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Abstract— Multi-target tracking becomes significantly more

challenging when the targets are in close proximity or fre-

quently interact with each other. This paper presents a promis-

ing tracking system to deal with these problems. The novelty of

this system is that laser and vision, tracking and learning are

integrated and can complement each other in one framework:

when the targets do not interact with each other, the laser-based

independent trackers are employed and the visual information

is extracted simultaneously to train some classifiers for the

“possible interacting targets”. When the targets are in close

proximity, the learned classifiers and visual information are

used to assist in tracking. Therefore, this mode of co-operation

between them not only deals with various tough problems

encountered in the tracking, but also ensures that the entire

process can be completely on-line and automatic. Experimental

results demonstrated that laser and vision fully display their

respective advantages in our system, and it is easy for us to

obtain a perfect trade-off between tracking accuracy and time-

cost.

I. INTRODUCTION

A robust and efficient multi-target tracking system has
become an urgent need in various application domains,
such as surveillance, pedestrians flow analysis, intelligent
transportation and many others. Compared to the traditional
vision-based tracking system, as a new kind of measurement
instrument, the laser range scanner has received the increas-
ing attention for solving tracking problems in recent years. In
a laser-based tracking system (as shown in Fig.1), the targets
are represented by several points, hence the tracking become
much easy and it is easy to obtain a much better performance
in both accuracy and time-cost when the targets are in far
apart. The system [1], [2] has been successfully applied into
the JR subway station of Tokyo for the pedestrians flow
analysis and reached the 83% accuracy overall.
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Fig. 1. A typical laser-based tracking system.
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Fig. 2. How can the persons’ correct trajectories be maintained under this
condition? In frame 105, three persons were walking together. They were
merging in frame 175, how could their correct trajectories be maintained
when they split?

However, the drawback of a laser-based tracking sys-
tem is inherent and obvious: it lacks visual information,
consequently it is difficult to obtain a set of features that
uniquely distinguish one object from another. Hence, when
the targets are in close proximity or frequently interact with
each other, performing the robust tracking becomes specially
challenging. Moreover, when the well-known “merge/split”
condition occurs (as shown in Fig.2), maintaining the correct
tracking seems to be an impossible mission. It is easy to think
of fusing the laser and vision into one framework to solve
these problems. Therefore, the core concerns of this research
are: (1) How to make the laser and vision fully display their
respective advantages in one framework to solve the tough
problems encountered in multi-target tracking? (2) How to
develop a tracking system that can obtain a perfect trade-off
between tracking accuracy and time-cost?

In this paper, we integrate laser and vision, tracking and
learning and make them complement each other in one
framework to deal with various tracking problems. The key
idea of this work can be depicted in Fig.3 and Fig.4. When
the targets do not interact with each other, the laser scanner
can perform the efficient tracking and it is easy for us to
extract visual information from the camera data. Due to the
reliability of these tracking results, they are used as positive
or negative samples to train some classifiers for the “possible
interacting targets”. When the targets are in close proximity,
the learned classifiers and visual information will in turn
assist in tracking.

This mode of co-operation between laser and vision,
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Fig. 3. Tracking for Learning. When the targets do not interact with
each other, the laser-based independent trackers should be employed and
the visual information is extracted simultaneously to perform the on-line
learning.

tracking and learning offers several advantages: (1) Laser
and vision can fully display their respective advantages (fast
of laser and rich information of camera) in this system. (2)
Because the “possible interacting targets” are depicted by
a discriminative model with a supervised learning process,
this model can consider the information from the “confusing
targets” and can sufficiently exploit the targets’ history.
Through these discriminative models, we can easily deal
with some challenging situations in the tracking. (3) This
“tracking-learning adaptive loop” ensures that the entire
processes can be completely on-line and automatic.

II. RELATED WORK

In recent years, several tracking system based on the
combination of laser and camera have existed [3], [4], [5],
[6], [7], [8], [9]. However, all the above systems can only
detect and track one or few persons, which cannot be applied
in a real surveillance and monitoring environment. (The
system [9] and [6] also utilize the classifiers to assist in
tracking, but please note that: their classifiers are the pre-
trained detectors and cannot be updated in the tracking,
which is completely off-line learning.)

On the other hand, the system proposed by [10], [11] can
be utilized to track more targets in the outdoor environment.
But once some challenging situations (such as “merge/split”)
occur, their systems are difficult to maintain the correct
tracking. To our knowledge, the proposed system is the only
one system that can be used in the wide and open area and
robustly track more than 15 targets in the same time as yet.

III. SYSTEM OVERVIEW

The overall tracking system is illustrated in Fig.5. Our
tracking system consists four components: Sensor Fusion,
Tracking Situation Switch, Non-correlated Targets Tracking
and Interacting Targets Tracking.

In the Sensor Fusion part, we utilized a time server to
deal with time synchronization problem between different
sensors. The extrinsic calibration was conducted by several
control points in a box. For details about this part, please
refer [11]. On the other hand, in order to switch tracking
and learning, we should detect different tracking situations,
such as non-correlated targets tracking and interacting targets

Fig. 4. Learning for Tracking. When the targets are in close proximity,
the learned classifiers and visual information in turn assist in tracking.

tracking (correlated targets or merge/split condition). For
details about this part, please refer [12].

The two main components that will be described in this
paper are the Non-correlated Targets Tracking (tracking
for learning) and Interacting Targets Tracking (learning for
tracking). In the next two sections, we will provide the
details about how the laser and vision, tracking and learning
complement each other in one framework.

