

Abstract—During the past decade, Rapidly-exploring
Random Tree (RRT) and its variants are shown to be powerful
sampling based single query path planning approaches for
robots in high-dimensional configuration space. However, the
performance of such tree-based planners that rely on uniform
sampling strategy degrades significantly when narrow passages
are contained in the configuration space. Given the assumption
that computation resources should be allocated in proportion to
the geometric complexity of local region, we present a novel
single-query Multi-RRTs path planning framework that
employs an improved Bridge Test algorithm to identify global
important roadmaps in narrow passages. Multiple trees can be
grown from these sampled roadmaps to explore sub-regions
which are difficult to reach. The probability of selecting one
particular tree for expansion and connection, which can be
dynamically updated by on-line learning algorithm based on the
historic results of exploration, guides the tree through narrow
passage rapidly. Experimental results show that the proposed
approach gives substantial improvement in planning efficiency
over a wide range of single-query path planning problems.

I. INTRODUCTION
OBOT path planning has been one of the fundamental
problems over the last couple of decades in such areas as

robotics, artificial intelligence, as well as computer graphics.
The original description of the problem is to plan a
collision-free path for a robot made of an arbitrary number of
polyhedral bodies among an arbitrary number of polyhedral
obstacles between two collision-free queried positions of the
robot, which has been shown to be PSPACE-complete by
complex geometric analysis [1].

The well known complete motion planning algorithms,
such as cell decomposition and visibility roadmaps, require
explicit representation of robot configuration space. They are
usually computationally intractable and hard to implement for
practical applications [2]. “The curse of dimensionality” has
lead to the development of randomized sampling-based
motion planners, which can solve many previously
considered hard problems successfully and quickly.

PRM [3] and RRT [4] are two typical randomized

Manuscript received September 15, 2009. This work was supported in part
by National High Technology Research and Development Program of China
(863 Program) under Grant 2006AA110114 and National Science
Foundation of China (NSFC) under Grant 90820302 and Grant 60774076.

W. Wang, Y. Li and X. Xu are with the College of Mechatronics and
Automation, National University of Defense Technology, Changsha, 410073,
China (emails: wangmail200@yahoo.com.cn; spark99@263.net;
xinxu@nudt.edu.cn).

S. X. Yang is with the ARIS Lab, School of Engineering, University of
Guelph, Guelph, Canada (email: syang@uoguelph.ca).

sampling-based motion planning methods. The PRM is a
typical path planning algorithm for multi-query problems. It
attempts to construct a graph structure by randomly sampled
roadmaps so as to reduce the original planning problem to a
graph traversing and searching problem. The PRM algorithm
is recognized as one of the most successful randomized path
planning algorithm for multi-dof robots. The RRT is initially
proposed for single-query problems for non-holonomic
robots [4]. The RRT and its variants are based on a tree-like
data structure, whose nodes represent the sampled
collision-free configurations and edges correspond to local
paths connecting two nearby nodes. As the RRT planner
incrementally grows a tree to explore unknown space, it may
behave poor when there are narrow passages through which
the planner has to pass to reach the goal configuration.

A narrow passage is a small region whose removal changes
the connectivity of the component free space substantially.
Most of the early works on PRM and RRT usually apply
uniform randomized sampling strategy to sample
collision-free configurations. The apparent drawback is that
much computation time will be wasted in sampling wide open
area before identifying a narrow passage, due to its small
volume against the volume of the whole configuration space.
Even two nearby nodes, which belong to two different
components connected by one narrow passage, is hard to be
connected by the strategy.

One solution is to develop non-uniform sampling
technique that can efficiently allocate the computation
resources according to the geometric complexity of local
regions [5] [6]. Dalibard et al. [7] applied PCA method to
recognize the favored direction of the narrow passage by
dozens of collision-free samples already obtained.

The other solution is to create more than one tree to explore
sub-regions simultaneously. Kuffner et al. [8] described a
bi-directional RRT-Connect algorithm that grows two trees
from the initial and goal configurations. Path planning based
on expansions of multiple RRT trees can be found in [9] [10]
[11].

The above multi-trees methods share the common idea that
each tree has equal opportunity for expansion no matter
whether it belongs to the restrained regions or not. The
equiprobable expansion strategy confronts with the same
drawback of uniform sampling strategy mentioned above.
The fact that computation resources should be allocated in
proportion to the geometric complexity of local regions
motivates us to develop an adaptive multi-RRTs path
planning algorithm in a single-query scenario.

