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Abstract— This paper proposes a novel spoke-like passive-
dynamic walker that consists of two identical crossed frames
whose center of mass is positioned on the central axis. The
purpose of this study is to develop an easy test-bed for
investigating the roles of double-support phase and swing-leg
retraction in limit cycle walking. The crossed frame as a swing
leg does not have inherent rotational dynamics, and it rotates
only in the presence of viscous friction at the central axis. We
first analyze the properties of this walker through mathematical
modeling. Next, we numerically investigate the gait efficiency,
and discuss the effect of inertia moment and mass distribution
of the crossed frame. Finally, we briefly report our experimental
results.

I. INTRODUCTION

Limit cycle walkers based on passive dynamics are good
examples for efficient legged locomotion [1][2][3]. Their
walking motion is energy-efficient and human-like, but there
are still many differences between robotic walking and
human walking. One of the most significant differences is
existence of double-support phase. In limit cycle walking,
the stance leg is instantaneously exchanged if the heel strike
collision model is inelastic. In dynamic walking of humans
and biped humanoids controlled based on zero moment
point (ZMP), double-support phase plays an important role
in stabilization of the gait generation. Also in limit cycle
walking, the effect of double-support phase control must be
effective to improve its stability and robustness.

The author has developed a novel spoke-like passive-
dynamic walking machine shown in Fig. 1 to investigate
the effects of double-support phase and swing-leg retraction
[4][5][6][7][8] on the gait efficiency and stability. This ma-
chine appears something like an rimless wheel [9], but is a
dynamic bipedal walker whose swinging motion is emerged
by the viscosity. By taking the special configuration, we can
conduct experimental study very easily without concerning
the foot scuffing at mid-stance. We have a prediction that this
walker would exhibit passive-dynamic walking incorporating
double-support phase and exchange the stance leg more
smoothly if the leg frame has elastic elements.

As mentioned, the primary goal of this study is investi-
gation how double-support phase affects the properties of
passive-dynamic gait, but this walker also has several inter-
esting and meaningful properties as follows. This machine
consists of two symmetric crossed frames whose center of
mass (CoM) is positioned on the central axis. In other words,
each leg has own counterweight and does not have the
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Fig. 1. Spoke-like passive-dynamic walker that consists of two identical
crossed frames

rotational dynamics. The swinging motion therefore does
not emerge during stance phases in the absence of viscous
friction. It is an interesting topic to investigate how the
walking motion changes with respect to the friction and in
what condition it converges to a stable limit cycle.

Another goal of this study is to develop an efficient and
robust locomotion system that can walk on uneven surface
and can climb up a steep slope at high speed. Spoke-like lo-
comotion machines are expected to achieve high adaptability
to complex outside-environment [10]. Although this paper
does not report, we are now considering to add a telescopic
actuation reported in [11].

Although we have not investigated the passive-dynamic
gait with double-support phases yet, several interesting re-
sults have been obtained through inelastic collision model
corresponding to the walker shown in Fig. 1. This paper
then reports the results; the mathematical modeling, the
simulation results and the experiment of passive-dynamic
walking on a treadmill.

II. OVERVIEW

The dynamic walker does not have any actuators and
consists of two identical crossed frames as shown in Fig.
1. The blue leg frames are attached to the outer axis-frame,
whereas the aqua leg frames are attached to the inner axis-
frame. These two wheels can rotate independently around
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Fig. 2. Adjust screw for hip damper (left) and telescopic leg frame and
its spring for running (right)

the central axis, however, the viscous friction between them
can be changed by the adjust screw shown in Fig. 2 left.
End of each leg has a rubber for shock absorbing. Although
we do not describe the detail, this walker is also able to
run by replacing the leg frames with telescopic leg frames
incorporating a spring as shown in Fig. 2 right. This would
create double-support phase in passive-dynamic gait.

In this machine, each leg has own counterweight on its
frame. The CoM of each leg is thus positioned on the
hip joint, which is the same as the robot’s total CoM.
Therefore, the swing leg does not have its inherent dynamics
for swinging. In this paper, we investigate the properties of
this machine through modeling and mathematical analysis,
and numerically investigate the effects of mass distribution
and the inertial moment on the generated gait.

