
  

  

Abstract—During the past decade, Rapidly-exploring 
Random Tree (RRT) and its variants are shown to be powerful 
sampling based single query path planning approaches for 
robots in high-dimensional configuration space. However, the 
performance of such tree-based planners that rely on uniform 
sampling strategy degrades significantly when narrow passages 
are contained in the configuration space. Given the assumption 
that computation resources should be allocated in proportion to 
the geometric complexity of local region, we present a novel 
single-query Multi-RRTs path planning framework that 
employs an improved Bridge Test algorithm to identify global 
important roadmaps in narrow passages. Multiple trees can be 
grown from these sampled roadmaps to explore sub-regions 
which are difficult to reach. The probability of selecting one 
particular tree for expansion and connection, which can be 
dynamically updated by on-line learning algorithm based on the 
historic results of exploration, guides the tree through narrow 
passage rapidly. Experimental results show that the proposed 
approach gives substantial improvement in planning efficiency 
over a wide range of single-query path planning problems. 

I. INTRODUCTION 
OBOT path planning has been one of the fundamental 
problems over the last couple of decades in such areas as 

robotics, artificial intelligence, as well as computer graphics. 
The original description of the problem is to plan a 
collision-free path for a robot made of an arbitrary number of 
polyhedral bodies among an arbitrary number of polyhedral 
obstacles between two collision-free queried positions of the 
robot, which has been shown to be PSPACE-complete by 
complex geometric analysis [1]. 

The well known complete motion planning algorithms, 
such as cell decomposition and visibility roadmaps, require 
explicit representation of robot configuration space. They are 
usually computationally intractable and hard to implement for 
practical applications [2]. “The curse of dimensionality” has 
lead to the development of randomized sampling-based 
motion planners, which can solve many previously 
considered hard problems successfully and quickly. 

PRM [3] and RRT [4] are two typical randomized 
 

Manuscript received September 15, 2009. This work was supported in part 
by National High Technology Research and Development Program of China 
(863 Program) under Grant 2006AA110114 and National Science 
Foundation of China (NSFC) under Grant 90820302 and Grant 60774076. 

W. Wang, Y. Li and X. Xu are with the College of Mechatronics and 
Automation, National University of Defense Technology, Changsha, 410073, 
China (emails: wangmail200@yahoo.com.cn; spark99@263.net; 
xinxu@nudt.edu.cn). 

S. X. Yang is with the ARIS Lab, School of Engineering, University of 
Guelph, Guelph, Canada (email: syang@uoguelph.ca). 

 

sampling-based motion planning methods. The PRM is a 
typical path planning algorithm for multi-query problems. It 
attempts to construct a graph structure by randomly sampled 
roadmaps so as to reduce the original planning problem to a 
graph traversing and searching problem. The PRM algorithm 
is recognized as one of the most successful randomized path 
planning algorithm for multi-dof robots. The RRT is initially 
proposed for single-query problems for non-holonomic 
robots [4]. The RRT and its variants are based on a tree-like 
data structure, whose nodes represent the sampled 
collision-free configurations and edges correspond to local 
paths connecting two nearby nodes. As the RRT planner 
incrementally grows a tree to explore unknown space, it may 
behave poor when there are narrow passages through which 
the planner has to pass to reach the goal configuration. 

A narrow passage is a small region whose removal changes 
the connectivity of the component free space substantially. 
Most of the early works on PRM and RRT usually apply 
uniform randomized sampling strategy to sample 
collision-free configurations. The apparent drawback is that 
much computation time will be wasted in sampling wide open 
area before identifying a narrow passage, due to its small 
volume against the volume of the whole configuration space. 
Even two nearby nodes, which belong to two different 
components connected by one narrow passage, is hard to be 
connected by the strategy. 

One solution is to develop non-uniform sampling 
technique that can efficiently allocate the computation 
resources according to the geometric complexity of local 
regions [5] [6]. Dalibard et al. [7] applied PCA method to 
recognize the favored direction of the narrow passage by 
dozens of collision-free samples already obtained. 

