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Abstract— Spatial operators have been used to analyze the
dynamics of robotic multibody systems and to develop novel
computational dynamics algorithms for them. Mass matrix fac-
torization, inversion, diagonalization, linearization are among
the several techniques developed using operators. These tech-
niques have been shown to apply broadly to systems ranging
from serial, tree, to closed topology systems, as well as to
systems with rigid and flexible links/joints. This paper uses
concepts from graph theory to obtain a deeper understanding
of the mathematical foundations of spatial operators. We show
that spatial kernel operators are instances of block weighted ad-
jacency matrices for the underlying multibody topology graphs,
and that spatial propagation operators are 1-resolvents of these
matrices. We explore at an abstract level the properties of such
1-resolvents in order to understand the precise requirements
on and the range of applicability of spatial operators to the
broad class of dynamics problems.

I. INTRODUCTION

The rich mathematical properties of the kinematics and

dynamics of robotic multibody systems have been an area

of strong research interest. Understanding the dynamical

properties is needed to study the inherent physical behavior

of systems, for system stability and control analysis, for

the development of computational algorithms, and for the

accurate modeling of such systems.

System-level mathematical operator techniques have been

developed by researchers to analyze and obtain a deeper

understanding of the underlying structure of the system kine-

matics and dynamics. Spatial operators were first developed

by Rodriguez [1], [2], [3] for the study of the dynamics

of serial chain rigid body manipulators. The operators were

inspired by the strong mathematical parallels between the

structure of the dynamical equations of motion and the

time-domain problem of optimal estimation and smoothing.

The covariance factorization and optimal filtering techniques

behind the seminal Kalman filtering techniques were shown

to be applicable to the dynamics domain. Spatial operators

were used to obtain the following analytical factorization

and inversion results for serial-chain, rigid body system mass

matrices [1], [2]:

M = HφMφ∗H∗

M = [I +HφK] D [I +HφK]
∗

[I +HφK]
−1

= [I −HψK]

M−1 = [I −HψK]
∗
D−1 [I −HψK]

(1)

In the above M denotes the configuration dependent system

mass matrix, and H, φ etc. are examples of spatial operators.

The expressions in Eq. (1) have had important applications

in the development of efficient computational algorithms

including the well known O(n) articulated body forward

dynamics algorithms, operational space dynamics, sensitivity

analysis, study of under-actuated system dynamics etc.

Researchers [4], [5], [6] have used system-level matri-

ces/operators to analyze and exploit the sparsity structure

of the mass matrix. This research has led to the devel-

opment efficient computational algorithms for the inverse

and forward dynamics of these systems. Other researchers

have explored using mass matrix factorization techniques

towards the development of system-level global transforms to

simplify the coupled equations of motion into diagonalized

forms [7], [8], [9], [10], [11], [12]. One common feature to

most of these techniques has been the use of relative instead

of absolute [13] coordinates. While absolute coordinate

models are arguably easier to assemble, relative coordinate

models use minimal coordinates (for tree-topology systems),

and are more suitable from a control perspective. While more

complex, due to their superior computational and numeric

performance, we adopt the relative coordinates approach

throughout this paper.

The broad applicability of spatial operators - and the

recurring mathematical patterns - across a diverse range of

systems is the focus of this paper. For instance, it has been

seen that while the details of the elements of the H, φ and

other spatial operators in Eq. (1) change when generalizing to

systems with tree-topology, flexible links, geared hinges, the

mass matrix factorization and inversion relations in Eq. (1)

remarkably continue to hold across the full range of these

systems. This paper is motivated by the desire to identify

at an abstract level the core properties and requirement

that enable the broad applicability of spatial operators. The

expected benefit is that such abstract level insights will

enable the broader use of spatial operator techniques to

complex kinematics and dynamics problems.

Towards this, we use graph theory techniques to explore

the structure of spatial operators. Graph theory techniques

have been applied to multibody techniques in the past to help

systematically formulate and organize the complex equations

of motion [14], [15]. A key contribution of this paper is to

show that spatial propagation operators are the 1-resolvents

of a special type of weighted adjacency matrices associated

with the multibody system tree graph topology. We show

that this equivalency holds quite generally independent of

the specific branching structure of the system topology,

the rigid/flexible nature of the component bodies, the body

indexing schemes etc. We also study the intimate relationship
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between the structure of the operators and corresponding

efficient, recursive computational algorithms. We use some

basic examples to illustrate these insights. We also show

how shift transformations of spatial operators alter their

mathematical structure.

