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Abstract— We benchmark in this article three different
landmark parametrizations in monocular 6DOF EKF-SLAM.
These parametrizations are homogeneous points (HP), inverse-
distance points (IDP, better known as inverse-depth), and the
new anchored homogeneous points (AHP). The discourse used
for describing them is chosen to highlight their differences and
similarities, showing that they are just incremental variations
of ones with respect to the others. We show for the first
time a complete comparison of HP against IDP, two methods
that are getting popular, and introduce also for the first time
AHP, whose description falls precisely between the other two.
The benchmarking is done by running all algorithms on the
same data and by using the well-established NEES consistency
analysis. Our conclusion is that the new AHP parametrization
is the most interesting one for monocular EKF-SLAM (followed
by IDP and then HP) because it greatly postpones the apparition
of EKF inconsistency.

I. INTRODUCTION

Monocular simultaneous localization and mapping
(SLAM) gained popularity back in 2003 thanks to a
real-time implementation due to Davison [1]. Davison’s
technique elegantly solved a great number of problems, but
one still remained that occupied researchers on visual SLAM
for some years: the problem of landmark initialization.
Monocular EKF-SLAM reached maturity with the advent
of undelayed initialization techniques, a need firstly stated
in 2005 by Solà et al. [2], with a preliminary solution
based on a previous work in 2004 by Kwok et al. [3],
and finally solved in 2006 with the inverse-depth landmark
parametrization (IDP) due to Montiel et al. [4].

The problem of undelayed landmark initialization within
monocular EKF-SLAM knows today two main solutions,
both of them relying on astute landmark parametrizations:
inverse-distance points (IDP, better known as inverse-depth,
[4], [5]), and homogeneous points (HP, used in [6] with a
robocentric [14] slgorithm). These parametrizations simul-
taneously fulfill two key objectives: the ability to encode
uncertainty up to infinity with one single Gaussian, and
the quasi-linearity of the observation functions within all
this uncertainty range. These two assets contribute to make
undelayed initialization successful with the use of a simple
EKF.

Other authors investigated the possibilities of using dif-
ferent estimation techniques. We have seen IDP used in
FastSLAM2.0 [7] and UKF [8], [9] frameworks; and methods
based on bundle adjustment [10], [11] or on graph theory
[12]. These works are often motivated by inconsistency prob-
lems and computational burden associated with EKF-SLAM.
However, two aspects keep the classical, EKF solution alive:

its simplicity of implementation and the fact that EKF-SLAM
is now solved using multi-map techniques. In multi-map
systems, each map is of limited size and this naturally renders
the computational complexity constant while keeping the
inconsistency problems due to non-linearity under reasonable
limits.

The consistency issues of EKF-SLAM are well known
and have been the subject of numerous studies in the last
years. Castellanos et al. showed in [13] that inconsistency
appears even before the computational burden of the prob-
lem becomes prohibitive, and proposed in [14] robocentric
SLAM where the local operation of the filter allows for
significant linearity improvements. A more concise study
of inconsistency was performed by Bailey [15], where the
normalized estimation error squared (NEES) is averaged
along a number of conditionally independent Monte Carlo
runs. This work also shows that using ground-truth Jacobians
guarantees filter consistency, and thus that inconsistency
comes from the unavoidable errors produced when lineariz-
ing the system. Further insights have been provided by
Huang et al. [16]. Huang shows that the observable subspace
of the linearized system is of higher dimension than that of
the actual, non-linear one, leading to covariance reductions
in directions of the state where no information is available,
which is a primary cause of inconsistency. All these studies
assumed range-and-bearing sensing and Euclidean landmark
parametrizations, exactly as they appear in the original EKF-
SLAM solution.

