverse direction of bi across
the point c. Hence, for any particle position ui(t) that has a
position where ui(λ) = c+λbi and λ < 0, ui(t) = c.

3) Termination condition. In MPSO, more iterations tend
to give a better result. However, the search process has to
stop. A general stopping condition is when the maximum
number of iterations has been exceeded. Another stopping
condition is when no improvement in the best positions of
the particles is observed over a number of iterations. In the
examples in this paper, the maximum number of iterations in
the MPSO was set as 40 based on an observation of the
convergence speed of the MPSO simulation. The framework
based on the MPSO algorithm to solve the workspace
boundary for a general PKM is summarized in Fig. 3.

IV. APPLICATION TO 6-DOF STEWART PLATFORM
Based on the proposed method, the reachable workspace

boundary of a 6-DOF SP (see Fig. 4) is determined. A
coordinate frame A is fixed to the base and the coordinate
frame M is attached to the mobile platform (end-effector) at
a reference point OM. The generalized output coordinate u is
the position and orientation of the frame M with respect to
frame A and nu=6.

(), , , , , TX Y Z φ θ ψ=u (7)

The generalized input coordinate v is composed of six
actuated prismatic joints lengths (leg lengths) li, i=1…6, and

nv=6.

()1 2 3 4 5 6, , , , , Tl l l l l l=v (8)

It is well known that the inverse kinematics of the SP
gives a unique solution. For a known complete description
in the output coordinate system, the leg lengths or the input
coordinate can be calculated using the following equation.

, where ; , 1..6A M
i i i i i iP Mi M A M M il − ⋅ == = = + RL L u (9)

Mi and Ai are the coordinates of the spherical and universal
joints attached to the mobile platform and the base
respectively with reference to frame A. The vector uP = (X,
Y, Z)T is the position of the reference point OM

 with respect
to frame A. The rotation matrix ARM is computed from the
orientation of frame M with reference to frame A. Lastly,
MMi is the coordinates of the spherical joints attached to the
mobile platform with reference to frame M.

The constraints that limit the workspace of the SP are
modeled, namely, the ranges of the prismatic joints,
collisions between the legs, and the physical limitations of
the passive joints. These constraints are formulated as (2)
and included in (3). Hence, the objective function f(u) will
have a zero value if any of these constraints are violated.

For conciseness, the calculations of the angles of the
passive joints and the distances between the legs have been

//Create and initialize an nu – dimensional swarm
for each particle i = 1,….,N do

// Set particle positions at starting point c
ui = c
// Set initial particle velocities
vi = v0bi

end
// begin the iterative search process
repeat

for each particle i = 1,….,N do
// set the personal best position
if f(ui) < f(upbest i) then upbest i = ui
update the velocity using (5)
update the position using (6)
// position clamping
If ui (λ)=c+λbi and λ < 0, then ui = c.

end
calculate the necessary variables for stopping condition (e.g.,
workspace size V)

until stopping condition is true;
Fig. 3. MPSO pseudo code (the time-step t is omitted for simplicity;
however it is incremented in every repeat – until loop).

Fig. 4. A Stewart platform diagram.

4693

omitted. Please refer to [17] for more details.

A. 2D workspace boundary
For the 2D workspace of the SP, some components of the

output coordinate are fixed, namely, the translational
component Z and the three rotational components [Ф, θ, ψ]T.

Therefore, a 2D workspace boundary on an XY plane will be
determined. The MPSO parameters used in the simulation
example are given in the appendix. Fig. 5 shows the result of
the MPSO for a 2D workspace boundary of the SP. A
discretization method was also used to generate the
boundary (solid curve in Fig. 5) for comparison with the
MPSO approach. The search direction is selected such that
bi = [sin βi, cos βi]T where βi are distributed at equal angular
interval, βi = i.360/N degree [12].

Several improvements have been made to the proposed
MPSO algorithm.

1) Velocity boost. From a preliminary simulation, it was
observed that due to the monotonically increasing objective
function in (2), the particles start to converge (stop moving)
before reaching the local maxima on the boundary. To avoid
premature stagnation, a velocity boost is injected for every
M iterations, agitating all the particles with a new velocity
vi(0)=v1bi, where v1 is the velocity boost constant.

2) Multi-Swarm MPSO. To find more points on a

boundary, a multi-swarm MPSO is implemented. The multi-
swarm MPSO has multiple K swarms Sk, k=1…K, with a
start point ck in each swarm. Each swarm works as a single
MPSO outlined earlier. By using several swarms, a complex
boundary can be traced. The center points ck can be selected
arbitrarily or computed before the multi-swarm MPSO
starts. The randomly scattered or equally spaced starting
points within the search space can be used (see Fig. 6). The
number of swarms, K, is determined by the users. The
feasible ck is selected if and only if they satisfy the
constraints and are within the boundary.

