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Abstract— A moving-target-enclosing problem is investigated
in the paper, where the velocity of the target is unknown and
the neighbor topologies may change over time. Each robot
only uses the relative position information of the target and its
neighbors that may dynamically change over time. An adaptive
scheme is proposed to estimate the velocity of the target.
Then a distributed control law for each robot is presented,
which consists of two parts: One amounts to ensuring the
convergence of the distance between the robots and the target
to the desired one and the other is used to achieve the uniform
distribution when enclosing the target in motion. Lyapunov-

based techniques and graph theory are brought together for
rigorous analysis of the convergence and stability properties.
Our control strategy is practically implementable with only
onboard sensors. Simulations are provided to illustrate our
results.

I. INTRODUCTION

Multi-robot systems have received considerable attention

in the fields of robotics and system control in recent

years. A group of autonomous mobile robots are capable

of accomplishing certain missions which are difficult or

time consuming for a single robot. The problems such as

formation control [1]–[3], rendezvous [4]–[6], consensus

[7], [8], and target-enclosing [9]–[11] are widely studied.

Cooperative target-enclosing as one of the common problems

in multi-robot systems requires the group members to follow

the target and surround it. Sometimes, the group members

are also demanded to keep nominated distances or form a

formation with other group-mates. Therefore, the solution

to the problem of cooperative target enclosing can be used

to entrap or attack a target [12] by reducing the escape

windows or protect an object by blocking the intrusion ways

of adversary agents [13], [14].

With the objective of moving unmanned aerial vehicles

(UAVs) scattered in an environment in the presence of

obstacles towards a target of interest while avoiding collision

with other UAVs and obstacles and rotating around the target,

the problem of close target reconnaissance is studied in [9]

by forming an equilateral triangle. Under the assumption that

a group of robots can be identified, algorithms based on

cyclic pursuit strategies are developed to solve the target-

enclosing problem in [10] and [15], respectively. In [11]

Kobayashi et al. divide the task of capturing a target into

an enclosing behavior and a grasping behavior. In addition,

in [16] Lan et al. assume that the target is static and propose a

novel approach based on hybrid control for cooperative target
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tracking with multiple unicycle-type robots, and in [17] Gazi

and Ordonez develop an algorithm for capturing a moving

target via sliding mode control.

In this paper, we consider a target moving in the plane

with a piecewise constant velocity. The objective is to find

a distributed control law for a group of robots so that they

enclose the moving target and meanwhile attain an inter-

robot formation. In our setup, no robot knows the moving

velocity of the target, but it is assumed that every robot is

able to measure the position of the target in its own local

frame, as well as the positions of its neighbors, who are

defined in the sense that there is no other robots between

them by rotating a ray (originating from the target) from

one to the other clockwise or counterclockwise. Thus, the

neighbor relationships may change over time depending on

the positions of the robots and the target. We propose a

control law consisting of two parts: One deals with the

task of following the target with a specific distance and the

other addresses the task of rotating around the target and

achieving equal distances from its neighbors. In addition,

since the target’s velocity information is unknown to any

robots, an adaptive scheme is designed so that each robot can

reconstruct the target’s velocity with the error between the

estimation and the velocity of the target converging to zero.

The adaptive scheme is preferable to a simple differentiation

filter to estimate the target’s velocity as no absolute position

of the target is available in an inertial coordinate frame.

Lyapunov-based techniques and graph theory are brought

together for rigorous analysis of the convergence and stability

properties. Our results extend the work of [10] and [11] in

the following aspects. First, the target is not stationary and

its moving velocity is unavailable to any robots. Second, it is

not required to label the robots and changing topologies are

allowed. Third, the control law is practically implementable

with only onboard sensors and the robots do not need a

common sense of direction. Fourth, the adaptive strategy we

propose assures that the robots are able to entrap the target

adaptively even though the target has an abrupt change on

its velocity.

Throughout the paper, we use the notation 1 to represent

the vector with all 1 components and we use the notation ⊗
to denote the Kronecker product.