Our case of study is different in two aspects. The first
one is that we are dealing with monocular observations
that convey partial (bearing-only) information about the
landmark locations. The second one, which is a consequence
of the first, is that landmark parametrization is no longer
the trivial, minimal, Euclidean one, but something more or
less complicated that seeks precisely an improvement of
linearity. The aim of this paper, however, is not a detailed
mathematical analysis but a performance comparison in view
of evaluating the impact that landmark parametrization has
on filter consistency. We compare three different cases:
inverse-depth points (IDP), homogeneous points (HP), and a
new parametrization, anchored homogeneous points (AHP).
We also aim at highlighting the similarities between them:
we show that AHP is just an anchored version of HP, and that
IDP is just a lightened version of AHP. Once these relations
are established, the different methods are benchmarked: this
allows the reader to correlate the results with the theoretical
links presented. The benchmarking is performed with Monte-
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(a) Inverse-distance point (IDP). The anchor
point p0 corresponds to the optical center
at initialization time. We encode the unmea-
sured distance with its inverse ρ.

p

O
X

Y

Z

v

p0

||v||/ρ

(b) Anchored homogeneous point (AHP). The ray’s direc-
tion is defined by a vector v that, together with the inverse
distance ρ, constitutes a homogeneous point referenced at
the anchor point p0. There is no need for v to be a unit
vector.
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(c) Homogeneous point (HP). The homoge-
neous part of an AHP is anchored at the
origin, and the anchor suppressed.

Fig. 1. The three landmark parametrizations studied in this paper.

Carlo simulations, using the well-established NEES measure
[15] to evaluate consistency. We show how inconsistency
comes from covariance over-estimation rather than error
magnitude, which corroborates Huang’s conclusions. The
outcome of this evaluation shows that AHP is the best
parametrization in terms of filter consistency, clearly out-
performing IDP, and that HP is the worst one. Therefore,
an important contribution of this paper is the new AHP
parametrization.

The rest of this article is organized as follows. We detail
in Section II the three landmark parametrizations, with
their transformation, and perspective projection and back-
projection functions. We describe in Section III the initiali-
zation and update mechanisms, valid for all parametrizations.
In Section IV we detail the conditions and give the results
of the Monte-Carlo consistency analysis, and conclude in
Section V with a discussion.

II. LANDMARK PARAMETRIZATIONS

A. Euclidean points (EP)

A Euclidean point p is trivially coded with three Cartesian
coordinates

PE = p =
[
X Y Z

]> ∈ R3

Transformation to camera frame and pin-hole projection
operations resume to

u = KR>(p− T) ∈ P2, (1)

where K is the intrinsic matrix, underlined fonts • indicate
homogeneous coordinates, R = R(Q) and T are the rotation
matrix and the translation vector defining the camera frame
C = (T,Q), and Q is a suitable orientation representation
(we use quaternions).

Euclidean points lead to severely non-linear observation
functions in bearings-only systems and are not suited for
undelayed initialization, as it has been extensively demon-
strated [2], [3], [6], [7], [17] and most particularly [5]. The
parametrizations that follow mitigate this problem and can be
used for undelayed initialization with just a few precautions.

B. Inverse-distance points (IDP)

An “inverse-distance” point1 (IDP, Fig. 1(a)) [5] is coded
by a 6-vector containing the Euclidean optical center at
initialization time, p0 = (x0, y0, z0), elevation and azimuth
angles defining the direction of the initial optical ray, (ε, α),
and the inverse of the Euclidean distance from p0 to the 3D
point p, denoted by ρ:

PID =
[
p>0 ε α ρ

]>
=
[
x0 y0 z0 ε α ρ

]> ∈ R6 (2)

We will refer to the initial optical center p0 as the anchor
point of the landmark. An IDP refers to the following EP:

p = p0 + v∗(ε, α)/ρ (3)

where v∗(ε, α) is a unit vector in the direction of (ε, α),

v∗(ε, α) =
[
cos(ε) cos(α) cos(ε) sin(α) sin(ε)

]>
. (4)

Transformation to camera frame and pin-hole projection
operations resume to

u = KR>
(
v∗(ε, α)− ρ(T− p0)

)
. (5)

The back-projection and transformation composition neces-
sary for initialization is performed with

PID =

 p0

(ε, α)
ρ

 =

 T
υ∗(RK−1u)

ρC

 , (6)

where υ∗(v) gives elevation and azimuth angles (ε, α) of a
director vector v = (u, v, w),[

ε
α

]
= υ∗(u, v, w) =

[
arctan(w/

√
u2 + v2)

arctan(v/u)

]
. (7)

The inverse-distance parameter ρC is defined in the camera
frame at initialization time. It must be provided as prior.