We begin by reviewing the properties of general graphs

and trees in Section II. We examine the properties of ad-

jacency matrices used to describe graph connectivity and

review the nilpotency property of such matrices for directed

trees. We generalize the adjacency matrices to the notion

of block weighted adjacency (BWA) matrices with block

matrix elements. Then Section III develops the notion of

Spatial Kernel Operators (SKO) kernels and the related

Spatial Propagation Operators (SPO). In this paper, we focus

primarily on tree topology multi-link systems because most

kinematics and dynamics techniques for systems with general

graph topology in fact rely on techniques applied to the

underlying tree-topology system.

II. DIRECTED GRAPHS AND TREES

We begin with an overview of terminology and concepts

from graph theory [16]. A graph is a collection of nodes

and edges connecting pairs of nodes. A directed graph (also

commonly known as a digraph), is one where the edges have

direction, i.e. an edge from one node to another is not the

same as an edge in the reverse direction. Each edge defines a

parent/child relationship between the node pair for the edge.

The node from which the edge emanates is referred to as the

parent node and the destination node is said to be the child

node. Figure 1 illustrates some examples of directed graphs.

In the first graph, we see that nodes 4 and 6 are both parents

of node 3. A node is said to be the ancestor of another node

if there is a directed path from the ancestor node to the latter

node. We use the notation i ≺ j (or equivalently j ≻ i) to

indicate that node j is the ancestor of node i, i.e. that there

is a directed path from node j to i. The notation i ⊀ j is

used to denote that node j is not an ancestor of node i. The

set of parent nodes of the kth node is denoted ℘(k) and

the set of its immediate children nodes by ∁(k). Nodes with

no parent nodes are referred to as root nodes. In general

directed graphs can have, zero, one or multiple root nodes.

A rooted digraph is a digraph that has a single root node

that is the ancestor node for all the other nodes in the system.

All edges connected to the root node are directed away from

the root node. Thus, with r denoting the root node, we have

r � k for all nodes k in a rooted digraph. As we will see

later, all graphs for multibody topologies are rooted digraphs

with the inertial frame serving as the single root node.

A tree is a rooted digraph where each node (except the

root node) has a single parent node, i.e. ℘(k) contains at most

one node member for any node k. One attribute of trees is

that they have no loops, i.e. there are no directed paths that

start from a node and return to the same node. In other words,

a node cannot be its own ancestor. Hence k ⊀ k for any node

k. Another attribute of directed trees is that there are no node

pairs that have more than one path connecting them, i.e. if
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Fig. 1. Illustrative examples of A digraph with a loop, a general
tree, and a tree with canonical node numbering

nodes i and j are both ancestors of node k, then one of the i

and j nodes must be the ancestor of the other. Notationally,

this condition states that if k ≺ i and k ≺ j, then either i � j

or j � i The second graph in Figure 1 is a tree. Note that

while a node can have at most one parent in a tree, there

is no restriction on the number of children nodes. In graph

theory, a tree is also referred to as an arborescence. Another

noteworthy fact is that while j ≻ i =⇒ i � j, the converse

is not true in general. In other words, the branching structure

implies that the nodes are only partially ordered, and so we

can have nodes on different branches with no paths between

them. It is well known in graph theory that every rooted

digraph has a spanning tree, i.e. a tree that contains all the

nodes in the digraph and whose edges belong to the digraph.

The set of edges removed to convert a rooted digraph into

its spanning tree are also referred to as cut edges.

A canonical tree is a tree where the node numbering is

such that a parent node’s index is always greater than its

child node’s index, i.e. ℘(k) > k for any node k. The third

graph in Figure 1 illustrates a canonical tree. Any tree can be

converted into a canonical tree with a suitable renumbering

of the nodes. The node numbering for a canonical tree is

not unique in general, since the canonical tree requirement

imposes only a partial ordering on the node indices.

A strictly canonical tree is a canonical tree where the

nodes within a serial-chain segment are numbered sequen-

tially. The fourth graph in Figure 1 illustrates a strictly

canonical tree. Once again, any rooted tree can be converted

into a strictly canonical tree with a suitable renumbering of

the nodes.