In a rimless wheel, it is obvious that the generated gait
converges to a stable one-period limit cycle [12]. In this
dynamic walker, however, it is not clear whether or not
the generated gait is asymptotically stable or single period.
It is far from impossible that the limit cycle becomes
multiple period [2][3]. The subsequent sections report the
basic results.

III. MODELING

A. Dynamic Equation

Fig. 3 shows the model of our dynamic walker and its
coordinate system. Let θi [rad] be the angles of the frames
with respect to vertical. Let m [kg] and I [kg·m2] be the
mass and inertia moment of each frame.

The kinetic and potential energies are given by

K = ml2θ̇
2

1 +
1
2
Iθ̇

2

1 +
1
2
Iθ̇

2

2, (1)

P = 2mgl cos(θ1 + φ), (2)

where g = 9.81 [m/s2] is the gravity acceleration.
One of the most important problems we discuss in this

study is the effect of inertia moment. Fig. 4 shows the mass
distribution of the crossed frame. The total mass and CoM
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Fig. 3. Model of passive-dynamic walker that consists of two identical
crossed frames
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Fig. 4. Difference of inertia moment

position are identical in both cases, but the inertia moment is
different. In the right case, the inertia moment is I = mr2(=
4 × mr2

4 ) [kg·m2].
The viscous friction force at the central axis is given by

−η
(
θ̇1 − θ̇2

)
where η is the coefficient of viscosity and is

positive constant.
The stance phase dynamic equation then becomes[

I + 2ml2 0
0 I

] [
θ̈1

θ̈2

]
+

[ −2mgl sin(θ1 + φ)
0

]

= −
[

1
−1

]
η

(
θ̇1 − θ̇2

)
.

(3)

We denote this as

Mθ̈ + g(θ, φ) = SuH , (4)

where the control input uH = −η
(
θ̇1 − θ̇2

)
represents

the viscous friction force. The total mechanical energy is
E = K + P and its time derivative satisfies the relation

Ė = θ̇
T
SuH = −η

(
θ̇1 − θ̇2

)2

≤ 0. The total mechanical
energy thus decreases monotonically during stance phases.
The swing leg rotates or the swing-leg’s angular velocity
changes only in the presence of viscous friction.

B. Transition Equations

Fig. 5 shows the configuration at heel strike. In this figure,
the stance leg is exchanged from Frame 1 to Frame 2. From
the geometrical relation, we can derive the angular positions
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Fig. 5. Configuration at heel strike

as

θ+
1 = θ−2 , (5)

θ+
2 = θ−1 − π

2
, (6)

where the superscripts “−” and “+” denote just before and
just after impact. Here, we define the half inter-leg angle at
impact, α [rad], as

α :=
θ−1 − θ−2

2
=

θ+
2 − θ+

1

2
+

π

4
> 0. (7)

We introduce an extended coordinate to the system to
derive the impact dynamics. Let qi =

[
xi zi θi

]T
be

the extended coordinate vector for Frame i (i = 1, 2). The
inelastic model for heel strike then becomes

M̄(q)q̇+ = M̄(q)q̇− − JI(q)TλI , (8)

JI(q)q̇+ = 04×1, (9)

where q = q− = q+ and

q =
[

qT
1 qT

2

]T
, (10)

M̄ (q) =
[

M1(q1) 02×2

02×2 M 2(q2)

]
, (11)

M i(qi) =

⎡
⎣ m 0 ml cos θi

0 m −ml sin θi

ml cos θi −ml sin θi I + ml2

⎤
⎦ , (12)

JI(q) =

⎡
⎢⎢⎣

1 0 l cos θ1 −1 0 −l cos θ2

0 1 −l sin θ1 0 −1 l sin θ2

0 0 0 1 0 0
0 0 0 0 1 0

⎤
⎥⎥⎦ . (13)

The relation between angular velocities just before impact
and just after impact is given by

θ̇
+

= Ξθ̇
−

, (14)

where Ξ = Ξ(α) ∈ R
2×2 is detailed as

Ξ =

[
2ml2 cos(2α)

I+2ml2
I

I+2ml2

1 0

]
. (15)

In addition, the following limit value

lim
I→+0

Ξ =
[

cos(2α) 0
1 0

]
(16)

is identical with the case of the simplest walking model
[13]. The effect of the swing-leg motion just before impact
vanishes in this case. As shown in Fig. 4, in real machines,
the inertia moment always exists and its effect cannot be

neglected. It is also main subject of this paper to investigate
its effect on the gait efficiency. We numerically analyze it by
changing the radius, r.