The other solution is to create more than one tree to explore 
sub-regions simultaneously. Kuffner et al. [8] described a 
bi-directional RRT-Connect algorithm that grows two trees 
from the initial and goal configurations. Path planning based 
on expansions of multiple RRT trees can be found in [9] [10] 
[11]. 

The above multi-trees methods share the common idea that 
each tree has equal opportunity for expansion no matter 
whether it belongs to the restrained regions or not. The 
equiprobable expansion strategy confronts with the same 
drawback of uniform sampling strategy mentioned above. 
The fact that computation resources should be allocated in 
proportion to the geometric complexity of local regions 
motivates us to develop an adaptive multi-RRTs path 
planning algorithm in a single-query scenario. 

An Adaptive Roadmap Guided Multi-RRTs Strategy for Single 
Query Path Planning 

Wei Wang, Yan Li, Xin Xu, Simon X. Yang 

R 

2010 IEEE International Conference on Robotics and Automation
Anchorage Convention District
May 3-8, 2010, Anchorage, Alaska, USA

978-1-4244-5040-4/10/$26.00 ©2010 IEEE 2871



  

The adaptive multi-RRTs algorithm proceeds in two stages: 
firstly, a non-uniform Bridge Test sampling algorithm [12] is 
improved to identify global important roadmaps in some 
crucial areas. Next, multiple trees are grown from the 
sampled roadmaps. The probability of selecting one 
particular tree for expansion, which can be dynamically 
updated by on-line learning algorithm based on the historic 
results of exploration, guides the tree through narrow passage 
rapidly. If two trees encounter in a collision-free 
configuration successfully, they are merged into a larger tree. 
The algorithm iterates to grow and merge trees so as to find a 
global collision-free solution path.  

The adaptive selection model that forms the distinguished 
feature of our method is inspired by an n-armed bandit 
problem introduced in the book [13]. Since non-uniform 
sampling and exploring strategy is adopted in both stages, the 
adaptive Multi-RRTs algorithm can concentrate on exploring 
more complex sub-regions instead of wide open areas. Plenty 
of experimental results show that the proposed approach 
gives substantial improvement in planning efficiency over a 
wide range of single-query path planning problems. 

In section II we present an improved Bridge Test algorithm 
that samples global roadmaps to identify narrow passages, 
section III describes the implementation details of the 
adaptive Multi-RRTs algorithm. In section IV we describe the 
experimental setup and the set of benchmarks used to test the 
performance of our planner. Section V draws conclusions. 

II. NARROW PASSAGE SAMPLING 

A. Related work 
Difficulty posed by narrow passages and its importance 

were firstly issued in early works of PRM planners, as their 
successes highly depended on effective samples to capture 
the connectivity of free configuration space. As a result, 
plenty of non-uniform random sampling methods for PRM 
planners have been proposed to efficiently sample global 
roadmaps to identify critical regions. 

It’s possible to improve the sampling strategy in two 
directions. The first consideration is based on geometric 
analysis of the workspace information that derives what the 
important areas are [14] [15]. The other non-uniform 
sampling strategies are based on a series of collision 
detections [12] [16].  

The so-called Bridge Test algorithm attempts to identify a 
narrow passage by using three samples along a line segment. 
Considering high efficiency and simplicity of the Bridge Test 
algorithm, we improve it to serve as a preprocessing stage to 
sample global important roadmaps in narrow passages. 

B. Improved Bridge Test Algorithm 
For clarity, we firstly give some definitions and terms. For 

a robot with n degrees of freedom, the n-dimensional 
topological space describing all possible positions and 
orientations of the robot is called configuration space, 

denoted by C. A configuration q is free if the rigid bodies of 
the robot placed at q don’t collide with obstacles or with other 
bodies of the robot. The set of all free configurations in C are 
defined to be free space, denoted by F. The obstacle space B 
is defined to be the complement of F: B=C/F. Therefore, 
the path planning problem can be defined as follow: Given a 
pair of initial and goal configurations qinit and qgoal, find a 
continuous collision-free path τ: [0, 1]→F, such that 
τ(0)=qinit, and τ(1)= qgoal. 