A serial-chain is a a tree where each node has at most

one child and is illustrated in the last graph in Figure 1. The

canonical numbering is unique for connected serial-chain

systems.

A. Adjacency Matrices for Graphs

One way of representing the node/edge connectivity of a
digraph is through an adjacency matrix, denoted S, for the
digraph. The adjacency matrix, S, is a square n× n matrix
for a graph with n nodes. The (i, j)th element of S is 1 only
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if the jth node is a child of the ith node and is 0 otherwise.
Adjacency matrices for the graphs in Figure 1 are as follows:




0 0 0 0 0 1 0

0 0 0 0 0 0 0

0 1 0 0 0 0 0

1 0 1 0 0 0 1

0 0 0 1 0 0 0

0 0 1 0 0 0 0

0 0 0 0 0 0 0







0 0 0 0 0 1 0

0 0 0 0 0 0 0

0 1 0 0 0 0 0

1 0 1 0 0 0 1

0 0 0 1 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0







0 0 0 0 0 0 0

0 0 0 0 0 0 0

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

0 1 0 1 0 0 0

0 0 0 0 0 1 0




Graph Tree Canonical Tree




0 0 0 0 0 0 0

1 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 0 0 0 0

0 1 0 1 0 0 0

0 0 0 0 0 1 0







0 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0




Strictly Canonical Tree Serial-Chain

Any adjacency matrix S can be expressed as

S =
∑

k

e℘(k)e
∗

k (2)

where ei denotes a vector of length n with all zeros except

for the ith element which is 1. With δj=k denoting the Dirac

delta function, note that

e∗j ek = δj,k (3)

B. Block Weighted Adjacency Matrices for Trees

The adjacency matrices we have looked at above have had

1 or 0 scalar elements. We now generalize these matrices to

define block weighted adjacency (BWA) matrices, SW , whose

block elements are weight matrices assigned to each graph

edge. To make this precise, we assume that to each tree

node j is assigned a positive weight dimension mj and that

each edge has assigned to it a weight matrix, w (℘(j), j),

of dimension m℘(j) × mj. Then the BWA matrix, SW , is

defined as

SW =
∑

k

e℘(k)w (℘(k), k)e∗k (4)

Eq. (4) is a generalization of Eq. (2) to work with block-

weight matrices. ek is now a column matrix whose ith block

element has dimension mi × mk, with the only non-zero

block element being the identity kth matrix element. It is

easy to verify that Eq. (4) is well-defined, and that SW is a

square matrix with dimension

N
△
=

∑

k

mk (5)

The standard adjacency matrix, S in Eq. (2) is thus a special

case of a BWA matrix where all the node dimensions are 1

and the edge weights are the 0 or 1 scalars.

Eq. (3) continues to hold for the new ek block-element

matrices, but with the product resulting in identity or zero

matrices depending on whether j is equal to k or not

respectively. Another observation that is easy to verify is

that the higher powers, SkW have the same block-element

structure as the original SW matrix. The following lemma

provides a specific expression for the block elements of SkW .

Lemma 1: The SkW kth power of the BWA matrix con-

tains non-zero block-elements only for paths of length k

connecting the nodes. The value of its block-element is the

product of the k weights for all the edges along the path, i.e.

the non-zero elements are of the form

w
(
℘k(i), i

) △
= w

(
℘k(i),℘k−1(i)

)
∗· · ·∗w (℘(i), i) ∈ R

m
℘k(i)

×mi

(6)

Here ℘k(i) denotes the kth upstream ancestor of the ith

node. The above generalizes the definition of w (i, j) to all

node pairs where node i is an ancestor of node j.

Proof: Let us illustrate the proof for k = 2. S2
W is given

by



∑

j

e℘(j)w (℘(j), j)e∗j



 ∗

(
∑

k

e℘(k)w (℘(k), k)e∗k

)

3
=

∑

j

∑

k

e℘(j)w (℘(j), j)δj,℘(k)w (℘(k), k)e∗k

=
∑

k

e℘2(k)w
(
℘2(k),℘(k)

)
w (℘(k), k)e∗k

6
=

∑

k

e℘2(k)w
(
℘2(k), k

)
e∗k

In a similar vein, Eq. (6) can be established 5for arbitrary k.

With the above lemma, the weight matrices are well

defined for all nodes i and j except for the case where i = j.

