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Abstract— We studied the feasibility of estimating walking
speed using two shank-mounted accelerometers. Our approach
took advantage of the inverted pendulum-like behavior of the
stance leg during walking to identify a new method for dividing
up walking into individual stride cycles and estimating the
initial conditions for the direct integration of the accelerometer
signals. To test its accuracy, we compared speed to known
values during treadmill walking. The speed estimation method
worked well across treadmill speeds yielding a root mean square
speed estimation error of only 8%. This accuracy is comparable
to that achieved from shank-mounted inertial measurement
unit, providing a robust and low-cost alternative in using
accelerometer for walking speed estimation. Shank-mounted
accelerometer may be of great benefit for estimating speed in
walking for the embedded control of knee-mounted devices such
as prostheses and energy harvesters.

I. INTRODUCTION
An important component of gait analysis is the determina-

tion of walking’s spatial and temporal parameters including
heel strike, toe-off, cadence, stride length and walking speed.
These parameters are useful for diagnosing abnormal gait,
evaluating the effectiveness of rehabilitation techniques, con-
trol of energy harvester and exoskeleton [1], [2], [3], [4], [5],
[6]. Optical motion analysis systems along with force plat-
forms provide a complete gait analysis system; however they
are expensive, sophisticated, require a dedicated laboratory,
and the set up and data analysis is timely. Recent efforts have
focused on portable gait analysis systems using accelerom-
eters and gyroscopes. Accelerometers measure acceleration,
gyroscopes measure angular velocity, and inertial measure-
ment units (IMUs) are the combination of both sensors.
Most studies using accelerometers and gyroscopes have been
concerned with estimating temporal gait parameters—such as
stride frequency—from characteristic features in the sensor
signals when attached to different body locations including
the truck, thigh, shank and foot [7], [8], [9], [10].

Determining walking speed requires estimating stride
length in addition to stride frequency. One approach esti-
mates stride length indirectly by first computing segment
angles from gyroscope measurements and then relating the
stride length to the computed angles using an anthropomor-
phic model. Miyazaki integrated angular velocity measured
by a thigh-mounted gyroscope to determine thigh angle
[11]. A single element model related thigh angle to stride
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length resulting in an error in estimated speed of less than
15%. Aminian et. al. used a more realistic two-segment
model with gyroscopes mounted on the thigh and shank
and achieved a root mean square estimation error of 7%
[12]. While these studies demonstrate reasonable accuracy
in estimating speed, they are limited by their requirement
of subject-specific calibration—the same angles in a taller
person will correspond to longer stride lengths and faster
speeds. Instead of estimating spatial parameters indirectly,
an alternative is to determine displacements by direct time
integration of measured accelerations. This approach is more
general than the previously described indirect approach as it
does not require subject-specific calibration. It requires the
acceleration measurements and continuous knowledge of the
device angle with respect to gravity to subtract gravitational
acceleration. Consequently, IMU has been attached at lower-
limb locations to estimate walking speeds. A foot mounted
IMU was used by [13] to estimate spatio-temporal gait pa-
rameters. Gait phase segmentation and strapdown integration
resulted in root mean square speed estimation errors of about
5%. Li et. al used a shank mounted IMU to estimate walking
speed and achieved comparable results with a root mean
square speed estimation error of 7% [14].

Accelerometers are significantly lower in power consump-
tion and cost than gyroscopes, and demonstrate a high
degree of reliability in measurement with little variation
over time [15]. Due to recent breakthrough developments in
micro-machining technology, the costs of micro-machined
accelerometers are decreasing while the accuracy is being
improved. Accelerometers have less fundamental physical
constraints than gyroscopes, so the precision of a micro-
machined accelerometer is less inhibited than the precision
of a micro-machined gyroscope. Zijlstra and Hof studied
the feasibility of estimating spatio-temporal gait parameters
using a trunk-mounted accelerometer. From the measured
upward and downward displacements of the trunk, an in-
verted pendulum model estimated mean step length yielding
root mean square speed estimation errors ranging from 5%
at a walking speed of 0.5 m/s to 14% at a walking speed
of 1.75 m/s [16]. While this approach is quite useful in
estimating spatio-temporal gait parameters, it is limited by its
requirement of subject-specific calibration—the same angles
in a taller person will correspond to longer stride lengths
and faster speeds. Moreover, it is not always desirable to
mount sensors directly on the trunk. During walking, the
support moments generated at the ankle, knee and hip joints
of the support leg influence the measured trunk acceler-
ations, resulting in a complex acceleration pattern [16].
Consequently, it affects the accuracy of speed estimation.
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Fig. 1. Sensor configuration. Two inertial measurement units (IMUs) are
attached to the shank in the sagittal plane on the lateral side. The normal
accelerations an1 and an2 are measured along the n direction, and the
tangential accelerations at1 and at2 are measured along the t direction. The
arrows indicate positive axes for the corresponding sensor measurements.
The world coordinate is defined by the x and y axes, and the vertical axis
y extends in a direction parallel to gravity.