II. PROBLEM STATEMENT

Consider a group of n identical mobile robots which are

modeled as point-masses freely moving in the plane, i.e.,

ṗi = ui, i = 1, . . . , n, (1)
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where pi ∈ R
2 is the position of robot i in the plane and

ui ∈ R
2 is the velocity control input of robot i. Suppose now

that a target moves in the plane with a piecewise constant

velocity. That is,

ṗ0 = v0,

where p0 is its position in the plane and v0 is a piecewise

constant.

Suppose that every robot carries an onboard sensor so that

it is able to sense the relative positions of the target and its

neighbors. However, the velocity of the target is not known

to any robots. With these local measured information, it is

expected that all robots can follow and enclose the target

with evenly spaced circle formation. The problem is called

the moving-target-enclosing problem in the paper and stated

formally as follows:

Problem 2.1: Find a distributed control law for each robot

using only local available information such that

1) each robot follows and maintains a desired distance d
with the target,

2) all the robots are evenly spaced when enclosing the

target.

A desired configuration is given in Fig. (1).

target

d

v0

Fig. 1. Desired enclosing configuration.

III. CONTROL SYNTHESIS FOR

MOVING-TARGET-ENCLOSING

In this section, we develop a control strategy for the

moving-target-enclosing problem and then provide rigorous

analysis for convergence.

As described in Problem 2.1, two specifications should be

accomplished. We consider a control law having two terms,

that is,

ui = u′

i + u′′

i .

Moreover, we consider the relative position of robot i in the

local frame attached to the target, so we define zi = pi−p0.

Thus, we have

żi = u′

i + u′′

i − v0, i = 1, . . . , n. (2)

First, let us present a trivial observation in the following

lemma, which will be used to design the first term u′

i in our

controller.

Lemma 3.1: If żi = −zi(‖zi‖
2 − d2), then ‖zi(t)‖ tends

to d as t → ∞ for any zi(0) 6= 0.

Proof: Let ρi = ‖zi‖. It can be easily obtained that

ρ̇i = −ρi(ρ
2
i − d2).

As this is a scalar differential equation, it is trivial to

conclude that ρi(t) tends to d for any initial condition

ρi(0) 6= 0. �

Lemma 3.1 suggests that when the target is stationary,

we can select ui = −zi(‖zi‖
2 − d2) such that every robot

can eventually attain the desired distance d with the target.

Hence, for our moving-target-enclosing problem, we choose

the first term u′

i in our controller as follows:

u′

i = −zi(‖zi‖
2 − d2), i = 1, . . . , n, (3)

Second, considering the form of (2), we propose that

u′′

i − v0 should be orthogonal to u′

i in order not to affect

the convergence of attaining the desired distance d when

u′

i is applied (see Fig. 2). Now let us consider the polar

v0

u′

i

u′′

i − v0

i

Fig. 2. Illustration for control decoupling.

coordinates of zi. Denote zi =
[

zx
i zy

i

]T
. Then we

define

ρi =
√

(zx
i )2 + (zy

i )2 and θi = arctan2(zy
i , zx

i ),

where arctan2 represents a two-argument arctangent function

returning the angle of point zi as a numeric value between

0 and 2π radians. Let

ri =

[

cos θi

sin θi

]

and si =

[

− sin θi

cos θi

]

.

It can be noted that si is formed by counterclockwise rotating

ri of π/2 radians and so it is orthogonal to ri. With the polar

coordinates and these new notations of ri and si, the formula

of u′

i can be written as

u′

i = −ρi(ρ
2
i − d2)ri.

In order to make u′′

i − v0 orthogonal to u′

i and in order to

achieve a uniform distribution when enclosing the target, we

expect to have

u′′

i − v0 = ρi(θi+ − θi + ζi)si, (4)

where

ζi =

{

0 if θi+ − θi ≥ 0,

2π if θi+ − θi < 0.

In the equation above, the subscript i+ denotes the label

of the pre-neighbor of robot i according to the following

criteria:

1) If no other robot locates on the same ray originating

at the target pointing towards robot i, then the pre-
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neighbor of robot i is defined to be the one nearest

to the target and first met by rotating the ray counter-

clockwise;

2) If there are other robot locating on the same ray

originating at the target pointing towards robot i, then

the pre-neighbor of robot i is the one on the same

ray closest to robot i but having longer distance to the

target than robot i.