Intuitively, a narrow passage in C has at least one restricted 
direction, along which small perturbations will cause 
collision between robot and obstacle. It’s easy to sample at 
random a short line segment through a collision-free 
configuration q such that the two endpoints of this line 
segment lie in B (figure 1). The line segment resembles a 
bridge across the narrow passage so that it’s called Bridge 
Test. If we successfully obtain such a line segment, we say 
that the point q∈F passes the test. Clearly building short 
bridges is much easier in narrow passage than in wide open 
free space. 

In order to find a configuration that passes Bridge Test, two 
endpoints must be selected in advance which should be 
assigned inside the obstacles and close enough to ensure the 
mid-point of the bridge lying in a narrow passage. The 
original Bridge Test algorithm samples the first bridge 
endpoint qf in C randomly, and then samples the second 
bridge endpoint qs in the neighboring of qf according to a 
specified probability density function λq, i.e. the product of 
the independent Gaussians on each axis of C. The means of 
each Gaussians are set to be the position of qf in C. However 
it’s a non-trivial work to obtain the standard deviation σ for 
each independent Gaussian distribution, as σ depends on the 
width of narrow passage that is always problem-specific. 
Instead, we exploit the intrinsic attribute in the sampling 
strategy to obtain the second bridge endpoint qs.  

As the distance deviation between bridge end-points qf and 
qs should not be too far, sampling the second end-point qs 
randomly in C is unreasonable. Instead, we scale the sampled 
configuration to the neighborhood of the first end-point qf by 
the strategy described as follow: Suppose qmin denotes the 
lower limits for each coordinate in the configuration space. A 
candidate configuration point qc is sampled at random 
without collision detection. The difference of (qc-qmin) is 
multiplied by a small scale 1/l to obtain the offset: 

 
Fig. 1.  The illustration of Bridge Test. Note that only the point lies in 
narrow passage can pass the Bridge Test. 

2872



  

dq = (qc-qmin)/l                                           (1) 
qs is then evaluated by: 

( 1)n
s fq q dq= + − ⋅                                (2) 

In which, n is a random integer, implying that qs may lie 
either in front of or behind qf. 

The pseudocode of the improved Bridge Test algorithm is 
shown in figure 2. In line 4, 8, and 10, collision detection 
function COLLISIONFREE() is called to test whether a 
configuration in C is collision-free or not. When middle point 
qm passes Bridge Test, it’s pushed into a sampled roadmap list 
nplist that will be used to grow new additional trees in the 
successive planning procedure. The algorithm will be 
terminated when either the maximum allowed number of 
roadmaps maxSize, or the maximum number of iterations has 
been reached. 

Even though there’s only one parameter l to perform 
Bridge Test for finding a verified roadmap, it’s not easy to 
determine an optimal value for general problems. We 
typically set l in the range of 10-30 through a wide variety of 
independent experiments, which is common enough to 
capture the generic property of Bridge Test. 

The parameter maxSize is also relative to specific problem. 
Too small value can’t identify all of the narrow passages 
across the entire narrow passages, while too large value may 
cost much computation time, as collision detection subroutine 
might be called frequently. Empirically we set maxSize in the 
range 5~15. We also provide user interface to adjust the 
parameters on the fly. 

III. ADAPTIVE MULTI-RRTS ALGORITHM 

A. RRT-Connect algorithm 
Starting at a given initial configuration, the classic RRT 

prefers to grow a tree-based data structure to incrementally 
explore the unknown configuration space. A node in tree 
corresponds to a configuration in C, while the edge between 
nodes indicates the connecting path between two distinct 
configurations. The probability that a configuration is 
selected for extension is proportional to the area of its 
Voronoi region, so the RRT tends to rapidly grow in the 

unknown regions of F. It was shown in [8] that in the limit, 
the coverage of the configuration space is uniform when the 
number of nodes in the tree tends to infinity. Thus, the 
original RRTs algorithm is a no-biased planner. 