3) Two-Phase Dynamic MPSO. One of the advantages of
the MPSO-based workspace boundary mapping is the ability
to store the states of the particles. After the particles have
converged, the particle positions can be stored for further
analysis. A two-phase MPSO is proposed. In the first phase,
the search process begins from the zero state, which is when
all the particles are at the initial starting point c. In the
second phase, the particles continue the search process from
the last positions when the first phase ends (the particles
have converged). The two-phase MPSO has the ability to
track changing local maxima on the boundary without the
need for repeating the search process from the zero state.
The second phase is used when the fixed pose parameters of
u or the constraints imposed on q change slightly. For
instance, in finding the 2D workspace boundary in this
example, [Z, Ф, θ, ψ]T is fixed, and if any of these pose
coordinates (Z, Ф, θ, or ψ) is changed on a small scale, the
workspace boundary will be altered slightly. Therefore, the
second phase can be used to search for this new boundary
starting from the particle positions acquired from the
previous search process (the first phase).

At the beginning of the second phase, the second initial
velocity vi(0)=v02bi is injected again but with a smaller
magnitude than that of the first phase (v02 < v0). Since the
initial velocity direction is always diverging from the start
point, the PSO may fail to track the new local maxima if
they are closer to the start point than the last positions.
Therefore, the particles must be re-initiated closer to the start
point before the second phase starts.
xi(0) = γ(xi

*- c)+ c (10)
where γ ∈ [0, 1] is the tracking coefficient and xi

* is the last
particle position from the first phase. The lower the γ, the
closer will be the initial positions to the start point c and the
MPSO can track a greater variety in the new local maxima
locations, but would require more iteration to converge.

B. 3D workspace boundary
To generate 3D workspace boundary, the three rotational

components of [Ф, θ, ψ]T are kept constants. The subset uP =
(X, Y, Z)T of u will be the input parameters to the MPSO (see
Fig. 7).

In 3D, it is convenient to use the spherical coordinate
system with MPSO, where the parameterized straight line ui
(λ)=c+λbi in (3) can be defined easily. The direction of bi

-50 40
-40

50

X

t = 0
Y

-50 40
-40

50 t = 5

Y

X

-50 40
-40

50 t = 10

Y

X -50 40
-40

50 t = 20
Y

X
Fig. 5. 2D workspace boundary generation using MPSO (Z = -270 mm and
[Ф, θ, ψ]T = [0,0,0]T. The MPSO searches from the start point c = [0, 0]T

denoted by the cross sign.

dA

A 3c
2c

1c

Fig. 6. Illustration of boundary mapping with multi-swarm MPSO with
three swarms and 8 particles in each swarm. The starting points c1, c2 and
c3 are distributed randomly at initialization.

4694

can be selected based on equal angular intervals of the
inclination angle and the azimuth angle. Therefore, the
particle positions are parameterized by the radial distance λ
from point c.

C. Higher dimensional workspace
To generate the boundary of workspace such that nu > 3,

the selection of the search direction bi must be viewed in a
higher dimensional setting. Although there would be no
graphical visualization available for these workspace
boundaries, the method developed here can still be applied
efficiently. From 2D workspace analysis in a XY plane, an
additional variable Z in u is introduced so it becomes a 3D
positional workspace (with a fixed orientation). Likewise,
more variables can be introduced for analyzing a higher
dimensional workspace. However, there is no specific
coordinate system in this setting. Therefore, the direction of
bi is selected by taking equally spaced values of coordinate
variables as vectors and normalizing them. Then, the MPSO
will proceed as in previous cases. This process can be
extended to include any number of coordinate variables
(e.g., 5D, 6D workspace).

D. Comparison with other approaches
The workspace boundary obtained using the MPSO was

more accurate than the boundary obtained using the
discretization method. This is because the constraints are
defined exactly using equation (4a) such that the particles
could find the optimum position precisely. In terms of speed,
the MPSO is significantly faster than the discretization
method as the search speed of MPSO is as fast as the
velocities of the particles and is only constrained by the
initial velocities v1 and v01.

Regardless of the number particles used in MPSO, the
boundary generated will contain some errors due to the
approximation of the boundary (gaps between the real and
the interpolated boundaries) and the randomness in MPSO.
Therefore, more exact computations, such as the direct
search or the interval analysis based methods, can be used
to refine the result after the MPSO has found the near
optimum solutions. Increasing the number of particles or
iterations will lead to a decrease in the error. From a
practical point of view, a full and accurate analysis may not
be strictly necessary as a good approximate may be
sufficient and the region near the boundary is generally not
preferred for performing tasks.