An Adaptive Roadmap Guided Multi-RRTs Strategy for Single
Query Path Planning

Wei Wang, Yan Li, Xin Xu, Simon X. Yang

R

2010 IEEE International Conference on Robotics and Automation
Anchorage Convention District
May 3-8, 2010, Anchorage, Alaska, USA

978-1-4244-5040-4/10/$26.00 ©2010 IEEE 2871

The adaptive multi-RRTs algorithm proceeds in two stages:
firstly, a non-uniform Bridge Test sampling algorithm [12] is
improved to identify global important roadmaps in some
crucial areas. Next, multiple trees are grown from the
sampled roadmaps. The probability of selecting one
particular tree for expansion, which can be dynamically
updated by on-line learning algorithm based on the historic
results of exploration, guides the tree through narrow passage
rapidly. If two trees encounter in a collision-free
configuration successfully, they are merged into a larger tree.
The algorithm iterates to grow and merge trees so as to find a
global collision-free solution path.

The adaptive selection model that forms the distinguished
feature of our method is inspired by an n-armed bandit
problem introduced in the book [13]. Since non-uniform
sampling and exploring strategy is adopted in both stages, the
adaptive Multi-RRTs algorithm can concentrate on exploring
more complex sub-regions instead of wide open areas. Plenty
of experimental results show that the proposed approach
gives substantial improvement in planning efficiency over a
wide range of single-query path planning problems.

In section II we present an improved Bridge Test algorithm
that samples global roadmaps to identify narrow passages,
section III describes the implementation details of the
adaptive Multi-RRTs algorithm. In section IV we describe the
experimental setup and the set of benchmarks used to test the
performance of our planner. Section V draws conclusions.

II. NARROW PASSAGE SAMPLING

A. Related work
Difficulty posed by narrow passages and its importance

were firstly issued in early works of PRM planners, as their
successes highly depended on effective samples to capture
the connectivity of free configuration space. As a result,
plenty of non-uniform random sampling methods for PRM
planners have been proposed to efficiently sample global
roadmaps to identify critical regions.

It’s possible to improve the sampling strategy in two
directions. The first consideration is based on geometric
analysis of the workspace information that derives what the
important areas are [14] [15]. The other non-uniform
sampling strategies are based on a series of collision
detections [12] [16].

The so-called Bridge Test algorithm attempts to identify a
narrow passage by using three samples along a line segment.
Considering high efficiency and simplicity of the Bridge Test
algorithm, we improve it to serve as a preprocessing stage to
sample global important roadmaps in narrow passages.

B. Improved Bridge Test Algorithm
For clarity, we firstly give some definitions and terms. For

a robot with n degrees of freedom, the n-dimensional
topological space describing all possible positions and
orientations of the robot is called configuration space,

denoted by C. A configuration q is free if the rigid bodies of
the robot placed at q don’t collide with obstacles or with other
bodies of the robot. The set of all free configurations in C are
defined to be free space, denoted by F. The obstacle space B
is defined to be the complement of F: B=C/F. Therefore,
the path planning problem can be defined as follow: Given a
pair of initial and goal configurations qinit and qgoal, find a
continuous collision-free path τ: [0, 1]→F, such that
τ(0)=qinit, and τ(1)= qgoal.

Intuitively, a narrow passage in C has at least one restricted
direction, along which small perturbations will cause
collision between robot and obstacle. It’s easy to sample at
random a short line segment through a collision-free
configuration q such that the two endpoints of this line
segment lie in B (figure 1). The line segment resembles a
bridge across the narrow passage so that it’s called Bridge
Test. If we successfully obtain such a line segment, we say
that the point q∈F passes the test. Clearly building short
bridges is much easier in narrow passage than in wide open
free space.

In order to find a configuration that passes Bridge Test, two
endpoints must be selected in advance which should be
assigned inside the obstacles and close enough to ensure the
mid-point of the bridge lying in a narrow passage. The
original Bridge Test algorithm samples the first bridge
endpoint qf in C randomly, and then samples the second
bridge endpoint qs in the neighboring of qf according to a
specified probability density function λq, i.e. the product of
the independent Gaussians on each axis of C. The means of
each Gaussians are set to be the position of qf in C. However
it’s a non-trivial work to obtain the standard deviation σ for
each independent Gaussian distribution, as σ depends on the
width of narrow passage that is always problem-specific.
Instead, we exploit the intrinsic attribute in the sampling
strategy to obtain the second bridge endpoint qs.