Instead of extending one step toward the sampled target 
configuration each time, a more greedy strategy is to extend 
several steps till either collision with obstacle is detected, or 
the target is reached. The strategy is called RRT-Connect, and 
the pseudocode is shown in figure 3. The algorithm attempts 
to sample configurations along the line connecting the 
random target qtarget and its nearest neighboring configuration 
qnear in T. if a new collision-free configuration qnew is 
generated, qnew is added to T as a new node, and an edge is 
added to connect qnear and qnew. The algorithm will return 
Reached if qnew is close to qtarget. If several steps toward qtarget 
have been taken, it will return Advanced. Otherwise, it will 
return Trapped, which means no step is extended forward. 

B. The adaptive tree selecting strategy 
The Bridge Test algorithm is served as a pre-processing 

step in our adaptive Multi-RRT framework to analyze and 
extract information in narrow passages. Once multiple trees 
are grown from the sampled roadmaps in the second step, the 
bidirectional RRT-Connect algorithm can be adopted as a 
local path planner to connect a pair of candidate trees due to 
its powerful planning capability. Problem arises when 
considering which pair of trees should be selected to extend 
and connect. We design the strategy as follows. 

Assume that there are n trees in our framework, including 
trees rooted at the queried configurations and additional trees 
rooted at intermediate sampled roadmaps. These trees are 
assigned with a selecting probability pi (i = 1,2,…,n). We 
build the probabilistic distribution model based on the 
consideration that the trees in the restricted regions should be 
allocated more computation time to capture the connectivity. 
It seems difficult to choose the optimal values for each pi in 
advance. So let’s treat them as the dynamic value that change 
over time. 

At the beginning, p1, p2,…, pn for each tree is set to be the 
same. To update them, we maintain a weight wi (i = 1,2,…,n) 

Algorithm 1 BRIDGE_TEST() 
1 nplist.clear(); 
2 for k = 1 to K do 
3 qf←RANDOM_POINT(); 
4 if not COLLISIONFREE(qf) then 
5 qc←RANDOM_POINT(); 
6 dq←(qc- qmin)/l; 
7 qs←qf+(-1)^n*dq; 
8 if not (COLLISIONFREE(qs) and qs∈C then 
9 qm←(qf+qs)/2; 
10 if COLLISIONFREE(qm) then 
11 nplist.push_back(qm); 
12 if nplist.size() > maxSize then 
13 return nplist; 
14 return nplist; 

Fig. 2.  Improved Bridge Test algorithm. Algorithm 3 CONNECT(T, qtarget) 

1 S←Trapped; 
2 qnear←NEAREST_NEIGHBOR(T, qtarget); 
3 do 
4 if NEW_CONFIG (qnear qtarget, qnew) then 
5 T.add_vertex(qnew); 
6 T.add_edge(qnear, qnew); 
7 if DIST(qnew , qtarget) < δ then 
8 return Reached; 
9 else 
10 S←Advanced; 
11 qnear←qnew; 
12 else 
13 return S; 

Fig. 3.  The original RRT-Connect algorithm. 
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and adjust wi by assigning a reward r after each expansion 
performed by a particular selected tree. For a randomly 
sampled target qtarget, if the selected tree is hard to extend one 
step toward qtarget, it’s implied that the tree may lie in the 
restricted region of the free configuration space. On the 
contrary, if it’s easy to reach the δ neighboring region of qtarget 
by RRT-Connect extension, it’s implied that the tree may lie 
in the open wide area. As a result, the output of the 
RRT-Connect algorithm in each time step t can be used to 
verify whether a selected tree is easy to explore or not. 
Initially we set wi = 0 for all i, and we update wi based on three 
conditions of exploring result: 

1) For a selected tree, if the RRT-Connect algorithm 
returns Reached, which means the tree can reach the δ 
neighboring region of qtarget successfully, implying 
that the tree may lie in the open wide area, We set the 
reward r = -1. The exploration of this tree in the next 
round is restrained (figure 4-(a)). 