1In this article we will refer to the originally named “inverse depth” points
as inverse-distance points, and will use the invariant abbreviation IDP.
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TABLE I
SUMMARY OF LANDMARK PARAMETRIZATIONS AND THEIR MAIN MANIPULATIONS

Lmk parameters size transformation projection transformation + projection h() back-projection + transf. g()

EP PE = p 3 p = RpC + T u = KpC u = KR>(p− T) p = tRK−1u + T

HP PH = p = (v, ρ) 4 p = HpC u = KvC u = KR>(v − ρT) PH = p = H

[
K−1u
ρC

]
AHP PAH = (p0,v, ρ) 7 u = KR>

(
v − ρ(T− p0)

)
PAH =

 T
RK−1u
ρC


IDP PID = (p0, ε, α, ρ) 6 u = KR>

(
v∗ − ρ(T− p0)

)
PID =

 T
υ∗(RK−1u)

ρC



C. Anchored homogeneous points (AHP)
IDP points can be parametrized somewhat differently by

encoding the optical ray’s direction with a vector v =
(u, v, w), avoiding the need for the non-linear transforma-
tions (4) and (7). When this vector is unitary, appending the
inverse of the distance ρ to it results in a homogeneous point
(u, v, w, ρ) ∈ P3. This leads to the anchored homogeneous
point (AHP, Fig. 1(b)), parametrized with the 7-vector

PAH =
[
p>0 v> ρ

]>
=
[
x0 y0 z0 u v w ρ

]> ∈ R7 (8)

It is worth noticing that a homogeneous point (v, ρ) does not
require v to be a unit vector. If it is not, the parametrization
is absolutely valid but ρ is then not the inverse distance 1/d
but something proportional to it, i.e., ρ = ‖v‖/d.

An AHP refers to the following EP:

p = p0 + v/ρ. (9)

Transformation to camera frame and projection resume to

u = KR>
(
v − ρ(T− p0)

)
∈ P2. (10)

The back-projection and transformation composition is done
with

PAH =

p0

v
ρ

 =

 T
RK−1u
ρC

 , (11)

where ρC must be provided as prior; its relation to distance
d is given by ρC = ‖K−1u‖/d.

D. Homogeneous points (HP)
Homogeneous points have the interesting property of

presenting a bi-linear transformation equation:

p = HpC ,

[
R(Q) T

0 1

]
pC . (12)

When the uncertainties on the camera position C = (T,Q)
are small, we can consider the motion matrix H to be
deterministic, and therefore (12) to be exactly linear. In this
case Gaussian uncertainties are transformed exactly, so it
does not matter where our landmarks are anchored at. We
are free to re-anchor the AHP (8) at the origin with[

v
ρ

]
←
[
I3×3 p0

01×3 1

] [
v
ρ

]
, (13)

which allows us to remove the anchor p0. This leads to a
purely homogeneous point (HP, Fig. 1(c)), which has already
been studied in [6]:

PH =
[
v> ρ

]>
=
[
u v w ρ

]> ∈ R4. (14)

A HP refers to the following EP:

p = v/ρ. (15)

Transformation to camera frame and projection resume to

u = KR>(v − ρT) ∈ P2. (16)

The back-projection and transformation composition is done
with

PH = p =

[
v
ρ

]
= H

[
K−1u
ρC

]
, (17)

where ρC must be provided as prior; its relation to initial
distance dC is given by ρC = ‖K−1u‖/dC . Once transformed
to the global frame with H, this meaning of ρC is lost and
therefore not valid for ρ.

E. Final comment

We have presented three parametrizations and shown the
links between them. We have chosen to start by IDP purely
because of chronological reasons. The reader should be able
to construct a discourse in the inverse order: start by HP, well
known for their interesting properties in vision, then AHP as
an anchored version of HP, then IDP as a lightened version of
AHP. We summarize in Table I all parametrizations with their
main manipulation expressions. This should help building a
coherent picture of the parametrizations suited for monocular
EKF-SLAM.