The pre-neighbor of robot i is denoted by i+. If robot j is

a pre-neighbor of robot i (namely, i+ = j), we also call

robot i the next-neighbor of robot j and denote it by j−. An

illustration is given in Fig. 3. For example, the pre-neighbor

target

1

2

3

4

Fig. 3. Changing neighbor topology.

of robot 4 is robot 2, the pre-neighbor of robot 2 is robot 3,

the pre-neighbor of robot 3 is robot 1, and the pre-neighbor

of robot 1 comes back to be robot 4. By this definition, the

neighboring topology is a unidirectional ring and we call it

interaction graph. Note that this topology may dynamically

change over time as robots move around. So we use Lt

to denote the Laplacian of the interaction graph which is

actually a piecewise constant matrix. It is worth to point out

here that since at any time t, the interaction graph is always

a unidirectional ring, the following holds:

1) 1
T Lt = 0;

2) LT
t +Lt has a simple eigenvalue at 0 with an associated

eigenvector 1 and all other eigenvalues are positive.

After defining the neighboring topology and graph Lapla-

cian, we come back to check the feasibility of implement-

ing (4). Notice that to satisfy (4), the second term u′′

i should

equal to v0 + ρi(θi+ − θi + ζi)si, which means each robot

should access the velocity of the target. However, the target’s

velocity v0 is unknown to robots, so we introduce a new

variable vi for each robot i and construct an adaptive control

so that vi can adaptively converge to v0. Thus, we take u′′

i

of the form

u′′

i = ρi(θi+ − θi + ζi)si + vi, i = 1, . . . , n, (5)

where the dynamics of vi will be designed later.

Considering u′

i in (3) and u′′

i in (5), we can write the

dynamics of ρi and θi as
{

ρ̇i = −ρi(ρ
2
i − d2) + r

T
i (vi − v0),

θ̇i = (θi+ − θi + ζi) + 1
ρi

s
T
i (vi − v0).

(6)

Let

ρ = [ρ1, · · · , ρn]T ∈ R
n,

θ = [θ1, · · · , θn]T ∈ R
n,

v = [vT
1 , · · · , vT

n ]T ∈ R
2n. (7)

Moreover, we define

D =







ρ1 · · · 0
...

. . .
...

0 · · · ρn






, h(ρ) =







ρ2
1 − d2

...

ρ2
n − d2






,

R =







r
T
1 · · · 0
...

. . .
...

0 · · · r
T
n






∈ R

n×2n,

and

S =







s
T
1 · · · 0
...

. . .
...

0 · · · s
T
n






∈ R

n×2n.

Finally, we let e = v − 1 ⊗ v0 and let ζ = [ζ1, · · · , ζn]T .

According to our setup and the definition of ζi, we know

that there is only one ζi equal to 2π and all others are 0,

which means 1
T ζ = 2π. Then we write system (6) in a

vector form, which is
{

ρ̇ = −Dh(ρ) + Re,

θ̇ = −Ltθ + ζ + D−1Se.
(8)

Next, we adopt a controlled Lyapunov function approach

to find the dynamics for vi. Let us consider the following

Lyapunov function candidate

V =
1

4
h(ρ)T h(ρ) +

1

2
(−Ltθ + ζ)T (−Ltθ + ζ) +

1

2
eT e.

From the definition, we know that the function V is contin-

uous, but not continuously differentiable everywhere. How-

ever, it is piecewise continuously differentiable. Hence, in

what follows, we use the right upper Dini derivative D+V
for our analysis. More details can be found in [18]. Let t+

represent the time instant just after the switching at t. Then,

along the solution of system (8), one obtains

D+V =
1

2
h(ρ)T ∂h

∂ρ
ρ̇ − (−Lt+θ + ζ)T Lt+ θ̇ + ėT e

= h(ρ)T D[−Dh(ρ) + Re] + ėT e

−(−Lt+θ + ζ)T [Lt+(−Lt+θ + ζ + D−1Se)]

= −h(ρ)T D2h(ρ)

−
1

2
(−Lt+θ + ζ)T (Lt+ + LT

t+)(−Lt+θ + ζ)

+
[

h(ρ)T DR − (−Lt+θ + ζ)T Lt+D−1S + ėT
]

e.