As the distance deviation between bridge end-points qf and
qs should not be too far, sampling the second end-point qs
randomly in C is unreasonable. Instead, we scale the sampled
configuration to the neighborhood of the first end-point qf by
the strategy described as follow: Suppose qmin denotes the
lower limits for each coordinate in the configuration space. A
candidate configuration point qc is sampled at random
without collision detection. The difference of (qc-qmin) is
multiplied by a small scale 1/l to obtain the offset:

Fig. 1. The illustration of Bridge Test. Note that only the point lies in
narrow passage can pass the Bridge Test.

2872

dq = (qc-qmin)/l (1)
qs is then evaluated by:

(1)n
s fq q dq= + − ⋅ (2)

In which, n is a random integer, implying that qs may lie
either in front of or behind qf.

The pseudocode of the improved Bridge Test algorithm is
shown in figure 2. In line 4, 8, and 10, collision detection
function COLLISIONFREE() is called to test whether a
configuration in C is collision-free or not. When middle point
qm passes Bridge Test, it’s pushed into a sampled roadmap list
nplist that will be used to grow new additional trees in the
successive planning procedure. The algorithm will be
terminated when either the maximum allowed number of
roadmaps maxSize, or the maximum number of iterations has
been reached.

Even though there’s only one parameter l to perform
Bridge Test for finding a verified roadmap, it’s not easy to
determine an optimal value for general problems. We
typically set l in the range of 10-30 through a wide variety of
independent experiments, which is common enough to
capture the generic property of Bridge Test.

The parameter maxSize is also relative to specific problem.
Too small value can’t identify all of the narrow passages
across the entire narrow passages, while too large value may
cost much computation time, as collision detection subroutine
might be called frequently. Empirically we set maxSize in the
range 5~15. We also provide user interface to adjust the
parameters on the fly.

III. ADAPTIVE MULTI-RRTS ALGORITHM

A. RRT-Connect algorithm
Starting at a given initial configuration, the classic RRT

prefers to grow a tree-based data structure to incrementally
explore the unknown configuration space. A node in tree
corresponds to a configuration in C, while the edge between
nodes indicates the connecting path between two distinct
configurations. The probability that a configuration is
selected for extension is proportional to the area of its
Voronoi region, so the RRT tends to rapidly grow in the

unknown regions of F. It was shown in [8] that in the limit,
the coverage of the configuration space is uniform when the
number of nodes in the tree tends to infinity. Thus, the
original RRTs algorithm is a no-biased planner.

Instead of extending one step toward the sampled target
configuration each time, a more greedy strategy is to extend
several steps till either collision with obstacle is detected, or
the target is reached. The strategy is called RRT-Connect, and
the pseudocode is shown in figure 3. The algorithm attempts
to sample configurations along the line connecting the
random target qtarget and its nearest neighboring configuration
qnear in T. if a new collision-free configuration qnew is
generated, qnew is added to T as a new node, and an edge is
added to connect qnear and qnew. The algorithm will return
Reached if qnew is close to qtarget. If several steps toward qtarget
have been taken, it will return Advanced. Otherwise, it will
return Trapped, which means no step is extended forward.

B. The adaptive tree selecting strategy
The Bridge Test algorithm is served as a pre-processing

step in our adaptive Multi-RRT framework to analyze and
extract information in narrow passages. Once multiple trees
are grown from the sampled roadmaps in the second step, the
bidirectional RRT-Connect algorithm can be adopted as a
local path planner to connect a pair of candidate trees due to
its powerful planning capability. Problem arises when
considering which pair of trees should be selected to extend
and connect. We design the strategy as follows.

Assume that there are n trees in our framework, including
trees rooted at the queried configurations and additional trees
rooted at intermediate sampled roadmaps. These trees are
assigned with a selecting probability pi (i = 1,2,…,n). We
build the probabilistic distribution model based on the
consideration that the trees in the restricted regions should be
allocated more computation time to capture the connectivity.
It seems difficult to choose the optimal values for each pi in
advance. So let’s treat them as the dynamic value that change
over time.