2) For the circumstance that the RRT-Connect algorithm 
returns Advanced, which means the tree can extend 
several steps, yet not close enough to reach the target 
point, we set the reward r = 0. The exploration of this 
tree in the next round is neither encouraged nor 
restrained (figure 4-(b)). 

3) If the RRT-Connect algorithm returns Trapped, which 
means no step is extended forward. It’s reasonable to 
assume that the tree lies in the cluttered area. We set 
the reward r = 1. The exploration of this tree in the 
next round is encouraged (figure 4-(c)). 

The weight of wi is updated by: 
wi(t+1) = wi(t) + (ri(t+1) – wi(t))/(ki(t)+1)                 (3) 

Where ki(t) is the updating count of wi. If a tree is not 
selected in the current step, its weight remains the same as 
before. Based on the weight assignment in each time step t, 
we choose the candidate expansion tree with the probability: 

1

( ) exp( ( ) / ) exp( ( ) / )
n

i i j
j

p t  = w t  /  w t  τ τ
=

∑      (4) 

The above formula is called Gibbs, or Boltzmann 
distribution, where τ is a positive parameter called the 
temperature. High temperatures cause the actions of selecting 
trees to be nearly all equiprobable no matter how weights 
update. The lower the temperature is, the more difference the 
selection probability is. In our implementation, τ is set to be 
0.8. 

It’s observed that the update rule (3) has the following 
property: 

1

1
( ) 1t ik t

∞

=

= ∞
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1
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( ) 1t ik t

∞

=

< ∞
+∑      (5) 

The first condition guarantees that the steps are large 
enough to eventually overcome any initial conditions or 
random fluctuations. The second condition guarantees that 
eventually the steps become small enough to assure 
convergence according to the law of large numbers [13]. 
Therefore, the combinatorial tree exploration strategy will be 
converged to the best strategy with probability one according 
to the law of large numbers. The result can be interpreted that 
the ensemble trees performs almost as well as the best 
component tree, though which component tree is the best is 
not known in advance. 

C. The adaptive Multi-RRTs algorithm 
Our adaptive Multi-RRTs algorithm firstly grows multiple 

trees from the roadmaps sampled by the improved Bridge 
Test algorithm. Based on the on-line update rule described 
above, the algorithm repeatedly selects the most probable tree 
to explore according to the latest probability pi. The detailed 
introduction is given in figure 5. The sub-routines called by 
the Multi-RRTs algorithm are explained and listed below: 

 TREE_BUILD(): Building trees from the intermediate 
sampled roadmaps, as well as the initial and goal 
configurations, respectively; 

 INITIALIZE(): Initializing weights wi = 0 for all i; 
 UPDATEP_ROB(): Updating probability pi in each 

time step t; 
 PICK(): Picking up one tree from the tree list trlist 

according to the probability distribution pi; 
 RANDOM_CONFIG(): sampling a configuration in C 

 
 
 
 
 
 
 
 

Fig. 4.  Illustration of reward assignment. (a) Open area: r = -1; (b) Area 
with a few obstacles: r = 0; (c) Cluttered area: r = 1. 

