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Abstract— Traditional cameras have a narrow field of view,
to enlarge the field of view omnidirectional cameras can be
used. In this work, we propose, a simple an elegant solution
to the image formation model for omnidirectional cameras
with parabolic mirrors. We propose the use of conformal
geometric algebra (CGA), since the involved transformation
operations in the model can be represented as an special
group of multivectors. This representation is advantageous since
the inversions are linearized, furthermore the transformation
can be applied to all the geometric objects of the CGA. In
consequence, the paracatadioptric image formation can be
simplified, since the procedure is the same for points, point-
pairs, lines, or circles. As an application example the control
of a nonholonomic mobile robot using paracatadioptric line
images and the proposed framework is described.

I. INTRODUCTION

Conventional cameras suffer from a limited field of view.
One effective way to increase the field of view is to use
mirrors in combination with conventional cameras. The ap-
proach of combining mirrors with conventional cameras to
enhance sensor field of view is referred as catadioptric image
formation.

In order to be able to model the catadioptric sensor
geometrically, it must satisfy the restriction that all the
measurements of light intensity pass through only one point
in the space (effective viewpoint). The complete class of
mirrors that satisfy such restriction where analyzed by Baker
and Nayar [1]. In [2] the authors deal with the epipolar
geometry of two catadioptric sensors. Later, in [3] a general
model for central catadioptric image formation was given.
Also, a representation of this general model using the CGA
was shown in [4]. In contrast with previous works where
the paracatadioptric projection is defined for points or a
parametric representation of geometric entities, the present
work introduces a model which can handle the paracata-
dioptric projection of points, point-pairs, lines and circles
analytically.

Vision based servoing schemes are effective methods to
control robot motion from camera observations [5], [6].
Visual servoing applications can benefit from sensors pro-
viding large fields of view. The present work is mainly
concerned with the use of projected lines extracted from
central catadioptric images as input of a visual servoing
control loop. The paracatadioptric image of a line is in
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general a circle but sometimes it can be a line. This is
something that should be taken into account to avoid a
singularity in the visual servoing task.

The rest of this paper is organized as follows: The next
section will give a brief introduction to the conformal geo-
metric algebra. In section III we show the equivalence be-
tween inversions on the sphere and the parabolic projections.
In section IV a paracatadioptric image formation model using
CGA is proposed. In section V the experimental results are
given. Finally, the conclusions are in section VI.

II. CONFORMAL GEOMETRIC ALGEBRA

In general, a geometric algebra Gp,q,r is a linear space of
dimension 2n, n = p+q+r, with a subspace structure, called
blades, to represent multivectors. A multivector is a higher
grade algebraic entity in comparison to vectors of a vector
space as first grade entities, or scalars as grade zero entities.
The geometric algebra is generated from a n-dimensional
vector space Vn by defining the geometric product as an
associative and multilinear product satisfying the contraction
rule a2 = ε|a|2, for a ∈ (V )n, where ε is −1, 0 or 1 and is
called the signature of a. When a �= 0 but its magnitude |a|
is equal to zero, a is said to be a null vector.

The geometric product of two entities is denoted by
the juxtaposition of the entities, just as in matrix algebra,
where the matrix product of two matrices is represented by
juxtaposition of two matrix symbols. The geometric product
of two basis vectors, ei and ej , is

eiej =

⎧⎪⎪⎨
⎪⎪⎩

1 for i = j ∈ {1, 2, . . . , p}
−1 for i = j ∈ {p + 1, . . . , p + q}

0 for i = j ∈ {p + q + 1, . . . , n}
eij = ei ∧ ej = −ej ∧ ei for i �= j

(1)
The geometric algebra of R3 is denoted by G(R3), or

simply G3. It has three basis vectors e1, e2, e3 where the
geometric product of e1e1, e2e2 and e3e3 is 1, and the
geometric product of any other combinations of basis vectors
is 0.