In addition, mounting sensors closer to the knee joint would
be more useful for the embedded control of knee-mounted
devices such as prostheses, orthoses, exoskeletons and energy
harvesters [17], [18], [6], [5]. This study uses the acceleration
signals from two shank-mounted inertial measurement units
(IMUs) to estimate walking speed. Our approach uses the
relationship between two tangential accelerations on a rigid
body to obtain its position in space. To test its accuracy, we
compared algorithm speed estimates to known values during
treadmill walking at a range of speeds.

II. METHODS

A. Speed estimation

Two wireless inertial measurement units (IMUs) were
used to measure shank linear accelerations. Each IMU (Mi-
croStrain Inertia-Link) contained an accelerometer and a
gyroscope. When the shank is vertical with respect to the
world coordinate system, the tangential and normal axes of
the accelerometer point in the fore-aft and vertical directions,
respectively (Figure 1). The shank angle, θ, is defined as the
angle between the negative normal axis of the accelerometer
and the vertical axis of the world coordinate system.

The tangential acceleration components from two ac-
celerometers on a rigid body relate directly to angular accel-
eration. The shank angular acceleration, α(t), was calculated
using the accelerometer-measured tangential acceleration sig-
nals at1(t) and at2(t),

α(t) =
at2(t)− at1(t)

r
, (1)

where r is the distance separating the sensors (Figure 1).
The angular acceleration is filtered using both a high pass
filter (0.3 Hz cutoff 2nd order Butterworth) and a low
pass filter (2.5 Hz cutoff 2nd order Butterworth) before the
computation. The shank angular velocity ω(t) was computed
by integrating the angular acceleration α(t),

ω(t) =
∫ t

0

α(τ)dτ + ω(0), (2)
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Fig. 2. Tangential acceleration at, radial acceleration an and calculated
angular velocity ω. Accelerations from the low sensor are black, and from
the high sensor are grey. The angular velocity is filtered.

using an initial value ω(0)=0. Following integration, the
angular rate is filtered using a high pass filter (0.3 Hz cutoff
2nd order Butterworth) to eliminate the constant offset that
causes drift.

To compute the displacements along the horizontal and
vertical world coordinate axes, we first resolved the filtered
(2.5 Hz cutoff 2nd order Butterworth) acceleration signals
an(t) and at(t) into component accelerations ax(t) and ay(t)
in the world coordinate system according to

ax(t) = an(t) sin θ(t)− at(t) cos θ(t)
ay(t) = −an(t) cos θ(t)− at(t) sin θ(t)− g,

(3)

where θ(t) is the shank angle, and g is the acceleration due
to the gravity (Figure 1). This calculation was performed
using the acceleration signals from the upper sensor, the
lower sensor, and the average signal (resulting in three speed
estimation methods). The shank angle θ(t) was computed by
integrating the angular velocity ω(t),

θ(t) =
∫ t

0

ω(τ)dτ + θ(0), (4)

where θ(0) is the initial shank angle before integration. With
the resolved accelerations ax(t) and ay(t), we computed the
associated velocities vx(t) and vy(t),

vx(t) =
∫ t

0
ax(τ)dτ + vx(0)

vy(t) =
∫ t

0
ay(τ)dτ + vy(0),

(5)

where vx(0) and vy(0) are the initial horizontal and vertical
velocity conditions.