III. INITIALIZATION AND UPDATES

A. Initialization

Undelayed landmark initialization in EKF-SLAM with
partial measurements (such as monocular measurements)
mimics the algorithm for full measurements and incorporates
the non-measured magnitudes as priors:

1) Identify the known magnitudes: measurement u ∼
N{y,R} and map X ∼ N{X̄,P}, where

X =

[
C
M

]
, X̄ =

[
C̄
M̄

]
, P =

[
PCC PCM
PMC PMM

]
,
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Fig. 2. Inverse-distance PDF. A Gaussian p(ρ) = N (ρ− ρ̄, σ2
ρ) is defined

in inverse-distance (vertical axes). We have ample choice: in one extreme
(dashed) we may define it so that ρ̄ − 2σρ = 0; the other extreme (solid)
takes ρ̄ = 0. In all cases, we have (ρ̄ + 2σρ) = K/dmin. They result
in PDFs in distance (bottom) that cover from a minimal distance dmin to
infinity. K is just a proportionality constant, e.g. K = 1 for IDP, and K =
‖K−1u‖ for AHP and HP. We can also normalize K−1u at initialization
time and take K = 1, in which case ρ is exactly equal to inverse-distance.

with C = (T,Q) the camera frame and M the set of
mapped landmarks.

2) Define a Gaussian prior for the non-measured inverse
distance, ρC ∼ N{ρ̄C , σ2

ρC}, see Fig. 2.
3) Back-project the Gaussian measurement; get landmark

mean and Jacobians

P̄ = g(C̄,y, ρ̄C)

GC =
dg

dC

∣∣∣∣
C̄,y,ρ̄C

,Gu =
dg

du

∣∣∣∣
C̄,y,ρ̄C

,Gρ =
dg

dρ

∣∣∣∣
C̄,y,ρ̄C

with g(C,u, ρC) one of the back-projection functions
in Table I, C = (T,Q), R = R(Q) and u = [u> 1]>.

4) Compute landmark co- and cross-variances

PPP = GCPCCG
>
C + GuRG>u + Gρσ

2
ρCG

>
ρ

PPX = GCPCX

with PCX = [PCC PCM].
5) Augment the SLAM map

X̄ ←
[
X̄
P̄

]
, P←

[
P P>PX

PPX PPP

]
.

B. Updates

Updates follow the standard EKF-SLAM formulation. The
observation functions u = h(C,P) are the composition
of the ones in Table I with the homogeneous-to-Euclidean
transform: if u = [u, v, w]> then u = [u/w, v/w]>.

IV. CONSISTENCY EVALUATION

We benchmark HP, AHP and IDP for filter consistency
using the same simulated scenario, the same software and
the same seeds for the random generator. A description of
the benchmarking methods and the simulation conditions
follows, and results are given at the end of this section.

A. Normalized estimation error squared (NEES)

Here we follow [15]. We analyze filter consistency using
the average normalized estimation error squared (NEES).
When ground truth about a variable xk is known, the NEES
of its estimate N{x̂k,Pk} is defined at each time k by

εk = (xk − x̂k)>P−1
k (xk − x̂k). (18)

TABLE II
SIMULATION PARAMETERS FOR ALL EXPERIMENTS

Concept Param. Set 1 Set 2

Pose step (∆X,∆ψ) (8cm, 0.9◦) (4cm, 0.45◦)
Lin. noise (σX , σY , σZ) 1cm 0.5cm
Ang. noise (σφ, σθ, σψ) 0.1◦ 0.05◦

Img. size 640×480 pix
Focal (αu, αv) 320 pix, HFOV = 90◦

Pix. noise σu 1 pix

ρC prior (ρ̄C , σρC ) (0.01, 0.5) m−1 (0.01, 0.5) m−1

(1.0, 1.0) m−1

Under the hypothesis of consistent filtering of a linear-
Gaussian system, εk obeys a χ2 distribution with dim(xk)
degrees of freedom (DOF), noted χ2

dim(x), whose expectation
over an increasing number of runs converges to the state
dimension, E[εk] = dim(xk). The linear-Gaussian hypoth-
esis can then be statistically evaluated by means of a χ2

acceptance test over a set of N <∞ Monte-Carlo runs.
Given N Monte-Carlo runs,

∑N
i=1 εik obeys a χ2

N dim(x)

distribution. The bounds of the double-sided 95% probability
concentration region are given by the χ2