At the beginning, p1, p2,…, pn for each tree is set to be the
same. To update them, we maintain a weight wi (i = 1,2,…,n)

Algorithm 1 BRIDGE_TEST()
1 nplist.clear();
2 for k = 1 to K do
3 qf←RANDOM_POINT();
4 if not COLLISIONFREE(qf) then
5 qc←RANDOM_POINT();
6 dq←(qc- qmin)/l;
7 qs←qf+(-1)^n*dq;
8 if not (COLLISIONFREE(qs) and qs∈C then
9 qm←(qf+qs)/2;
10 if COLLISIONFREE(qm) then
11 nplist.push_back(qm);
12 if nplist.size() > maxSize then
13 return nplist;
14 return nplist;

Fig. 2. Improved Bridge Test algorithm. Algorithm 3 CONNECT(T, qtarget)

1 S←Trapped;
2 qnear←NEAREST_NEIGHBOR(T, qtarget);
3 do
4 if NEW_CONFIG (qnear qtarget, qnew) then
5 T.add_vertex(qnew);
6 T.add_edge(qnear, qnew);
7 if DIST(qnew , qtarget) < δ then
8 return Reached;
9 else
10 S←Advanced;
11 qnear←qnew;
12 else
13 return S;

Fig. 3. The original RRT-Connect algorithm.

2873

and adjust wi by assigning a reward r after each expansion
performed by a particular selected tree. For a randomly
sampled target qtarget, if the selected tree is hard to extend one
step toward qtarget, it’s implied that the tree may lie in the
restricted region of the free configuration space. On the
contrary, if it’s easy to reach the δ neighboring region of qtarget
by RRT-Connect extension, it’s implied that the tree may lie
in the open wide area. As a result, the output of the
RRT-Connect algorithm in each time step t can be used to
verify whether a selected tree is easy to explore or not.
Initially we set wi = 0 for all i, and we update wi based on three
conditions of exploring result:

1) For a selected tree, if the RRT-Connect algorithm
returns Reached, which means the tree can reach the δ
neighboring region of qtarget successfully, implying
that the tree may lie in the open wide area, We set the
reward r = -1. The exploration of this tree in the next
round is restrained (figure 4-(a)).

2) For the circumstance that the RRT-Connect algorithm
returns Advanced, which means the tree can extend
several steps, yet not close enough to reach the target
point, we set the reward r = 0. The exploration of this
tree in the next round is neither encouraged nor
restrained (figure 4-(b)).

3) If the RRT-Connect algorithm returns Trapped, which
means no step is extended forward. It’s reasonable to
assume that the tree lies in the cluttered area. We set
the reward r = 1. The exploration of this tree in the
next round is encouraged (figure 4-(c)).

The weight of wi is updated by:
wi(t+1) = wi(t) + (ri(t+1) – wi(t))/(ki(t)+1) (3)

Where ki(t) is the updating count of wi. If a tree is not
selected in the current step, its weight remains the same as
before. Based on the weight assignment in each time step t,
we choose the candidate expansion tree with the probability:

1

() exp(() /) exp(() /)
n

i i j
j

p t = w t / w t τ τ
=

∑ (4)

The above formula is called Gibbs, or Boltzmann
distribution, where τ is a positive parameter called the
temperature. High temperatures cause the actions of selecting
trees to be nearly all equiprobable no matter how weights
update. The lower the temperature is, the more difference the
selection probability is. In our implementation, τ is set to be
0.8.

It’s observed that the update rule (3) has the following
property:

1

1
() 1t ik t

∞

=

= ∞
+∑ , and 2

1

1()
() 1t ik t

∞

=

< ∞
+∑ (5)

The first condition guarantees that the steps are large
enough to eventually overcome any initial conditions or
random fluctuations. The second condition guarantees that
eventually the steps become small enough to assure
convergence according to the law of large numbers [13].
Therefore, the combinatorial tree exploration strategy will be
converged to the best strategy with probability one according
to the law of large numbers. The result can be interpreted that
the ensemble trees performs almost as well as the best
component tree, though which component tree is the best is
not known in advance.