V. CONCLUSION AND FUTURE WORK
The mapping of parallel manipulator workspace boundary

is formulated as an optimization problem and solved using
the MPSO algorithm. The performance in terms of speed is
significantly better than the standard discretization method.
However, in terms of accuracy, it is relatively less accurate
than the geometric or other numerical approaches.

Several aspects of MPSO have been addressed to tune the
algorithm for this type of problem. Future work may address
some of the following issues.

A. Finding better start points
The particles in MPSO will search for points on the

boundary along the lines ui (λ)=c+λbi. It is possible that
some regions of the workspace boundary are not
represented. As illustrated in Fig. 6, some regions of a
complex boundary dA are not covered when the multi-
swarm PSO is used. Therefore, a proper selection of the
number of start points (ck) and their locations are important
issues to address.

B. Intelligent tuning of MPSO parameters
From the examples in this paper, it can be seen that is

feasible to use the MPSO approach with pre-defined
parameters, which have been obtained through observations.
However, these parameters may not work well for a parallel
manipulator with a different geometric configuration. In
future work, research will be conducted on the automatic
tuning of these parameters based on the geometric
configuration of a manipulator. For example, it was
observed that there is a relationship between the initial
velocities and the size of a manipulator. Thus, the algorithm
to be developed will generate the workspace from the
geometric data of a manipulator, such that automatic
parameter tuning can be achieved by the algorithm itself.

C. Extension to general manipulator
The method presented in this paper can be extended to

solve the workspace boundary of serial kinematic
manipulators, which in this case, the forward kinematics is
easier to be solved. Therefore, the input coordinate space is
the search space for the MPSO to find the workspace
boundary. However, the collections of the achievable input
coordinates may be irregularly distributed over the search
space. Therefore, the multi-swarm MPSO technique is

-50

50

-50

50

-307

-255

Y
X

Z

t = 0

-50

50

-50

50

-307

-255

Y

t = 3

X

Z

-50

50

-50

50

-307

-255

Y

t = 7

X

Z

-50

50

-50

50

-307

-255

Y

t = 15

X

Z

Fig. 7. 3D workspace boundary generation using MPSO ([Ф, θ, ψ]T =
[0,0,0]T. The MPSO searches from the start point c = [0, 0, -270]T denoted
by the cross sign. The surface boundary is shown as tessellated from the
positions of particles.

4695

essential for detecting all the feasible configurations. Future
work will address the general framework for using the
MPSO to generate the workspace boundary for a general
manipulator.

APPENDIX
Table I shows the data for the SP geometry used in the

example in this paper. In addition, the range of the allowable
leg lengths is 327 mm < li < 280 mm. The maximum
allowable spherical joints angle is 29 degrees, the maximum
allowable universal joints angle is 45 degrees and D = 36.1
mm. Table II summarizes the parameters used in the MPSO
algorithm. These parameters are selected based on the
MPSO simulations.

REFERENCES
[1] J.-P. Merlét, “Parallel Robots: Open Problems,” in Ninth International

Symposium of Robotic Research, 1999, pp. 27-32.
[2] E.F. Fichter, “A Stewart Platform-Based Manipulator: General Theory

and Practical Construction,” International Journal of Robotic
Research, vol. 5, no. 2, pp. 157-181, 1986.

[3] Z. Wang, Z.-X. Wang, W.-T. Liu and Y.-C. Lei, “A study on
workspace, boundary workspace analysis and workpiece positioning
for parallel machine tools,” Mechanism and Machine Theory, vol. 36,
no. 5, pp. 605-622, 2001.

[4] F. Pernkopf and M. Husty, “Workspace Analysis of Stewart-Gough
Manipulators using Orientation Plots,” in International Symposium on
Multibody Systems and Mechatronics, 12-14 Sept. 2002, Mexico City.

[5] J.-P. Merlet, ”Determination of the Orientation Workspace of Parallel
Manipulators,” Journal of Intelligent and Robotic Systems, vol. 13, pp.
143-160, 1995.

[6] C.M. Gosselin and J. Angeles, “The optimum kinematic design of a
spherical three degree-of-freedom parallel manipulator,” ASME
Journal of Mechanisms Transmissions Automation Design, vol. 111,
no. 2, pp. 202-207, 1989.