N dim(x) values
corresponding to tail probabilities of 2.5% and 97.5%. For
6-DOF SLAM and N = 25 runs, we have the lower and
upper bounds {ν; ν} = χ2

(6×25)(1 − 0.025; 1 − 0.975) =
{117.985; 185.800}.

The average NEES is computed as

ε̄k ,
1

N

N∑
i=1

εik. (19)

We compare the average NEES against {ε; ε} = 1
N {ν; ν} =

{4.719; 7.432}. If the average NEES is below the lower
bound for some significant amount of time, the filter is
conservative. If it is above the upper bound, the filter is
optimistic and therefore inconsistent.

B. Software and SLAM algorithm

We have made available the software used for simulations
[18]. It consists in a 6-DOF EKF-SLAM system written in
MATLAB R©, with simulation and 3D graphics capabilities.

The algorithm is organized as an active-search-based
SLAM [19], which allows us to optimize information gain
with a limited number of updates per frame. At each frame,
we perform updates to the 10 most informative landmarks.
We also attempt to initialize one landmark per frame. Incon-
sistent and unstable landmarks are deleted from the map to
avoid map corruption.

C. Simulated scenario

We simulate a robot performing a circular trajectory in an
area of 12m×12m, populated with 72 landmarks forming
a cloister (Fig. 3). The robot receives noisy control inputs
which are used for the prediction stage of the EKF, fix-
ing the scale factor. One noisy image per control step is
gathered with a single camera heading forward. Two sets of
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Fig. 3. Simulated 3D environment for 6-DOF monocular SLAM.
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Fig. 4. 3D view of some landmark 3σ estimates at the end of the
first loop. In accordance with [16], inconsistency comes from covariance
overestimation rather than mean errors. See the accompanying video.

parameters have been used for the tests (the nominal and
perturbation levels of all these magnitudes, together with the
inverse-distance priors used, are all summarized in Table II).
In the first set, the robot makes two turns to the cloister (800
frames are processed). The second set uses smaller odometry
increments and perturbations, and the trajectory is limited to
one quarter of a turn (200 frames).

D. Results

We provide an accompanying video showing the three
methods running in parallel. The differences in behavior are
not appreciable in naked eye in the 3D movies, showing that
inconsistency is not a matter of larger or smaller absolute
errors, but on how accurate the filter thinks their estimates
are. We need to zoom in to appreciate incorrect operation
(Fig. 4): IDP and HP estimate too small covariances. As
a result, the NEES behavior of the three parametrizations is
radically different (Fig. 5, please note the logarithmic vertical
scale):
• HP behaves poorly. Of the 25 runs, one diverged, and

35 landmarks had to be deleted due to inconsistent
observations (22 of which during the divergent run).

• IDP shows better performance but also escapes consis-
tency very quickly. No run diverged but inconsistent
observations triggered landmark deletion in two occa-
sions.

• AHP behaves consistently, certainly with a slight ten-
dency to inconsistency, until shortly after the first loop
closure. During the second turn the filter is inconsis-
tent but it does not seem to degrade too quickly. No
landmarks were declared inconsistent.

We tuned the algorithms with the second set of parameters
in order to improve linearity: odometry steps and noise are
cut in half, and the filter is bootstrapped with 10 landmarks
being initialized at the first frame. Here, we focus on the
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Fig. 5. Consistency of HP, IDP and AHP. Average NEES of the 6-
DOF vehicle pose [x, y, z, φ, θ, ψ]> over 25 runs for 800 frames (2 turns)
and parameters of Set 1. The dotted horizontal band between abscissas
ε = 4.719 and ε = 7.432 marks the 95% consistency region: the filter is
inconsistent if the average NEES is above its upper bound. The vertical line
marks the loop closure at frame 308. The framed area corresponds to the
area covered by Figs. 6 and 7.
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Fig. 6. Average NEES over 25 runs for 200 frames (1/4 turn) with
parameters of Set 2 and 10 initializations in the first frame.
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Fig. 7. Average NEES over 25 runs for 200 frames (1/4 turn) with
parameters of Set 2 and 10 initializations in the first frame, using an
alternative prior (ρ̄, σρ) = (1.0, 1.0).