The geometric product (denoted by juxtaposition) of vec-
tors a and b, is defined as

ab = a · b + a ∧ b . (2)

From the geometric product two new products can be de-
fined, the inner product

a · b =
1
2
(ab + ba) = b · a (3)
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which in the case of vectors entities coincides with the
standard scalar product of linear algebra, but in general, when
both entities are not vectors, it represents an operation which
does not result in a scalar. The other product is called the
outer product

a ∧ b =
1
2
(ab − ba) = −b ∧ a (4)

which in the vector case results in a bivector, a subspace of
grade two. The outer product of r vectors can be defined
as the anti-symmetric part of the geometric product of the
r-vectors, which is called an r-blade. A linear combination
of r-blades is called an r-vector. The set of r-vectors is an(

n
r

)− dimensional subspace of Gn, denoted by Gr
n. The

whole of Gn is given by the subspace sum of Gi
n, for i =

0, 1, . . . , n. A generic element in Gn is called a multivector,
which can be written in the expanded form

M =
m∑

i=0

〈M〉i, (5)

where 〈M〉i denotes the i-vector part. An element M in Gn

is invertible if there exists an element N in Gn such that
MN = NM = 1. The element N, if it exists, it is unique and
it is called the inverse of M, which is denoted by M−1. Every
non null vector u is invertible with u−1 = 1/u = u/u2.
The concept of magnitude is extended from vectors to any
multivector by

‖M‖ =

√√√√ m∑
i=0

‖ 〈M〉i‖2, (6)

where ‖ 〈M〉i ‖2 =
√‖ 〈M〉i · 〈M〉 ‖ .

The CGA [7] is the geometric algebra over an ho-
mogeneous conformal space. This framework extends the
functionality of projective geometry to include circles and
spheres. Furthermore, it includes operations like dilations,
inversions, rotations and translations, which can be applied
to points, lines, planes, point pairs, circles and spheres.

The CGA Gn adds two extra vector basis (e+ and e−) to
the Euclidean space R3. For example, for the 3D space we
have the following basis vectors: e1, e2, e3, e−, e+, where
e2
+ = 1 and e2− = −1. With this extra basis two null vectors

can be defined

e0 =
e− − e+

2
and e∞ = e− + e+ , (7)

The vector e0 can be interpreted as the origin of the coordi-
nate system, and the vector e∞ as the point at infinity. The
outer product of e+ and e− produces a special bivector called
the E-plane, E = e+e−, which represents the Minkowski
plane.

To specify a 3-dimensional Euclidean point in a unique
form in this 5-dimensional space, we require the definition of
two constraints. The first constraint is that the representation
must be homogeneous, that is λX and X represent the same
point in Euclidean space. The second constraint requires that

the vector X be a null vector (i.e. X2 = 0, but X �= 0). The
equation that satisfies these constraints is

X = x +
1
2
x2e∞ + e0 (8)

where x ∈ Rn and X ∈ Rn+1,1. Note that this is a bijective
mapping. From now and in the rest of the paper the points
X are named conformal points and the points x are named
Euclidean points. To recover the Euclidean point from a
conformal point we can use x = (X ∧ E)E.

The outer product of conformal points can be used to
define geometric entities. For example the outer product of
four points defines a sphere (3D sphere) containing the four
points S = A∧B∧C∧D. The outer product of three points
defines a circle (2D sphere), C = A ∧ B ∧ C. Similarly the
outer product of two points defines a point-pair (1D sphere)
Q = A∧B. A plane is defined with three points and the point
at infinity P = A∧B ∧C ∧ e∞. A line is defined with two
points and the point at infinity L = A ∧ B ∧ e∞. Similarly,
the outer product of a point and the point at infinity e∞
defines an entity called a flat-point, S = A∧ e∞, which can
be the result of the intersection of two lines. The entities
constructed in this way are defined in what is called the
outer product null space (OPNS). In the OPNS we can test
for incidence of a point in an entity by simply computing
the outer product of the point with the entity. For example,
if the point X lies on the sphere S then we have X ∧S = 0.