By integrating the velocities vx(t) and vy(t), we obtained
the horizontal displacement, sx(t), and vertical displacement,
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sy(t),
sx(t) =

∫ t

0
vx(τ)dτ + sx(0)

sy(t) =
∫ t

0
vy(τ)dτ + sy(0),

(6)

where sx(0) and sy(0) are the initial horizontal and vertical
positions before the start of integration.

The continuous walking motion was segmented into a
series of stride cycles, resetting the integration of Equations
(4)-(6) at the beginning of each new cycle. Similar to the
method of [14], each new stride cycle was defined by the
time in the stance phase when the shank is parallel to the
direction of gravity. This occurs at the local maximum during
the lengthy period of negative angular velocity, as shown in
(Figure 2). At this event, the initial conditions for integration
were assumed to be θ(0) = 0, vy(0) = 0, vx(0) = 0,
sy(0) = 0, and sx(0) = 0. This allowed for the integration
of Equations (4)-(6), providing a first estimate of horizontal
and vertical displacements.

To reduce the estimation error caused by offsets in the
acceleration measurements, we assumed zero net acceleration
within each stride cycle. So, during steady state walking
the shank horizontal and vertical velocities are the same at
the beginning and end of the stride cycle. The horizontal
velocity at the beginning of the stride, vx(0), equals zero,
however offsets in the acceleration measurements result in
the horizontal velocity at the end of the stride, vx(T ), being
nonzero. We estimated this mean horizontal acceleration
offset, āx, as

āx = (vx(T )− vx(0))/T. (7)

The contribution of this offset āx to the estimated hori-
zontal displacement was

s̄x =
1
2
āxT 2 =

1
2
T · vx(T ). (8)

Similarly, we estimated the mean vertical acceleration
offset, āy , as

āy = (vy(T )− vy(0))/T. (9)

The contribution of this offset to the estimated vertical
displacement was

s̄y =
1
2
āyT 2 =

1
2
T · vy(T ). (10)

At the end of each gait cycle, we performed a correction
on the estimated horizontal and vertical displacement of
Equation (6) by subtracting the corresponding offsets from
Equations (8) and (10). The corrected horizontal displace-
ment s′x(T ) and vertical displacement s′y(T ) in the gait cycle
were calculated as

s′x = sx(T )− 1
2T · vx(T )

s′y = sy(T )− 1
2T · vy(T ), (11)

and the stride length sT was computed as

sT =
√

(s′x)2 + (s′y)2. (12)

With the stride length sT , we computed the average
walking speed V (T ), in m/s, for each gait cycle as

V (T ) = sT /T. (13)

Before each walking experiment, the normal axes of the
accelerometers were aligned with gravity using the Inertia-
Link software. During the experiment, data was collected
simultaneously from both sensors at a sample rate of 100
Hz using Labview (National Instrument, TX). The speed es-
timation algorithm was programmed in Matlab (Mathworks,
Natick, MA).

B. Experimental methods

Treadmill walking experiments were performed to test the
accelerometer based walking speed estimation. Ten male and
eight female subjects (age: 22.7 ± 4.7 years; height: 1.76
± 0.09; tibia length: 0.42 ± 0.03 m) participated in the
experiment. All subjects were healthy and did not exhibit any
clinical gait abnormalities. The Queen’s General Research
Ethics Board has approved the study and subjects gave their
informed consent before participating.

The volunteers performed walking at treadmill speeds of
0.8, 1.0, 1.2, 1.4, 1.6 and 1.8 m/s. Subjects walked at each
of these speeds with sensor separation distances of 6.3 and
10.0 cm. The subjects wore their own athletic clothing and
walking shoes during the experiments. Trials were 90s in
duration. During all trials, the IMUs were mounted on a
rigid plastic ruler and attached directly onto the calf parallel
to the sagittal plane. The pair of sensors was secured onto the
subject’s skin using double sided tape and athletic tape. The
midpoint between the two sensors was positioned midway
between the knee and ankle along the longitudinal axis. It
was expected that the sensors would not interfere with the
subjects’ normal walking pattern, and that vibration of the
attachment would be minimal.