Note that v̇ = ė. So we set

v̇ = −RT Dh(ρ) + ST D−1LT
t+(−Lt+θ + ζ)

so that h(ρ)T DR − (−Lt+θ + ζ)T Lt+D−1S + ėT = 0. In
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other words,

v̇i = −ρi(ρ
2
i − d2)ri −

1

ρi

ϕisi,

where ϕi = (θi − θi
−

+ ζi
−

) − (θi+ − θi + ζi).

Thus, the complete adaptive control law for each robot i
is given as

{

ui = −ρi(ρ
2
i − d2)ri + ρi(θi+ − θi + ζi)si + vi,

v̇i = −ρi(ρ
2
i − d2)ri −

1
ρi

ϕisi.
(9)

Remark 3.1: Note that in (9), ρi is the distance from robot

i to the target, (θi+ − θi + ζi) is the angle between robot i
and its pre-neighbor, (θi − θi

−

+ ζi
−

) is the angle between

robot i and its next-neighbor, ri is the direction towards the

target and si is the perpendicular direction (see Fig. 4 for an

illustration). All these information can be measured by an

onboard sensor (e.g., camera) attached to robot i. Therefore,

target
θi − θi

−

+ ζi
−

θ i+
−

θ i
+

ζ i

i

Fig. 4. Locally implementable control.

the control law (9) is locally implementable. Moreover, the

group of robots do not require to have a common sense of

direction. However, as also can be seen in (9), the knowledge

of relative position is necessary for the proposed control law

and it can not be loosen to just distances or just bearing

angles.

Finally, we present our main result to show that the control

law (9) solves the moving-target-enclosing problem.

Theorem 3.1: For a group of n robots with the control

law (9), if none of p0(0), p1(0), · · · , pn(0) are co-located,

then as t → ∞,

1) ρi(t) → d,

2) (θi+(t) − θi(t) + ζi) → 2π/n.

Proof: For the control law (9), it is obtained that

D+V = −h(ρ)T D2h(ρ)

−
1

2
(−Lt+θ + ζ)T (Lt+ + LT

t+)(−Lt+θ + ζ).

Notice that (Lt+ + LT
t+

) is positive semi-definite. Hence, it

follows that

D+V ≤ 0.

Moreover, recall that the kernel of (Lt+ + LT
t+

) is span{1}.

So

E = {(ρ, θ, v)|D+V = 0}

= {(ρ, θ, v)|ρi = 0 or d,−Lt+θ + ζ ∈ span{1}}.

It can be checked further that the largest invariant set in E
is

M = {(ρ, θ, v)|ρi = 0 or d,−Lt+θ+ζ ∈ span{1}, v = 1⊗v0}.

Then from the non-smooth version of LaSalle’s invariant

principle [18], every trajectory approaches M as t → ∞. For

states in M , we have −Lt+θ + ζ = a1 for some constant a.

Recall that

1T (−Lt+θ + ζ) = 2π.

As a result, 1T a1 = 2π, which implies a = 2π/n.
Next we show that ρi(t) does not converge to 0 by

contradiction. Suppose there is a solution ρi(t) → 0 for

ρi(0) 6= 0. From the above proof, we know that vi(t)
tends to v0. Also, from Lemma 3.1, it is known that every

solution ξ(t) of the system ξ̇ = −ξ(ξ2 − d2) approaches d
for any initial condition ξ(0) 6= 0. Combining these three

observations, it follows that for any arbitrary small ε > 0
and δ > 0, there exists a T such that for all t > T ,

d − ε < ξ(t) < d + ε, (10)

ρi(t) < ε, (11)

|rT
i (vi − v0)| < δ. (12)

From (10) and (11), one obtains

|ρi(t) − ξ(t)| ≥ d − 2ε for all t ≥ T. (13)