The dual representation of the OPNS is the inner product
null space (IPNS). In the IPNS a sphere is defined as

S = c +
1
2
(c2 − ρ2)e∞ + e0 , (9)

which is very similar to (8). The main difference is the radius
ρ of the sphere. Thus, a point can be considered as a sphere
with zero radius. In the IPNS the plane is defined as

Π = n + δe∞, (10)

which denotes the Hesse normal form representation of the
plane, where n is the normal vector and δ the distance from
the origin to the plane.

As we already mention, the OPNS and IPNS represen-
tations are dual to each other, to change from one repre-
sentation to another we simply multiply the entity by the
pseudoscalar, e.g. XI−1. Where I denotes the pseudoscalar
of the algebra, and is defined as the outer product of all the
basis vectors of the algebra, e.g. the pseudoscalar for the
Euclidean space is I3 = e1e2e3 = e123. The pseudoscalar
for the CGA which embeds the 3D space is defined as
I = e1e2e3e+e− = e123+−. To distinguish between the
OPNS and the IPNS representations, we will use the notation
M∗ to denote that the multivector M is defined in the OPNS,
and we will omit the superscript to denote a multivector
defined in the IPNS.
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A. Conformal Transformations

In CGA the conformal transformations are linearized using
the fact that the conformal group on Rn is isomorphic to the
Lorentz group on Rn+1. Hence, nonlinear conformal trans-
formations on Rn can be linearized by representing them as
Lorentz transformations and, thereby, further simplified as
versor representation. These versors can be applied not only
to points but also to all the CGA entities (spheres, planes,
circles, lines and point-pairs).

In CGA the rotations are performed by means of an entity
called rotor which is defined by R = exp

(
θ
2 l

)
where l is the

bivector representing the dual of the rotation axis. To rotate
an entity, we simply multiply it by the rotor R from the left
and the reverse of the rotor R̃ from the right, Z = RY R̃.
The R̃ denotes the reversion of the rotor, and it is defined as

〈M〉i (−1)
i(i−1)

2 〈M〉i , forM ∈ Gn, 0 ≤ i ≤ n . (11)

The translations can be carried out by an entity called a
translator which is defined as T =

(
1 + e∞t

2

)
= exp

(
e∞t

2

)
.

With this representation the translator can be applied multi-
plicatively to an entity similarly to the rotor, by multiplying
the entity from the left by the translator and from the right
with the reverse of the translator: Z = TY T̃ .

Finally, the rigid motion can be expressed using a motor
which is the combination of a rotor and a translator: M=
TR. The rigid body motion of an entity Y is described with
Z = MY M̃ . For more details on the geometric algebra and
CGA, the interested reader is referred to view [7], [8], [9].

III. PARABOLIC PROJECTION AND SPHERE PROJECTION

In this section we will show the equivalence between the
parabolic projection and the sphere projection, followed by
a sphere inversion.

A. Parabolic Projection

The projection induced by a parabolic mirror to an image
plane is called parabolic projection. The parabolic projection
of a point x = xe1 + ye2 + ze3 ∈ G3 is defined as
the projection xp onto the mirror surface, followed by an
orthographic projection, which leads to the point xc.

Assume that a parabola is placed such that its axis is the
e3 axis, with focal length p and its focus is located at the
origin. The equation of this parabola is

x2 + y2

4p
− p = z. (12)

The projection of the point x onto the mirror is

xp = λx , (13)

where λ is defined as

λ =
2p

‖x‖ − z
. (14)

Finally, the point xp is projected onto a plane perpendic-
ular to the axis of the parabola. The reason for this is that
any incident ray on the mirror is reflected such that it is
perpendicular to the image plane.