Algorithm 4 MULTI-RRTs(qinit, qgoal) 

1 nplist = BRIDGE_TEST(qinit, qgoal); 
2 trlist = TREE_BUILD(qinit, nplist, qgoal); 
3 INITIALIZE(wi); 
4 for k = 1 to K do 
5 pi = UPDATE_PROB(wi); 
6 Tc = PICK(trlist, pi); 
7 qtarget = RANDOM_CONFIG(); 
8 state = CONNECT(Tc, qtarget); 
9 if state = = Reached then 
10 r = -1; 
11 else if state = = Advanced then 
12 r = 0; 
13 else if state = = Trapped then 
14 r = 1; 
15 (Tn, qnear) = NEAREST_NEIGHBOR(nplist, qnew); 
16 if CONNECT(Tn, qnear) = = Reached then 
17 Tc.MERGE(Tn); 
18 trlist.REMOVE(Tn); 
19 UPDATE_WEIGHTS(wi, r); 
20 if CONTAIN(Tc, qinit) and CONTAIN(Tc, qgoal) then 
21 return PATH(Tc); 
22 return Failure; 

Fig. 5.  The adaptive Mulit-RRTs algorithm. 
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at random; 
 NEAREST_NEIGHBOR(): Searching for a tree from 

the tree list trlist that has a node qnear in the 
neighboring region of qnew; 

 UPDATE_WEIGHTS(): Updating weights wi 
according to reward assignment r; 

 MERGE(): Merging one tree to the other; 
 CONTAIN(): Checking whether a configuration is 

contained in a specified tree or not; 
If the improved Bridge Test algorithm can not find such a 

list of the sampled roadmaps to identify narrow passages, the 
adaptive Multi-RRTs algorithm will degrade to an adaptive 
version of the well-known bidirectional RRT-Connect 
algorithm. As a result, Multi-RRTs algorithm generally 
performs better than RRT-Connect algorithm. Though full 
theoretical proof is not given in this paper, our adaptive 
Multi-RRTs algorithm is expected to hold the property of 
probabilistic completeness. For more details about the proof 
of probabilistic completeness for bidirectional RRT-Connect 
algorithm, the reader is referred to [8]. 

As trees in narrow passage may be allocated more 
computation resources, the adaptive Multi-RRTs algorithm 
tends to bias the direction of exploration toward difficult 
regions, whereas RRT-Connect algorithm biases the 
exploration toward goal tree. Compared to previous 
RRT-based algorithms, extra computation time may be 
required in the proposed algorithm due to the manipulation of 
multiple trees. For the open wide environments where double 
trees are enough to rapidly explore and connect, the 
performance of our algorithm might be decreased slightly. 
However, we think the compensation is worthwhile 
compared to the performance improvement in the complex 
environment with plenty of narrow passages scattered over 
the entire configuration space. 

IV. EXPERIMENTAL RESULTS 
We implemented the adaptive Multi-RRTs algorithm in 

MS-Windows platform based on Linux version of Motion 
Strategy Library (http://msl.cs.uiuc.edu/msl/) developed by 
Steven M. LaValle from University of Illinois at Urbana 
Champaign. As a typical extension of single-query path 
planning method, the performances of our adaptive 
Multi-RRTs algorithm is compared to the well-known 
bidirectional RRT-Connect algorithm and equiprobable 
Multi-RRTs algorithm (The selection probability for each 
tree is set to be the same all through the procedure of RRT 
expansion). For each of the experiments, we show the 
running times (Times), the total number of nodes in explored 
trees (Nodes) and the number of collision detection calls (CD 
Calls) in each stage averaged over 30 runs. All of the 
experiments are performed on a 3.0G Hz Pentium PC with 
1.0G memory. 

The first experiment (figure 6) is a 2-D maze problem for a 
point robot. Even though this problem is only two 
dimensional, RRT-Connect algorithm has trouble because of 

the many narrow passages. From Figure 6 it is seen that the 
intermediate trees grown from sampled roadmaps are rapidly 
merged to the initial or the goal tree, and the selecting 
probability curves tend to be stable after 1000 iterations. It’s 
observed that the proposed algorithm generates much less 
nodes than those of RRT-Connect algorithm, implying higher 
performance. The result data in table 1 verify that the adaptive 
Muti-RRTs algorithm performs much better than the original 
RRT-Connect algorithm. 