By assigning the identity matrix as the weight for this case,

we have the following generalized definition of weights that

applies to all node pairs:

w (i, j) =











I for i = j

0 for i ⊁ j

w
(
℘k(j),℘k−1(j)

)
∗ · · · ∗w (℘(j), j) for i = ℘k(j)

(7)

The following lemma establishes the nilpotency of SW .

Lemma 2: The nth power of a tree BWA matrix SnW is

zero, where n denotes the number of nodes in the system.

Hence, the BWA matrix for a tree is a nilpotent matrix.

Proof: This is direct consequence of Lemma 1 since all

node to node paths can have at most n edges in a tree with

n nodes (since ℘n(k) is null for all nodes k).

The following lemma establishes an important property of

nilpotent matrices.

Lemma 3: If U is a nilpotent matrix such that Un = 0,

then it’s 1-resolvent1, W
△
= (I −U)−1 is given by

W = I +U+U2 + · · · +Un−1 (8)

Proof: For W as defined in Eq. (8), we have that

UW = WU = U+U2 + · · · +Un

= U+U2 + · · · +Un−1 = W − I

Rearranging terms, we have

I = W −UW = (I −U)W =⇒ (I −U)−1 = W

1The resolvent of a matrix A is (λI−A)−1 for some scalar λ. We use
the term 1-resolvent for the resolvent with λ = 1.
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Lemma 4: The 1-resolvent of a tree adjacency matrix is

given by:

(I − SW)−1 = I + SW + SW
2 + · · · + SW

n−1 (9)

Proof: The result follows from the observation in Lemma

2 that a tree’s adjacency matrix is nilpotent together with the

1-resolvent result from Lemma 3.

As a side note, for a (non-tree) graph with directed loops,

the 1-resolvent is not defined because (I−SW) is a singular-

matrix. Now that we have introduced the BWA matrix, we

introduce some new notation that better reflects its intimate

relationship with its 1-resolvent matrix. With A denoting

such a 1-resolvent matrix, we will denote its associated BWA

matrix as EA, i.e. in the notation from above, we have

EA = SW and A = (I − SW)−1 (10)

The following Lemma describes the expression for the block

elements of a 1-resolvent matrix.

Lemma 5: The (k, j) element of a tree’s 1-resolvent ma-

trix A = (I − SW)−1 is simply w (k, j), that is

A(k, j) = w (k, j) (11)

Thus, A has identity along the diagonal, and non-zero (k, j)

element only if the kth node is an ancestor of the jth node.

Proof: Eq. (11) follows from the expression for (I −

SW)−1 in Eq. (9) as well as Lemma 1 together with Eq. (7)

that describe the elements of the powers of SW .

In view of Eq. (11), we start referring to the generalized

weight matrices w (j, k) for a 1-resolvent A as the more

intuitive A(j, k) elements. The following Lemma highlights

the semi-group properties of the generalized weight matrices.

Lemma 6: For a tree, let i, j and k be nodes where the

ith node is an ancestor of the jth node, and the kth node

is on the path connecting them. Then,

A(i, j) = A(i, k)A(k, j) for i � k � j (12)

This property is also known as the semi-group property for

the elements of a 1-resolvent matrix.

Proof: Eq. (12) follows simply from the generalized

Eq. (7) expression for weight matrices.

We now introduce the Ã matrix that is closely related to a

A 1-resolvent matrix.

Ã
△
= A − I (13)

Note that Ã is strictly lower-triangular for canonical trees.

The following exercise establishes some basic properties of

Ã.

Lemma 7: For a 1-resolvent A, we have the following

identities:

Ã = A − I = EAA = AEA (14)

Proof: For any matrix X such that (I − X) is invertible,

the following matrix identity holds:

X(I − X)−1 = (I − X)−1X = (I − X)−1 − I

With X = EA, the above equation directly leads to Eq. (14).

III. SKO AND SPO OPERATORS FOR TREE MULTIBODY

SYSTEMS

Graphs and trees provide natural mathematical constructs

to describe the topology and connectivity of bodies in a

multi-link system where we designate the links as nodes, and

the connecting hinges as edges. Choosing the inertial frame

as the root node, and the edge directionality as going from

inboard to outboard bodies across hinges, we obtain a rooted

digraph representation for the system’s topology. Thus an n

link system has in principle a graph with n+ 1 nodes (with

the inertial frame root node included in). However, we will in

fact work with the n-node subgraph that excludes the inertial

frame root node. There is no loss of information because in

this subgraph, nodes with no parent are implicitly assumed to

be the children of the inertial frame. This n-node sub-graph

offers the benefit of allowing us to work with adjacency and

related matrices of dimensions related to n instead of n+ 1.