On the other hand, we treat the dynamics of ρi as perturbed

system of ξ̇ = −ξ(ξ2 − d2) with initial time at T . From the

perturbation theory (Theorem 9.1 in [19]), it follows that for

all t > T ,

|ρi(t) − ξ(t)| < ke−γ(t−T )|ρi(T ) − ξ(T )| + βδ,

where k, γ and β are positive constants independent the

choices of ε and δ. Since ke−γ(t−T )|ρi(T )−ξ(T )| converges

to 0 exponentially, for any sufficiently small ε′ > 0 there

exists a T ′ > T such that for all t > T ′,

|ρi(t) − ξ(t)| < ε′ + βδ. (14)

Note that both ε′ and δ can be selected arbitrarily small

and we choose them so that ε′ + βδ < d − 2ε. Thus, a

contradiction is reached between (13) and (14). �

Remark 3.2: From the proof of Theorem 3.1, the adaptive

control not only ensures convergence to the desired con-

figuration, but also guarantees that the system is stable as

D+V ≤ 0.

Remark 3.3: Note that in our control strategy, the inter-

agent collision avoidance is not considered. However, the

inter-agent separation can be achieved by using the artificial

potential function method. Since u′′

i − v0 is orthogonal to

u′

i, then an artificial function can be added in (5) to separate

two agents that are too close and it does not affect the

convergence properties.
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IV. SIMULATION

In this section, we present a simulation to illustrate our

results. We simulate eight robots tracking and enclosing

a moving target where the velocity v0 of the target is a

piecewise constant signal changing its value at t = 30s.

The desired distance between every robot and the target is

d = 50. In the simulation, the initial positions of the eight

robots are randomly generated in the plane. The simulated

trajectories of the eight robots under our control law are

given in Fig. 5. It can be seen that each of them converges

−200−180−160−140−120−100−80 −60 −40 −20 0 20 40 60 80 100 120 140 160 180 200
−200

−180
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20

40

60

80

100

120

140

160

180

200

Fig. 5. The simulated trajectories of the eight robots enclosing a moving
target.

and maintains the desired distance to the moving target.

Moreover, they are uniformly distributed when enclosing the

target in motion. After the abrupt change of the target’s

velocity at t = 30s, the eight robots with our control law

are capable of recovering to the desired circle formation.

The evolutions of the distances between all the robots and

the target (namely ρi = ‖pi − p0‖, i = 1, . . . , 8) are plotted

in Fig. 6 and Fig. 7, where Fig. 6 shows the first part for

the time interval [0, 30) and Fig. 7 shows the rest starting at

t = 30s. From Fig. 7, we observe that the distances between

the robots and the target are perturbed away from the desired

distance because of an abrupt change from the target, but

our control law enables the robots to resume the enclosing

motion and to adapt to the new target’s velocity after a short

transient period. In addition, the evolution of the separation

angles between any two neighboring robots is depicted in

Fig. 8. From the figure, we can see that the separation angles

between any two neighboring robots converge to a common

value 2π/8, which validates our theoretical result.

V. CONCLUSION

In this paper, we have discussed a moving-target-enclosing

problem. Without knowing the target’s velocity, each robot

0 5 10 15 20 25 30
25
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35
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45

50

55

60

65

70

75

t

ρ
i

Fig. 6. The distances between the eight robots and the target for the time
interval [0, 30].
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Fig. 7. The distances between the eight robots and the target for the time
inverval [30, 60].
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θ i
+
−
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Fig. 8. The separation angles between any two neighboring robots.

only uses the local relative position information from the

target and its neighbors. With the setup proposed, target

tracking and inter-robot coordination are essentially decou-

pled. One part of the control law amounts to ensuring the

convergence of the distance between the robots and the target

to the desired one. The other part of the control law is used

to achieve uniform distribution when enclosing the target in

motion. Besides, an adaptive scheme is proposed to estimate

the velocity of the target. Lyapunov-based techniques and

graph theory are brought together for control synthesis,

which allows for changing topologies. The convergence

and stability properties are investigated in detail using a

non-smooth version of LaSalle’s invariance principle. Our

control strategy is practically implementable by only onboard

sensors. Our results extend the work of [10] in two aspects:

1472



allowing for a moving target with an unknown velocity

and tolerating with neighbor changing which removes the

requirement of labels for the robots. However, in the paper,

we have not discussed the situation in the presence of noisy

measurements. It will be studied in future work.
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