IV. ANALYSIS

This section analyzes the effects of mass distribution and
swing-leg retraction (SLR) on the heel-strike collision from
the energy-loss coefficient point of view, and numerically
investigates the gait efficiency with respect to the inertia
moment and slope.

A. Typical Gait

We first conducted numerical simulations to confirm that
a stable limit cycle is generated in the presence of viscous
friction.

Fig. 6 shows the simulation results where the slope is 0.50
[rad], r = 0.30 [m] and η = 0 [N·m·s/rad]. In this case, the
swing leg does not have rotational force. Fig. 6 (a) and (b)
show that the swing leg maintains its angle with respect to
vertical and does not rotate during stance phases. The half
inter-leg angle at impact converges to α = π/2 [rad] in this
case. Fig. 6 (c) also shows that the total mechanical energy
is kept constant during stance phases and it converges to the
steady value. It is remarkable that the gait converged to the
steady motion at high speed. The limit cycle stability in this
case is, however, not obvious and we should investigate the
mechanism in more detail.

Fig. 7 shows the simulation results where the slope is
0.30 [rad], r = 0.30 [m] and η = 0.20 [N·m·s/rad]. The
walker started from a certain initial condition. We can see
that a stable limit cycle was successfully generated. Since the
coordinate differs from the compass-like biped as previously
mentioned, the behavior of angular positions is unfamiliar.
Fig. 7 shows that the total mechanical energy monotonically
decreases during the stance phases because of the viscous
friction.

B. Swing-leg Retraction

Gait stability is one of the most important factors in
the study of limit cycle walking. The authors proposed an
approach to the stability analysis based on a recurrence
formula of the kinetic energy just before impact [12].

Let K [J] be the kinetic energy of the passive walker.
A symmetric rimless wheel has the following recurrence
formula:

K−[i + 1] = εK−[i] + ΔE, (17)

where ε = K+/K− [-] is the energy-loss coefficient and ΔE
[J] is the restored mechanical energy [12]. In rimless wheel,
ε and ΔE are kept constant and the generated gait thus
converges to one-period stable limit cycle. In general limit
cycle walkers, however, these are not kept constant and thus
the limit cycle analysis becomes complicated. Especially,
swing-leg retraction (SLR) strongly changes the value of ε.
SLR is a phenomenon that the swing-leg moves backward
just prior to impact [4] as shown in Fig. 8, and has a
great influence on the gait efficiency and limit cycle stability
[5][6][7][8].
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Fig. 6. Simulation results of passive-dynamic walking without viscous
friction where slope is 0.30 [rad]

Let ν := θ̇
−
2 /θ̇

−
1 [-] be the ratio of angular velocity

just before impact, then the angular velocity vector can be
arranged as θ̇

−
=

[
1 ν

]T
θ̇
−
1 . The kinetic energies just

before and just after impact are also arranged as

K− =
1
2

[
1
ν

]T

M

[
1
ν

] (
θ̇
−
1

)2

, (18)

K+ =
1
2

[
1
ν

]T

ΞTMΞ
[

1
ν

] (
θ̇
−
1

)2

. (19)

The energy-loss coefficient is then rewritten as

ε =

[
1
ν

]T

ΞTMΞ
[

1
ν

]
[

1
ν

]T

M
[

1
ν

] =
Nε

Dε
, (20)

where

Nε = I(I + Iν2 + 2ml2)
+4ml2 cos(2α)(Iν + ml2 cos(2α)), (21)

Dε = (I + 2ml2)(I + Iν2 + 2ml2). (22)

This is a function of ν, but we also examine its property by
changing the inertia moment, I .

ε is almost maximized regardless of the inertia moment
around the zero swing-leg retraction (ν = 1.0); the walker
falls down as a one-link rigid body. Where I = 0, ε is kept
constant and is cos2(2α). This result is identical to that of the
rimless wheel and simplest walking model [8][12][13]. As
reported in [8], ε is almost kept constant when ν < 1 in the
compass-like biped robot regardless of the mass distribution.
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Fig. 7. Simulation results of passive-dynamic walking with viscous friction
where slope is 0.30 [rad] and η = 0.20 [N·m·s/rad]
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Fig. 8. Swing-leg retraction
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Fig. 10. Gait descriptors with respect to r for three values of η where slope is 0.30 [rad]
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Fig. 11. Gait descriptors with respect to slope angle for three values of η where r = 0.30 [m]

In Fig. 9, however, ε is strongly affected when ν < 1. This
result comes from the difference of the walking models, but
the essence is still unclear. We should investigate how ε
changes with respect to the leg-mass position in the case
of the compass-like biped.