B. Relationship between inversion and parabolic projection

Let x be a point in G3 and, also let, x′ be a point in
G3 representing the inversion of the point x with respect to
sphere centered at the origin, and with radius r, then we have
the following equation

xx′ = r2 , (15)

where x′ = r2/x, and where 1/x = x/x2.
When the sphere is centered at a point c ∈ G3, the

inversion of the point x with such a sphere is defined as

x′ = r2 1
x− c

+ c . (16)

Now, given a sphere centered at the origin with radius p
and a point x ∈ G3, the projection of the point x onto the
sphere is simply

xs = p
x
‖x‖ . (17)

The inversion of the point xs with respect to a second
sphere of radius 2p and centered at point n, can be computed
using using (16), thus we have the following equation

α‖xs − n‖2 = (2p)2 . (18)

The term ‖xs − n‖2 in (18) is equivalent to

(xs − n)(xs − n) = x2
s − xsn− nxs + n2 , (19)

note that −xsn−nxs is equivalent to the inner product (3),
thus we have that

‖xs − n‖2 = x2
s − 2(xs · n) + n2 . (20)

Substituting (20) in (18) and rewriting it

α =
(2p)2

x2
s − 2(xs · n) + n2

. (21)

With out lose of generality, let us define a point n which
lies on the mirror axis, and at distance p from the focus of the
mirror. Now, substituting n = pe3 and (17) in the previous
equation

α =
(2p)2

p2 x2

‖x‖2 − 2(p x
‖x‖ · pe3) + (pe3)2

=
2

1 − 1
‖x‖ (x · e3)

,

(22)
where the following equivalences had been used: x2 = x ·x,
‖x‖2 = (

√
x · x)2 = x · x. The paracatadioptric projection

of the point x is defined as xc = αxs = α p
‖x‖x, where

α
p

‖x‖ =
2

1 − 1
‖x‖(x · e3)

p

‖x‖ =
2p

‖x‖ − z
, (23)

which is exactly the same value of the scalar λ from the
parabolic projection (14), note that x ·e3 = z. Therefore, we
can conclude that the spherical projection of a point in space
followed by the inversion of the resulting point is equivalent
to the parabolic projection, see Fig. 1.
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Fig. 1. Equivalence between parabolic projection and inversion

C. Inversion and the conformal geometric algebra

In CGA, the conformal transformations are represented
as versors [9]. In particular, the versor of the inversion is
a sphere, and it is applied in the same way as the rotor,
or the translator. Given a sphere of radius r centered at c
represented by the vector

S = c +
1
2
(c2 − r2)e∞ + e0 (24)

the inversion of a point X with respect to S is

X ′ = SXS̃ (25)

To clarify the above equation and without loss of general-
ity, let us analyze the special case when S is a unit sphere,
centered at the origin. Then S reduces to

S = −1
2
e∞ + e0 = −1

2
(e− + e+) +

1
2
(e− − e+) = −e+

(26)
and, thus, (25) becomes

(−e+)X(−e+) = (−e+)(x +
1
2
x2e∞ + e0)(−e+)(27)

= e+xe+ +
1
2
x2e+e∞e+ + e+e0e+ .

The term e+xe+ is equal to

xe+e1e++ye+e2e++ze+e3e+ = −xe1−ye2−ze3 = −x .
(28)

Substituting (7) in the term e+e∞e+ we get

e+(e− + e+)e+ = (e+e− + 1)e+ = −e− + e+ = −2e0 .
(29)

Substituting (7) in e+e0e+ we get

e+
e− − e+

2
e+ =

e+e− − 1
2

e+ =
−e− − e+

2
= −e∞

2
.

(30)
From equations (29) and (30) we can conclude that the
inversion of the point at infinity is the point at the origin
and the inversion of the point at the origin is the point at
infinity. Finally, rewriting (27) we have

X ′ = −x− 1
2
e∞ − x2e0 =

1
x

+
1
2

(
1
x

)2

e∞ + e0 . (31)

From the previous equation we recognize the Euclidean point

1
x

=
x
x2

=
x

‖x‖2
, (32)

which represents the inversion of the point x. The case of
the inversion with respect to an arbitrary sphere is

σX ′ = SXS̃ =
(

x − c
r

)2 (
f(x) +

1
2
f(x)2e∞ + e0

)
,

(33)
where f(x) is equal to (16), the inversion in Rn. The value
σ represents the scalar factor of the homogeneous point.