C. The adaptive Multi-RRTs algorithm
Our adaptive Multi-RRTs algorithm firstly grows multiple

trees from the roadmaps sampled by the improved Bridge
Test algorithm. Based on the on-line update rule described
above, the algorithm repeatedly selects the most probable tree
to explore according to the latest probability pi. The detailed
introduction is given in figure 5. The sub-routines called by
the Multi-RRTs algorithm are explained and listed below:

 TREE_BUILD(): Building trees from the intermediate
sampled roadmaps, as well as the initial and goal
configurations, respectively;

 INITIALIZE(): Initializing weights wi = 0 for all i;
 UPDATEP_ROB(): Updating probability pi in each

time step t;
 PICK(): Picking up one tree from the tree list trlist

according to the probability distribution pi;
 RANDOM_CONFIG(): sampling a configuration in C

Fig. 4. Illustration of reward assignment. (a) Open area: r = -1; (b) Area
with a few obstacles: r = 0; (c) Cluttered area: r = 1.

Algorithm 4 MULTI-RRTs(qinit, qgoal)

1 nplist = BRIDGE_TEST(qinit, qgoal);
2 trlist = TREE_BUILD(qinit, nplist, qgoal);
3 INITIALIZE(wi);
4 for k = 1 to K do
5 pi = UPDATE_PROB(wi);
6 Tc = PICK(trlist, pi);
7 qtarget = RANDOM_CONFIG();
8 state = CONNECT(Tc, qtarget);
9 if state = = Reached then
10 r = -1;
11 else if state = = Advanced then
12 r = 0;
13 else if state = = Trapped then
14 r = 1;
15 (Tn, qnear) = NEAREST_NEIGHBOR(nplist, qnew);
16 if CONNECT(Tn, qnear) = = Reached then
17 Tc.MERGE(Tn);
18 trlist.REMOVE(Tn);
19 UPDATE_WEIGHTS(wi, r);
20 if CONTAIN(Tc, qinit) and CONTAIN(Tc, qgoal) then
21 return PATH(Tc);
22 return Failure;

Fig. 5. The adaptive Mulit-RRTs algorithm.

(b)

qtarget

qinit

(c)

qtarget

qinit

(a)

qtarget

qinit

2874

at random;
 NEAREST_NEIGHBOR(): Searching for a tree from

the tree list trlist that has a node qnear in the
neighboring region of qnew;

 UPDATE_WEIGHTS(): Updating weights wi
according to reward assignment r;

 MERGE(): Merging one tree to the other;
 CONTAIN(): Checking whether a configuration is

contained in a specified tree or not;
If the improved Bridge Test algorithm can not find such a

list of the sampled roadmaps to identify narrow passages, the
adaptive Multi-RRTs algorithm will degrade to an adaptive
version of the well-known bidirectional RRT-Connect
algorithm. As a result, Multi-RRTs algorithm generally
performs better than RRT-Connect algorithm. Though full
theoretical proof is not given in this paper, our adaptive
Multi-RRTs algorithm is expected to hold the property of
probabilistic completeness. For more details about the proof
of probabilistic completeness for bidirectional RRT-Connect
algorithm, the reader is referred to [8].

As trees in narrow passage may be allocated more
computation resources, the adaptive Multi-RRTs algorithm
tends to bias the direction of exploration toward difficult
regions, whereas RRT-Connect algorithm biases the
exploration toward goal tree. Compared to previous
RRT-based algorithms, extra computation time may be
required in the proposed algorithm due to the manipulation of
multiple trees. For the open wide environments where double
trees are enough to rapidly explore and connect, the
performance of our algorithm might be decreased slightly.
However, we think the compensation is worthwhile
compared to the performance improvement in the complex
environment with plenty of narrow passages scattered over
the entire configuration space.

IV. EXPERIMENTAL RESULTS
We implemented the adaptive Multi-RRTs algorithm in

MS-Windows platform based on Linux version of Motion
Strategy Library (http://msl.cs.uiuc.edu/msl/) developed by
Steven M. LaValle from University of Illinois at Urbana
Champaign. As a typical extension of single-query path
planning method, the performances of our adaptive
Multi-RRTs algorithm is compared to the well-known
bidirectional RRT-Connect algorithm and equiprobable
Multi-RRTs algorithm (The selection probability for each
tree is set to be the same all through the procedure of RRT
expansion). For each of the experiments, we show the
running times (Times), the total number of nodes in explored
trees (Nodes) and the number of collision detection calls (CD
Calls) in each stage averaged over 30 runs. All of the
experiments are performed on a 3.0G Hz Pentium PC with
1.0G memory.