In the passive-dynamic walker this paper considers, there
is no possibility that the swing-leg frame rotate in a coun-
terclockwise direction (ν > 0), and it always rotates in a
clockwise by the effect of viscous friction. It is sure that the
condition 0 < ν < 1 holds in this model. From the plot in
Fig. 9, ε is strongly affected by SLR when I is large, and
the limit cycle stability is weak in this sense.

The effect of SLR in the presence of leg elasticity is also
an interesting topic and is left as a future work.

C. Effect of Inertia Moment

We first analyze the effect of inertia moment by changing
r (0 < r ≤ l = 1.0).

Fig. 10 shows the analysis results of the gait descriptors
with respect to the radius, r, for three values of η. Here, (a)
is the step period, (b) the half inter-leg angle at impact, α,
and (c) the walking speed.

From (a), we can see that the step period monotonically
increases as r increases in all cases. This is because the
rotational motion becomes slower as the inertia moment
increases, and this results in the larger half inter-leg angle as
shown in (b). From (c), we can see that the walking speed
monotonically decreases with respect to r. This is because
the increasing rate of the step period is greater than that of
the step length.

Where η = 0.10, a stable gait could not be generated when
r ≥ 0.90 [m]. This is because the walker cannot overcome
the potential barrier at mid-stance. In other cases, stable gait
generation was achieved. We should investigate the reason in
the future. On the other hand, as r approaches zero, period-
doubling bifurcation occurs.

D. Effect of Slope

Next, we analyze the change of the gait descriptors with
respect to slope angle. Fig. 11 shows the results. In all cases,
from (a), the step period monotonically decreases, and from
(b), the step length monotonically increases as the slope
increases. This is because the robot’s overall motion becomes
rapid, and the walking speed thus monotonically increases as
the slope increases. In this range, period-doubling bifurcation
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was not observed. Note that the walker without viscous
friction can walk only on a steep slope because the step
length or half inter-leg angle, α, is maximized in this case
as shown in Fig. 6. Whereas in the presence of sufficient
viscous friction it can walk on a gentle slope with a small
step.

V. EXPERIMENTS

Now we are trying to achieve experimental dynamic
walking (See Fig. 12). Generating a stable dynamic gait in
the presence of viscous friction is not easy and successful
walking for prolonged periods of time has not succeeded yet.
There is a tendency that, even if the viscous friction exists,
the walking motion does not continue for long period and
converges to 1-period gait which is identical to that generated
in the absence of viscous friction shown in Fig. 6. The gap
between simulation and experiment comes from stiction, and
the improvement is necessary.

We are also testing the effect of the telescopic-legged
mode. The experimental results of passive-dynamic walk-
ing including double-support phase and running would be
reported in our future papers.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed a novel passive-dynamic walker
and numerically analyzed its properties. In this walker, the
swinging motion of the swing-leg frame was achieved by the
viscosity at the central axis, or the stance leg only moves.
The spoked walker has many possibilities for development
of a novel robust and adaptive dynamic locomotion system.
The following statements are left as future works to be
investigated.

1) Actuation and control: It is interesting and necessary to
add an actuator to the walker for generating a level dynamic
gait. Controlling the swing-leg frame results in the angular
momentum control. It enables the walker to create various
motions. Combination with telescopic actuation of the stance
leg is also an interesting topic. By extending the stance
leg during stance phases, we can easily generate high-speed
dynamic gait based on the asymmetric impact posture [11].

Fig. 12. Snapshot of walking experiment

2) Effect of leg elasticity: Now we are modeling the
walker with leg springs and investigating the effect on the
walking motion, gait efficiency, and stability. In this model,
double-support phase would exist, and its utilization for
stable gait generation is our main future subject.

3) Running: We are also trying to achieve passive-
dynamic running on a steep slope. The results will be
reported in a future paper.
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