The interesting thing about the inversion in the CGA is
that it can be applied not only to points, but also to any
other entity of CGA. In the following section we will see
how the paracatadioptric image formation can be described
in terms of CGA.

IV. PARACATADIOPTRIC IMAGE FORMATION AND

CONFORMAL GEOMETRIC ALGEBRA

In the previous section we saw the equivalence between
the parabolic projection and the inversion. We also saw
how to compute the inversion in the CGA using a versor,
in this case the versor is simply the sphere where the
inversion will be carried out. In this section we will define
the paracatadioptric image formation using CGA.

Given a parabolic mirror with a focal length p, the
projection of a point in the space through the mirror followed
by an orthographic projection can be handled by two spheres.
Where the first sphere is centered at the focus of the mirror
and its radius is p. This sphere can be defined as

S = c +
1
2
(c2 − p2)e∞ + e0 . (34)

The second sphere S0 can be defined in several ways, but we
prefer to define it with respect to a point N on the sphere S
(i.e. N · S = 0). If we compare the point equation (8) with
the sphere equation (9), we can observe that the sphere has
an extra term − 1

2r2e∞. If we extract that term to the point
N we get a sphere centered at N with a radius r. Thus, the
sphere S0 is defined as

S0 = N − 1
2
(2p)2e∞ = n +

1
2
(n2 − 4p2)e∞ + e0 , (35)

where 2p is the radius of the sphere. With these two spheres
the image formation of points, circles and lines will be
showed in the next subsections.

A. Point Images

Let X be a point in the space, its projection onto the
sphere can be found by finding the line passing through it
and the sphere center, that is

L∗ = S ∧ X ∧ e∞ , (36)

Then, this line is intersected with the sphere S
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Q = S · L∗ . (37)

Where Q denotes a point-pair (Q∗ = X1 ∧ X2). The point
closest to X can be found with

Xs =
Q∗ − |Q∗|
Q∗ · e∞ . (38)

Finally, the projection onto the paracatadioptric image plane
is simply

Xc = S0XsS̃0 . (39)

The point Xc is the projection of the point X onto the
catadioptric image plane, which is exactly the same point
obtained through the parabolic projection (Fig. 2).

Fig. 2. Point projection onto the catadioptric image plane

B. Back Projection of Point Images

Given a point Xc on the catadioptric image (Fig. 2), its
projection to the sphere is simply Xs = S̃0XcS0. The point
Xs lies on a line that passes through the sphere center, that
is L∗ = P1 ∧ S ∧ e∞. The original point X , also, lines on
this line, but since we have a single image the depth can not
be determined and thus the point X can no be calculated.

C. Circle Images

The circle images can be found in the same way as for the
points images. To see that, let X1, X2, X3 be three points on
the sphere S, the circle defined by them is C∗ = X1 ∧X2 ∧
X3, which can be a great or a small circle. The projection
of the circle onto the catadioptric image is carried out as in
(39) with C∗

2 = S0C
∗S̃0. Where C∗

2 could be a line, but this
is not a problem in CGA, since it is represented as a circle
with one point at infinity. The back projection of a circle (or
line) C∗

2 that lies on the catadioptric image plane, can be
found easily with C∗ = S̃0C

∗
2S0.

In Fig. 3 the projection of circles on the sphere, and their
projection onto the catadioptric image plane is shown.

D. Line Images

The paracatadioptric projection of a line L∗ in the 3D
space (Fig. 4) can be found by defining a plane where the
line L∗ and the center of the sphere S lie, that is Π∗ = L∗∧S.
Then, the plane Π∗ is intersected with the sphere to obtain a
great circle as C∗

s = S ·Π∗. Finally, the circle Cs is projected
onto the image plane using the inversion C∗

c = S0C
∗
s S̃0 .