first quarter of the loop to see the moment when the filters
loose consistency. The results in Fig. 6 show only a partial
improvement with respect to those of Set 1 (these 200 frames
correspond to the first 100 frames in Fig. 5): HP is just
not good, IDP is better than before but only keeps track
until frame 50, and AHP is again the only one to behave
consistently.

A third test consisted in selecting a different prior for
the unmeasurable inverse-distance. Now we use the couple
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(ρ̄, σρ) = (1.0, 1.0). By comparing the plots in Fig. 7 against
those in Fig. 6 we see that IDP and AHP are virtually
insensitive to large variations of these parameters, while the
contrary must be said for HP, which degraded even further.
It seems, even if for AHP and IDP the difference is small,
that the filter behaves better with landmarks initialized at (or
close to) infinity (Fig. 6, ρ̄C = 0.01m−1) than at some close
distance (Fig. 7, ρ̄C = 1m−1).

V. DISCUSSION AND CONCLUSION

We are dealing with 3 parametrizations. One is not an-
chored (HP); the other two are anchored (IDP and AHP).
Thanks to the cross-correlations stored in the EKF, the anchor
allows the filter to account for accumulated errors only from
the anchor to the current position (terms (T−p0) in Table I),
not from the origin of coordinates (term T). This is consistent
with HP performing clearly worse than IDP and AHP.

Thanks to the superior linearity of homogeneous points
with respect to the polar representation of IDP, we expected
AHP to be better than IDP. Our experiments showed that the
improvement is very significant. We see two reasons for this:

First, the ray direction in AHP is a 3D vector v that,
importantly, is not forced to unity. The fact that its norm
can evolve during filtering allows the filter to work more
relaxed (there is redundancy over an equivalence class, thus
lack of constraints). So when an update occurs, the correction
effect can be shared between several dimensions, including
of course ρ. In IDP there is no such redundancy and the
filter works more “constrained”. When it comes to deal with
non-linearity, these constraints contribute to larger errors. It
is therefore important not to normalize the vector v at each
frame.

Second, the transformation equations in AHP are more
linear than those in IDP, because in IDP we have the
trigonometric functions (4) and (7). In fact, AHP only differs
from IDP in two single lines of code: those performing such
equations. This point should be, we feel, only of relative
importance, because these angles are well observed from the
first observation and therefore the trigonometric functions
can be considered quite linear inside the uncertainty region,
which is small. However, its effect can only contribute to
increase linearization errors.

Regarding the increase in computational costs derived
from a larger parametrization size (7 instead of 6), we point
here that the linearity measure for IDP [5] can be applied to
AHP as-is to trigger a reparametrization. Reparametrization
to Euclidean has virtually no effect on NEES results (some-
thing we did not show here for space reasons), and only a
very small degradation can be observed. This degradation is
of the order of the one observed when changing the prior
values of ρC , which we saw in Figs. 6 and 7. The gain in
computational power, however, largely compensates for it.

Regarding terminology, IDP could be renamed AMPP
(Anchored Modified Polar Point): it is anchored, and it is
in polar coordinates except for the radius which is inverse-
radius (therefore the “modified polar”). This would produce
a consistent picture, where the concept of “inverse-distance”,

as we have seen, is shared among all the parametrizations. To
complete the picture, we notice that the AMPP’s un-anchored
counterpart, Modified Polar Point (MPP), not presented in
this paper, had already been studied in the 80’s in the
bearing-only tracking literature with similar problematic and
justification [20]. Its use in monocular EKF-SLAM is not
recommended: it presents a singularity at the origin, and if
we draw the correct conclusions from the present paper, it
should behave even worse than HP, as it happens to AMPP
(i.e. IDP) with respect to AHP.
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