The first experiment (figure 6) is a 2-D maze problem for a
point robot. Even though this problem is only two
dimensional, RRT-Connect algorithm has trouble because of

the many narrow passages. From Figure 6 it is seen that the
intermediate trees grown from sampled roadmaps are rapidly
merged to the initial or the goal tree, and the selecting
probability curves tend to be stable after 1000 iterations. It’s
observed that the proposed algorithm generates much less
nodes than those of RRT-Connect algorithm, implying higher
performance. The result data in table 1 verify that the adaptive
Muti-RRTs algorithm performs much better than the original
RRT-Connect algorithm.

The second experiment (figure 7) is designed for two
L-shaped 6-dof robots that have to switch the position by
passing through a small hole in the center of a wall. The
parameter maxSize in this experiment is set to five, so the total
number of trees is seven. The reader is referred to the
accompanying video for detailed animation. The number of
dof in this experiment adds up to twelve. Note that the rigid
robot must check for collisions with the other robot and with
the obstacle, resulting in additional difficulty in finding a
collision-free solution path. The result data shown in table 1
indicate that the proposed algorithm gives more than three
times improvement in the running time over the equiprobable
Multi-RRTs algorithm. The performance comparison
between the proposed algorithm and bidirectional
RRT-Connect algorithm is more significant. The
improvement reaches as much as nine times.

The third experiment is for a 6-dof rigid stick robot (bug).
The objective is to take the bug robot outside of the trap
obstacle through the tiny opening (figure 8). The reader is
referred to the accompanying video for detailed animation.
The 3-D model is obtained from the motion planning
benchmark maintained by Parasol Lab, Texas A&M
University [17]. The problem is a special challenge for
randomized sampling-based planners due to its extremely
narrow corridor against the large space. As the difficult
regions are effectively identified by the Bridge Test algorithm
in the preprocessing step, our adaptive Multi-RRTs algorithm

Fig. 6. Experiment 1. The initial/goal configuration is highlighted by solid
red/green circle. Both the expanded trees and a solution path found by the
proposed algorithm (left) and RRT-Connect algorithm (middle) are
sketched, respectively. The change of the selecting probability for each tree
over a period of time in the proposed algorithm is plotted in the right figure.

Fig. 7. Experiment 2. Left: The goal configuration. Middle: A solution path
found by the proposed algorithm. Right: The change of the selecting
probability for each tree over a period of time in the proposed algorithm.

2875

provides a substantial improvement over the original
RRT-Connect algorithm (Table 1). We maintain seven RRT
trees by setting maxSize to five in this experiment as well.

V. CONCLUSIONS
We have proposed an adaptive Multi-RRTs strategy to

address the single query narrow passage path planning
problems. The improved Bridge Test algorithm is served as
the preprocessing step to identify global important landmarks
in narrow passages. Once the multiple trees are grown from
the sampled roadmaps, the on-line learning strategy will
adaptively update the selecting probability for each tree
according to the historic results of tree explorations. The
approach is simple to implement, and it’s general enough for
a wide class of multi-dof robot path planning problems.
Experimental results show that the proposed algorithm
achieves high performance over classic RRT-Connect
algorithm.

We observe that several nearby samples in the same narrow
passage are returned by the improved Bridge Test algorithm
which will grow redundant trees. We attempt to filter the
redundant roadmaps in our future research so that one
sampled roadmap exactly corresponds to one narrow passage.

ACKNOWLEDGMENT
W. Wang thanks Steven M. LaValle for providing the

source code of the Motion Planning Library. We thank
anonymous reviewers for their constructive comments and
suggestions that improved the paper.

REFERENCES
[1] J. Canny, “Some algebraic and geometric computations in PSPACE.

Annual ACM Symposium on Theory of Computing, ACM Press,
Chicago, 1988, pp. 460-469.

[2] S. M. Lavalle, Planning Algorithms. Cambridge: Cambridge University
Press, 2006. Available at: http://planning.cs.uiuc.edu/

[3] L. E. Kavraki, P. Švetska, J. C. Latombe, and M. H. Overmars,
“Probabilistic roadmaps for path planning in high-dimensional
configuration space,” IEEE Trans. on Robotics & Automation, vol. 12,
no. 4, pp. 566–580, 1996.