The second experiment (figure 7) is designed for two 
L-shaped 6-dof robots that have to switch the position by 
passing through a small hole in the center of a wall. The 
parameter maxSize in this experiment is set to five, so the total 
number of trees is seven. The reader is referred to the 
accompanying video for detailed animation. The number of 
dof in this experiment adds up to twelve. Note that the rigid 
robot must check for collisions with the other robot and with 
the obstacle, resulting in additional difficulty in finding a 
collision-free solution path. The result data shown in table 1 
indicate that the proposed algorithm gives more than three 
times improvement in the running time over the equiprobable 
Multi-RRTs algorithm. The performance comparison 
between the proposed algorithm and bidirectional 
RRT-Connect algorithm is more significant. The 
improvement reaches as much as nine times. 

The third experiment is for a 6-dof rigid stick robot (bug). 
The objective is to take the bug robot outside of the trap 
obstacle through the tiny opening (figure 8). The reader is 
referred to the accompanying video for detailed animation. 
The 3-D model is obtained from the motion planning 
benchmark maintained by Parasol Lab, Texas A&M 
University [17]. The problem is a special challenge for 
randomized sampling-based planners due to its extremely 
narrow corridor against the large space. As the difficult 
regions are effectively identified by the Bridge Test algorithm 
in the preprocessing step, our adaptive Multi-RRTs algorithm 

 
Fig. 6.  Experiment 1. The initial/goal configuration is highlighted by solid 
red/green circle. Both the expanded trees and a solution path found by the 
proposed algorithm (left) and RRT-Connect algorithm (middle) are 
sketched, respectively. The change of the selecting probability for each tree 
over a period of time in the proposed algorithm is plotted in the right figure.

 
Fig. 7.  Experiment 2. Left: The goal configuration. Middle: A solution path 
found by the proposed algorithm. Right: The change of the selecting 
probability for each tree over a period of time in the proposed algorithm.
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provides a substantial improvement over the original 
RRT-Connect algorithm (Table 1). We maintain seven RRT 
trees by setting maxSize to five in this experiment as well. 

V. CONCLUSIONS 
We have proposed an adaptive Multi-RRTs strategy to 

address the single query narrow passage path planning 
problems. The improved Bridge Test algorithm is served as 
the preprocessing step to identify global important landmarks 
in narrow passages. Once the multiple trees are grown from 
the sampled roadmaps, the on-line learning strategy will 
adaptively update the selecting probability for each tree 
according to the historic results of tree explorations. The 
approach is simple to implement, and it’s general enough for 
a wide class of multi-dof robot path planning problems. 
Experimental results show that the proposed algorithm 
achieves high performance over classic RRT-Connect 
algorithm. 

We observe that several nearby samples in the same narrow 
passage are returned by the improved Bridge Test algorithm 
which will grow redundant trees. We attempt to filter the 
redundant roadmaps in our future research so that one 
sampled roadmap exactly corresponds to one narrow passage. 
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Fig. 8.  Experiment 3. Left: The initial configuration. Middle: The goal 
configuration. Right: The change of the selecting probability for each tree 
over a period of time in the proposed algorithm. 

TABLE I 
PERFORMANCE COMPARISON FOR DIFFERENT PLANNERS 

Planner 
Experiment 

RRT 
Connect 

Equiprobable 
Multi-RRTs 

Adaptive 
Multi-RRTs

Bridge Test - 0.26 0.28 Times 
(Sec) Tree expansion 16.5 0.52 0.55 

Nodes 6665 1769 1804 
Bridge Test - 2341 2385 

#1 
CD 
Calls Tree expansion 39825 17168 17352 

Bridge Test - 0.10 0.12 Times 
(Sec) Tree expansion 22.73 7.84 2.36 

Nodes 2519 934 387 
Bridge Test - 526 559 

#2 
CD 
Calls Tree expansion 92276 31865 9642 

Bridge Test - 8.36 8.28 Times 
(Sec) Tree expansion 3532 14.97 1.72 

Nodes 856741 2478 359 
Bridge Test - 96837 96253 

#3 
CD 
Calls Tree expansion 26932429 65624 8624 
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