Fig. 3. Projection of circles on the sphere

V. EXPERIMENTAL RESULTS

The task to achieve consists of driving a mobile robot
parallel to a given straight line. The mobile robot is a
nonholonomic system with a paracatadioptric sensor. We
assume that the camera optical axis is superposed with the
rotation axis of the mobile robot. Thus, the kinematic screw
is only composed by the linear velocity v along the e1 axis
and the angular velocity ω.

The problem will be solved using a paracatadioptric image
of lines, where one of those lines is the paracatadioptric
image of the desired line Cd and the other one is the current
paracatadioptric image of the current line C. These lines
will be projected onto the sphere and then onto a virtual
perspective plane Πp, in this plane the image projection are
straight lines. Finally, with the lines on the perspective plane
we will compute the angular and lateral deviations.

Consider the paracatadioptric image Cd of the desired 3D
line L∗

d, its back-projection onto the sphere is defined as

C∗
s = S̃0C

∗
dS0 . (40)

Then, the plane where the circle lies is defined as

Π∗
d = C∗

s ∧ e∞ . (41)

Finally, the intersection of the plane Π∗
d with the perspec-

tive plane Π∗
p is

L∗
pd = Π∗

d · Π∗
v . (42)

This line is the projection of the paracatadioptric image line
C∗

d onto the perspective plane Π∗
p. The perspective plane can

be defined as Πp = n̂+δe∞, where n̂ = n/|n| and n = (S∧
S∧e∞) · −E. Note that the expression S ∧ S∧e∞ represents
the line passing through the centers of both spheres (S and
S0). The value of the scalar δ can be defined arbitrarily.

Fig. 4. Projection of a line in the space
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The current paracatadioptric line C can be projected into
the line L in the perspective plane in similar way using the
above equations, see Fig. 5.

Fig. 5. Projection of the paracatadioptric lines into the perspective plane.

The lines Lp∗ and L∗
pd, on the perspective plane, define a

rotor which can be computed with

R = 1 + L∗
pL

∗
pd . (43)

Where L∗
pL

∗
pd represents the geometric product of the two

lines. The angle between the lines is then

θ = (R · e12) 〈R〉0 , (44)

which represents the angular deviation. The lateral deviation
can be found with the signed distance between the lines, the
signed distance between the lines is

d = (L∗ · e12e0) − (L∗
d · e12e0) . (45)

The angular and lateral deviations are used in a dynamic
controller ,proposed in [10], to generate the robot’s angular
velocity. The dynamic controller is

ω = −k2vd
sin θ

θ
− k3|v|θ, (46)

where the control gains are defined as k2 = α2 and
k3 = 2ξα2. The value of α is left free to specify faster
or slower systems, and where ξ is usually set to 1/

√
2. The

trajectories of the paracatadioptric images and the current
paracatadioptric line are show in Fig. 6. These trajectories
confirm that task is correctly realized. In Fig. 7 the angular
an lateral deviations of the current paracatadioptric image
with respect to the desired image are shown. These figures
show that both deviations are well regulated to zero.

VI. CONCLUSIONS

In this work a comprehensive geometric model for para-
catadioptric sensors has been presented. The model is based
on the equivalence between paracatadioptric projection and
the spherical projection followed by an inversion. The main
reason for the use CGA is due to its capability to represent
inversion as versors (i.e. a special group of multivectors).
The advantage of this representation is that it can be applied
not only to points but also to point-pairs, lines, circles,
spheres and planes in the same way. This will allow an

a) b)

Fig. 6. a) Tracked line in the paracatadioptric image, b) Trajectory of the
projected lines in the paracatadioptric image

a) b)

Fig. 7. a) Angular deviation, b) Lateral Deviation

easier implementation of paracatadioptric sensors in more
complex applications. The proposed framework has been
used to control a nonholonomic robot, with a paracatadioptric
sensor. The input to the control scheme were paracatadioptric
images of the desired and current lines.
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