[4] S. M. LaValle, “Rapidly-exploring Random Trees: A new tool for path
planning,” Tech. Rep., Computer Science Dept., Iowa State University,
1998.

[5] L. Jaillet, A. Yershova, S. M. LaValle, and T. Siméon, “Adaptive tuning
of the sampling domain for dynamic-domain RRTs,” IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2005.

[6] B. Burns and O. Brock, “Single-query motion planning with utility
guided random trees,” IEEE Intl. Conf. on Robotics and Automation,
Rome, 2007.

[7] S. Dalibard and J. P. Laumond, “Control of probabilistic diffusion in
motion planning,” International Workshop on Algorithmic
Foundations of Robotics, 2008.

[8] J. J. Kuffner and S. M. LaValle,” RRT-connect: An efficient approach
to single-query path planning,” IEEE Intl. Conf. on Robotics and
Automation, San Francisco, 2000, pp. 995–1001.

[9] T. Y. Li and Y.C. Shie, “An incremental learning approach to motion
planning with roadmap management,” IEEE Intl. Conf. on Robotics and
Automation, Washington, D.C., 2002, pp. 3411–3416.

[10] M. Strandberg, “Augmenting RRT-planners with local trees,” IEEE Intl.
Conf. on Robotics and Automation, New Orleans, 2004, pp.
3258–3262.

[11] E. Plaku, K. E. Bekris, B. Y. Chen, A. M. Ladd, and L. E Kavraki,
“Sampling based roadmap of trees for parallel motion planning,” IEEE
Trans. on Robotics, vol. 21, no. 4. 597–608, 2005.

[12] Z. Sun, D. Hsu, T. Jiang, H. Kurniawati, and J. H. Reif, “Narrow
passage sampling for probabilistic roadmap planning,” IEEE Trans. on
Robotics, vol. 21, no. 6, pp. 1105–1115, 2005.

[13] R. Sutton and A. Barto, Reinforcement Learning: An Introduction.
Cambridge: MIT Press, 1998.

[14] N. M. Amato, O. B. Bayazit, L. K. Dale, C. Jones, and D. Vallejo,
“OBPRM: An obstacle-based PRM for 3D workspaces,” International
Workshop on Algorithmic Foundations of Robotics, Houston, 1998, pp.
155–168.

[15] S. A. Wilmarth, N. M. Amato, and P. F. Stiller, “MAPRM: A
probabilistic roadmap planner with sampling on the medial axis of the
free space,” IEEE Intl. Conf. on Robotics and Automation, Detroit,
1999, pp. 1024–1031.

[16] V. Boor, M. H. Overmars, and A. F. van der Stappen, “The Gaussian
sampling strategy for probabilistic roadmap planners,” IEEE Intl. Conf.
on Robotics and Automation, Detroit, 1999, pp. 1018–1023.

[17] N. M. Amato: Motion Planning Benchmark. Texas A&M University.
Available at: http://parasol-www.cs.tamu.edu/dsmft/benchmarks/mp/

Fig. 8. Experiment 3. Left: The initial configuration. Middle: The goal
configuration. Right: The change of the selecting probability for each tree
over a period of time in the proposed algorithm.

TABLE I
PERFORMANCE COMPARISON FOR DIFFERENT PLANNERS

Planner
Experiment

RRT
Connect

Equiprobable
Multi-RRTs

Adaptive
Multi-RRTs

Bridge Test - 0.26 0.28 Times
(Sec) Tree expansion 16.5 0.52 0.55

Nodes 6665 1769 1804
Bridge Test - 2341 2385

#1
CD
Calls Tree expansion 39825 17168 17352

Bridge Test - 0.10 0.12 Times
(Sec) Tree expansion 22.73 7.84 2.36

Nodes 2519 934 387
Bridge Test - 526 559

#2
CD
Calls Tree expansion 92276 31865 9642

Bridge Test - 8.36 8.28 Times
(Sec) Tree expansion 3532 14.97 1.72

Nodes 856741 2478 359
Bridge Test - 96837 96253

#3
CD
Calls Tree expansion 26932429 65624 8624

2876