We refer to a multibody system as having a tree topology

if and only if its extended (n + 1) node rooted digraph is

a rooted tree. Such tree topology multibody systems will be

the focus of the following sections.

A. Velocity mapping for a canonical serial-chain

Let us begin by considering the basic example of a n-

link canonical rigid body serial-chain system with single

degree of freedom hinges. For this serial chain system,

℘(k) = k+1. Using coordinate-free notation, the rigid body

transformation operator, φ(k, k − 1) , associated with the

kth link is defined as

φ(k, k − 1)
△
=

(
I l̃(k, k − 1)

0 I

)
∈ R

6×6 (15)

where l(k, k − 1) is the vector from the kth joint to the

(k − 1)th joint. Define the BWA matrix, Eφ ∈ R6n×6n,

for the n-node serial-chain tree graph with edge weight

matrices chosen as w (k + 1, k)
△
= φ(k+ 1, k) with weight

dimension mk = 6. Then Eφ has the form

Eφ
△
=




0 0 0 0 0

φ(2, 1) 0 . . . 0 0

0 φ(3, 2) . . . 0 0

...
...

. . .
...

...

0 0 . . . φ(n,n − 1) 0




(16)

Note that Eφ is strictly lower triangular as would be expected

of a canonical tree system. From Lemma 4 we know that the

1-resolvent of Eφ is well defined and we denote it as follows:

φ
△
= (I − Eφ)−1

∈ R
6n×6n (17)

Using Eq. (7), we see that the φ(k, j) block matrix element

is defined as

φ(k, j) = φ(k, k − 1) · · ·φ(j + 1, j) (18)
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With H∗(k) denoting the kth hinge map matrix, define the

block-diagonal matrix, H ∈ Rn×6n

H
△
= diag {H(k)} (19)

and the system-level stacked vectors V ∈ R6n and θ ∈ Rn

V
△
= col

{

V(k)
}

and θ
△
= col

{

θ(k)
}

In the above V(k) denotes the 6-dimensional spatial velocity

and θ(k) the generalized coordinate for the kth link. The

following Lemma describes the relationship between the θ̇

hinge velocities and the V link spatial velocities.

Lemma 8: V and θ̇ are related by the following expres-

sion:

V = φ∗H∗θ̇ (20)

Proof: We know that the kth body’s spatial velocity V(k)

is related to that of the (k+ 1)th body’s via the following::

V(k) = φ∗(k + 1, k)V(k+ 1) +H∗(k)θ̇(k) (21)

H∗(k)θ̇(k) is the spatial velocity contribution from the kth

hinge velocity, while φ∗(k+1, k)V(k + 1) is the contribution

from the spatial velocity of the parent body. Stacking up the

component level relationships in Eq. (21) for all the links

we obtain the following equivalent relationship between the

stacked vectors:

V = E∗

φV +H∗θ̇ (22)

The above relationship is an implicit one with V appearing

on both sides of the equation. Collecting the V terms and

using Eq. (17) leads to Eq. (20).

So we have now seen our first example of using the φ 1-

resolvent matrix to express the basic, but important, kine-

matical relationship in Eq. (20). Eφ, φ and H are in fact

precisely the spatial operators that have been previously used

for this purpose in [1], [2], [17]. Indeed, these references go

well beyond the velocity relationship and use these operators

to develop the equations of motion and the mass matrix

factorization and inversion expressions in Eq. (1). The reader

is referred to these references for details. The important fact

we have established for the above serial-chain system is that

the Eφ BWA matrix for the serial chain is indeed a spatial

operator as is its 1-resolvent φ, where the edge weights

are those defined by Eq. (15). Indeed, in the context of

multibody systems, we refer to the BWA spatial operators

such as Eφ as spatial kernel operators (SKO) and the

associated φ 1-resolvent matrices as spatial propagation

operators (SPO). For canonical serial-chains, φ has the

following lower-triangular structure:

φ =




I 0 . . . 0

φ(2, 1) I . . . 0

...
...

. . .
...