C. Data analysis

For each treadmill walking trial we calculated the mean
walking speed by averaging the stride-by-stride data, and
then calculating a moving window average (size=20) on the
first 30s of data. Estimation error at a given speed was
calculated as the difference between the estimated speed
and the actual treadmill speed. Within a condition, we aver-
aged across subjects to determine the mean estimation error
(Mean) and standard derivation (S.D.). We also calculated
the root mean square error (RMSE) of the speed estimates
as RMSE =

√∑
(estimated-actual)2/N (N is the number

of samples). For each combination of sensor separation dis-
tance and speed estimation method we calculated the RMSE
between eighteen subjects across six speeds (N = 108). The
effects of walking speed, sensor separation and estimation
method on speed estimation error were tested using repeated-
measures ANOVA, with P < 0.05 considered statistically
significant.

Linear regression was performed on the mean speed
estimations from eighteen subjects for all combinations of
sensor separation distance and speed estimation method.
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Fig. 3. Estimated speeds from lower sensor with separation
distances of 10.0 cm (•) and 6.3 cm (¥). The solid grey line is
the line of identity where the estimated speed equals the treadmill
speed. Values shown are means± S.D., N = 18.

The y-intercept value was used to adjust the mean speed
estimations such that a linear regression on the adjusted
values would produce a y-intercept of zero. Estimation error
and RMSE calculations were performed on the adjusted
speed estimations as described above.

III. RESULTS

The proposed speed estimation method underestimated
walking speed, however the estimation errors were consistent
across experimental conditions (Table 1). Figure 3 compares
sensor separation distance, and while this did not affect the
speed estimation error (P = 0.18), the algorithm tended
to have slightly lower errors using a separation distance of
6.3 cm. Actual speed did not affect the speed estimation
error (P = 0.46). The three speed estimation methods were
found to have a significant effect on speed estimation error
(P = 0.02). Figure 4 shows that the lower sensor estimation
has smaller errors, the higher sensor estimation has larger
errors, and the average signal estimation falls between the
high and low speed estimations.

Figure 5 shows subject data with a linear fit having a slope
of 0.97 and a y-intercept of -0.15 (r2=0.98). The adjusted
data accurately estimates speed with low variability. Figure 6
presents typical speed estimation data from a single subject.
This pattern holds across the eighteen measured subjects as
summarized in Table 1. The RMSE for the adjusted low
sensor estimation using a separation distance of 6.3 cm was
0.08.

IV. DISCUSSION

Our results indicate that two shank-mounted accelerome-
ters can provide accurate estimates of walking speed across
a wide range of speeds. This approach used the relationship
between two tangential accelerations on a rigid body to
obtain angular velocity. The algorithm worked well across
speeds yielding a root mean square speed estimation error
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Fig. 4. Estimated speeds with separation distance of 6.3 cm using
the low (•), average (¥) and high (N) sensor estimations. The solid
grey line is the line of identity where the estimated speed equals
the treadmill speed. Values shown are means± S.D., N = 18.
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Fig. 5. Estimated speeds from the low sensor for all subjects (N =
18) using a sensor separation distance of 6.3 cm. The solid grey
line is a linear fit to the data.
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TABLE I
SPEED ESTIMATION ERRORS AT DIFFERENT SPEEDS AND SEPARATION DISTANCES

Sensor Separation
Speed (m/s)

Sensor Separation 0.8 1.0 1.2 1.4 1.6 1.8 RMSE
6.3 cm low −0.18± 0.08 −0.19± 0.07 −0.18± 0.06 −0.19± 0.06 −0.19± 0.06 −0.22± 0.06 0.20

low adj −0.03± 0.08 −0.04± 0.07 −0.03± 0.06 −0.04± 0.06 −0.04± 0.06 −0.07± 0.06 0.08

avg −0.19± 0.08 −0.21± 0.07 −0.21± 0.06 −0.22± 0.06 −0.22± 0.06 −0.26± 0.06 0.23

avg adj −0.05± 0.08 −0.07± 0.07 −0.07± 0.06 −0.08± 0.06 −0.08± 0.06 −0.12± 0.06 0.10

high −0.21± 0.09 −0.23± 0.07 −0.23± 0.06 −0.25± 0.06 −0.26± 0.07 −0.30± 0.06 0.26

high adj −0.07± 0.09 −0.09± 0.07 −0.09± 0.06 −0.11± 0.06 −0.12± 0.07 −0.16± 0.06 0.13