[7] J.-P. Merlet, C.M. Gosselin and N. Mouly, “Workspaces of planar
parallel manipulators,” Mechanism and Machine Theory, vol. 33, no.
1-2, pp. 7-20, 1998.

[8] C. Gosselin, “Determination of the workspace of 6-dof parallel
manipulators,” ASME Journal of Mechanical Design, vol. 112, no. 3,
pp. 331-336, 1990.

[9] D.Y. Jo and E.J. Haug, “Workspace Analysis of Multibody
Mechanical Systems Using Continuation Methods,” ASME Journal of
Mechanism Transmissions Automation Design, vol. 111, pp. 581-589,
1989.

[10] E.J. Haug, C.M. Luh, F.A. Adkins and J.-Y. Wang, “Numerical
Algorithms for Mapping Boundaries of Manipulator Workspaces,”
ASME Journal of Mechanical Design, vol. 118, no. 2, pp. 228-234,
1996.

[11] L.-C.T. Wang and J.-H. Hsieh, “Extreme Reaches and Reachable
Workspace Analysis of General Parallel Robot Manipulators,” Journal
of Robotic Systems, vol. 15, pp. 145-159, 1997.

[12] J.A. Snyman, L.J. Du Plessis and J. Duffy, ”An Optimization
Approach to the Determination of the Boundaries of Manipulator
Workspaces,” ASME Journal of Mechanical Design, vol. 122, no. 4,
pp. 447-456, 2000.

[13] J.-P. Merlét, “Determination of 6D workspaces of Gough-type parallel
manipulator and comparison between different geometries,”
International of Robotics Research, vol. 18, no. 9, pp. 902-916, 1999.

[14] J. Kennedy and R.C. Eberhart, “Particle Swarm Optimization,” in
Proc. of the IEEE International Joint Conference on Neural Networks,
pp. 1942-1948, 1995.

[15] R. Eberhart and J. Kennedy, “A New Optimizer using Particle Swarm
Theory,” in Proc. of 6th International Symposium on Micro Machine
and Human Science, 1995, pp. 39-43.

[16] J.P. Merlet, Parallel Robots (Solid Mechanics and Its Applications
vol. 128), Springer-Verlag, 2006, pp. 156-159.

[17] O. Masory and J. Wang, “Workspace evaluation of Stewart
platforms.” Advanced Robotics , vol. 9, no. 4, pp. 443-61, 1995.

[18] P.A. Voglewede and I. Ebert-Uphoff, “Measuring "closeness" to
singularities for parallel manipulators.” in IEEE Int. Conf. on Robotics
and Automation, pp 4539--4544, New Orleans, 2004.

TABLE II
MPSO PARAMETERS

Parameters Value
Number of particles 20 (2D case), 200 (3D case)
Number of max. iterations 40
Number of swarms, K 3 (multi-swarm MPSO)
M 15
Initial velocity v0 10 mm/iteration
Boost velocity v1 2 mm/iteration
δ in equation (4a) 1
φ in equation (5) From 0.9 gradually down to

0.6 over t
α in equation (5) 2,1
Number of local maxima N 20 (for 2D case), 8 (for 2D

multi-swarm), 200 (3D case)
Tracking coefficient γ 0.9
Second initial velocity v02 4 mm/iteration

TABLE I
GEOMETRY OF THE STEWART PLATFORM*

i Ai MMi
1 1 8 3 .3 5 0

1 5 8 .7 8 6
0 .0 0 0

− 
 − 
  

 7 7 .9 4 2
4 5 .0 0 0
0 .0 0 0

− 
 
 
  

2 1 5 8 .7 8 6
9 1 .6 7 5
0 .0 0 0

− 
 − 
  

 4 5 .0 0 0
7 7 .9 4 2
0 .0 0 0

− 
 − 
  

3 9 1 .6 7 5
1 5 8 .7 8 6
0 .0 0 0

 
 − 
  

 0 . 0 0 0
9 0 .0 0 0
0 .0 0 0

 
 − 
  

4 1 5 8 .7 8 6
9 1 .6 7 5
0 .0 0 0

 
 − 
  

 9 0 .0 0 0
0 .0 0 0
0 .0 0 0

 
 
 
  

5 9 1 .6 7 5
1 5 8 .7 8 6

0 .0 0 0

 
 
 
  

 7 7 .9 4 2
4 5 .0 0 0
0 .0 0 0

 
 
 
  

6 0 .0 0 0
1 8 3 .3 5 0

0 .0 0 0

 
 
 
  

 4 5 .0 0 0
7 7 .9 4 2
0 .0 0 0

− 
 
 
  

* all units are in millimetres.

4696