φ(n, 1) φ(n, 2) . . . I




(23)

B. Velocity mapping for a general serial-chain

Consider the generalization of Section III-A to a non-

canonical serial chain system. For such a system the parent

node of the kth node is node ℘(k) instead of the (k+ 1)th

node. Eq. (21) generalizes to

V(k) = φ∗(℘(k), k)V(℘(k)) +H∗(k)θ̇(k) (24)

Apart from this change, the notion of the Eφ SKO is

well-defined as that of its 1-resolvent φ. However for non-

canonical systems, neither of these operators may be lower-

triangular. The stacked velocity relationship in Lemma 8 and

Eq. (20) continue to hold for non-canonical serial chains as

well.

C. Velocity mapping for tree topology systems

Departing from a serial chain multibody system to a tree-

topology one, we see that Eq. (24) continues to define the

spatial velocity relationship between a body and its child

body. The only thing that changes is that a body may have

multiple child bodies in a tree-topology system. Once again,

apart from this change, the notions of the Eφ SKO and its

1-resolvent φ are well defined and the velocity relationship

in Lemma 8 and Eq. (20) continue to be hold for general

tree systems. The internal structure of the φ operator will

change to reflect the branch topology of the system, but the

operator level expression remains unaffected!

D. Generalizations

The above sections have shown that SKO operators are

BWA matrices for the multibody system graph and that the

their 1-resolvents are SPO operators. The key properties of

the spatial operators are inherited from the properties of

BWA matrices for the underlying graphs. The properties we

described for the illustrative systems in the previous sections

hold true broadly for more general systems. We list below

some of the key areas where generalizations hold:

• the SKO and SPO operators play a role in not just

velocity kinematic relationships but also in dynamics

ones

• the SKO and SPO are not limited to canonical trees -

any body numbering is permissible

• the weight matrices are not limited to the φ(k + 1, k)

matrices in Eq. (15)

• the weight matrices can be of non-uniform size

• the weight matrices do not have to be square

• the weight matrices do not have to be invertible

• the SKO and SPO techniques can also be used with

non-tree topology systems

These generalization hold for SKO and SPO operators due

to the fact that they hold generally for BWA matrices.

Due to space limitations, we simply summarize some of

the specific examples of spatial operators where the above

generalizations apply and leave the details to the references:

• The SPO operators show up not only for velocity

relationships but also in the dual inter-body force re-

lationships and in the expression for the mass matrix in

Eq. (1) for multibody systems [17].
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• The Eψ and ψ [17] are examples of SKO and SPO

spatial operators that arise in the articulated body recur-

sions for the O(n) forward dynamics recursions as well

as the mass matrix factorization and inversion results in

Eq. (1). The weight matrices for these operators are not

invertible.

• When generalizing to non-rigid links, the size of the

weight matrices is 6 plus the number of deformation

modes for the body [18]. Not only are the size of the

weights different from 6, but since the number of modes

can vary from body to body, the weight matrices are not

square in general.

• Another example is that of geared motors and flexible

hinges where the size of the weight matrices includes

the additional hinge flexible degrees of freedom and so

the weight matrices are not square in general.

• Recently developed constraint embedding techniques

[19] have shown how to transform graph-topology sys-

tems with constraints into tree-topology systems with

equivalent SKO and SPO spatial operators.

IV. CONCLUSIONS

Motivated by the wide success of spatial operators in

tackling a broad range of kinematics and dynamics problems,

we have sought in this paper to identify some of the basic

principles and requirements underlying spatial operators.

Towards this objective, we have identified key connections

between spatial operators and graph theory concepts to show

that BWA matrices associated with multibody system graphs

are precisely the key SKO and SPO spatial operators. Our

definition of BWA matrices is a weighted matrix general-

ization of adjacency matrices for directed graph systems.

We have shown that such BWA matrices are nilpotent and

have developed expressions for their 1-resolvent. We have

established several key properties at the BWA matrix level of

abstraction so that the key requirements for the use of spatial

operators within different system contexts is clear. Thus it is

easy to see how the spatial operators can be generally used

for cases where the weight matrices are non-square, of non-

uniform size and non-invertible, as well for general branched

topology multibody systems.

This paper has developed abstract insights into the graph

theory underpinnings of spatial operators. By identifying

basic principles that are independent of system topology and

specific properties, we expect in future work to exploit these

connections to advance the broader application of spatial

operator techniques to the kinematics and dynamics arena.
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