10.0 cm low −0.18± 0.10 −0.22± 0.08 −0.19± 0.08 −0.22± 0.08 −0.23± 0.10 −0.26± 0.13 0.24
low adj −0.05± 0.10 −0.09± 0.08 −0.06± 0.08 −0.09± 0.08 −0.10± 0.10 −0.13± 0.13 0.13

avg −0.20± 0.09 −0.24± 0.08 −0.22± 0.07 −0.26± 0.06 −0.28± 0.08 −0.31± 0.11 0.26

avg adj −0.08± 0.09 −0.12± 0.08 −0.10± 0.07 −0.14± 0.06 −0.16± 0.08 −0.19± 0.11 0.16

high −0.21± 0.08 −0.26± 0.07 −0.24± 0.06 −0.29± 0.06 −0.31± 0.07 −0.36± 0.09 0.29

high adj −0.10± 0.08 −0.15± 0.07 −0.13± 0.06 −0.18± 0.06 −0.20± 0.07 −0.25± 0.09 0.19

low, avg, high indicate speeds estimated using low, average and high accelerometer measurements.
low adj, avg adj, high adj indicate estimated speeds from linear regression.
Values are means ±S.D., N = 18.

of only 8% when using the adjusted low sensor estimation
with a sensor separation distance of 6.3 cm.

The separation distance between the two sensors af-
fected speed estimation results (Figure 3). The sensors were
mounted on the shank, which is not a flat surface. Although
a ruler was used to improve alignment, deviations from the
sagittal plane affect the linear acceleration signals thereby
affecting speed estimation. A smaller distance between the
sensors reduces the magnitude of alignment error resulting
in a decreased speed estimation error. As expected, the
closer configuration (6.3 cm) provided a more accurate speed
estimation than the larger separation distance (10 cm). This
result is promising for the development of a portable gait
speed estimation system because it allows the two accelerom-
eters to be placed close together.

The acceleration signals (low, average and high) used
in the algorithm affected speed estimation results (Figure
4). To determine the initial condition for integrating the
sensor horizontal acceleration, we assumed a zero sensor
horizontal velocity at mid-stance shank vertical (Equation
5). Any deviation of the actual initial horizontal velocity
from zero would result in the same amount of offset in
the estimated horizontal speed. Because the shank rotates
about the ankle joint at the mid-stance shank vertical event,
the absolute value of the initial horizontal velocity vx(0) is
approximately equal to the product of the angular velocity ω
of the shank and the distance of the sensor to the ankle joint.
At the mid-stance shank vertical event, the shank angular
velocity reached a non-zero local maximum resulting in a
positive nonzero initial horizontal velocity (Figure 2). The
speed estimation algorithm underestimated walking speed,
and the estimation error was larger for the higher sensor
because the distance from the sensor to the ankle joint was
larger, resulting in a larger initial horizontal velocity at the
peak of the inverted pendulum arc. This suggests that the
sensors should be placed more distally on the shank for

accurate speed estimation.
Although the algorithm underestimates speed, the data

follows a linear trend and can be adjusted using the y-
intercept value to produce very accurate speed estimations
(Figure 6). This relies on a constant linear adjustment, as
opposed to a multiplication factor of 1.25 used by [16]. The
present accuracy is comparable to that achieved by Li et
al. (2009) who used one shank mounted gyroscope, while
we used two shank mounted accelerometers. The results
indicated that linear correction is necessary when using
accelerometers for walking speed estimation.

V. CONCLUSION

The present paper investigated the feasibility of using
two shank-mounted accelerometers in walking speed estima-
tion. By appropriately segmenting a walking sequence into
gait cycles, the algorithm estimated stride-by-stride walking
speed. Treadmill walking experiments demonstrated that this
method could accurately estimate the walking speeds under
different walking conditions.

Since spatio-temporal gait parameters have strong correla-
tions with muscle activity and energy generation/absorption
of joints during walking, real-time estimation of these pa-
rameters is critical for implementing optimal adaptive strate-
gies for prostheses and orthoses, exoskeletons, and energy
harvester control. The long term goal is to integrate gait
analysis techniques with real-time signal processing methods
to develop a low-cost, portable, and real-time gait parameter
estimation system for wearable robotic applications.
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