IV. TRACKING FOR LEARNING

Actually, when the targets are far apart (non-correlated
targets), tracking becomes relatively easy since it can be
solved through multiple independent trackers. Moreover,
laser scanner is insensitive to weather condition and the
data is easy to process, therefore it can provide a robust
and efficient tracking in this situation. Once we obtain the
tracking results, the visual information from camera for this
target can be extracted as samples to train a classifier. The
positive samples should be from this targets and the negative
one are from the “possible confusing targets”. Consequently
the classifier of each target is a discriminative model that
not only depicted the appearance of target, but also consider
the information from other targets. An example is shown in
Fig.6. In this section, we will provide the details about this.

A. Independent Tracker and Visual Information Extraction

We employed multiple independent particle filter-based
trackers to perform the laser-based tracking. We utilized a
“two feet walking model” as proposal distribution, and the
observation model was similarity between laser point sets
and predicted walking style of pedestrians. Please refer [2]
for details about this part.

Once we obtained the tracking results of each target,
they were projected to the image coordinate (details about
extrinsic calibration, please refer [11]), and then a set of
random image patches [13] were spatially sampled within the
image region of the target. We utilized these random image
patches as samples for the on-line supervised learning. In
this case, each target was represented by a “bag of patches”
model.

Extracting some distinguishable features from the image
patches is relatively important for the learning process. There
have been a large number of derived features that can be
employed to represent the appearance of an image patch,
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Fig. 5. The overview of our tracking system.
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Fig. 6. Non-correlated targets tracking and the on-line supervised learning. We employed the laser-based independent trackers to track target A and
B and detected that they should be “possible interacting targets” in frame 8954 (Fig.a). Some random image patches were sampling in them and the visual
information should be extracted (Fig.b). These image patches were used as positive or negative samples to train the classifier A and B (Fig.c).

such as color information (RGB intensity vector), texture
information (Haralick feature), edge information (edge orien-
tation histogram) and so on. Since we utilized image patches
as samples, the feature vector should contain local informa-
tion. On the other hand, by conducting some experiments,
we found that the distinguish-ability of texture was not good
for our data. Hence, we employed the RGB intensity + edge
orientation histogram (EOH) [14] to extract features from
image patches (as shown in Fig.6-b). We adapted an d-
dimensional feature vector to represent each image patch.
Therefore, these feature vectors can be utilized as samples
for the learning or testing.

B. On-line Learning and Updating

For the “possible interacting targets”, the strong classifiers
should be trained, which represent the appearance of targets.
Let each image patch be represented as a 𝑑-dimensional
feature vector. For target 𝑘 in frame 𝑡, {s𝑖𝑡,𝑘, 𝑙𝑖𝑡,𝑘}𝑁𝑖=1 denote
𝑁 samples and their labels, where s ∈ ℜ𝑑 and 𝑙 ∈ {−1,+1}.
The positive samples are the image patches come from region
of target 𝑘, while the negative samples are the image patches
that come from some “possible confusing targets”. In this
work, we employed Classification and Regression Trees [15]
as weak classifiers. Once the new samples are available,
the strong classifier should update synchronously, which
would make the classifier stronger and reflect the changes

Learning Algorithm
Input: Feature vectors of image patches and their labels {si

t,k
, li

t,k
}N

i=1,
t = 1, ..., T
Output: The strong classifier H(st,k) of target k at time t
Train a Strong Classifier (for frame 1)

1) Initialize weights {wi}
N
i=1 to be 1/N .

2) For j = 1...M (train M weak classifiers)
a) Make {wi}

N
i=1 a distribution.

b) Train a weak classifier hj .
c) Set err =

PN
i=1 wi|h(si

1,k
) − li1,k

|.
d) Set weak classifier weight αj = 0.5 log(1 − err)/err.

e) Update example weights wi = wie
αj |hj(si

1,k)−li
1,k|

3) The strong classifier is given by sign(H(s1,k)), where
H(s1,k) =

PM
j=1 αjhj(s1,k).

Update the Strong Classifier (for new frame t is coming in)
1) Initialize weights {wi}

N
i=1 to be 1/N .

2) For j = 1...K (choose K best weak classifiers and update their
weights)

a) Make {wi}
N
i=1 a distribution.

b) Choose hj(st−1,k) with minimal err from
{h1(st−1,k), ...hM (st−1,k)}.

c) Update αj and {wi}
N
i=1.

d) Remove hj(st−1,k) from {h1(st−1,k), ...hj(st−1,k)}.
3) For j = K + 1...M (add new weak classifiers)

a) Make {wi}
N
i=1 a distribution.

b) Train a weak classifier hj .
c) Compute err and αj .
d) Update examples weights {wi}

N
i=1.

4) The updated strong classifiers is given by sign(H(st,k)) , where
H(st,k) =

PM
j=1 αjhj(st,k).

Fig. 7. On-line learning algorithm
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Fig. 8. Correlated targets tracking. We detected that target A and B were correlated targets (Fig.a). Some random image patches were sampling in
them (Fig.b). We used their classifiers to obtain the score maps (Fig.c). After the particle filtering process, we acquired their tracking results (Fig.d).
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Fig. 9. Merge/Split condition. In frame 5427, we detected that A and B were merging (Fig.a); we track A and B as one target (Fig.b). After 55 frames,
we detected that they split (Fig.c), and some random image patches were sampling in them (Fig.d). We used their classifiers to obtain their score maps
(Fig. e). After the particle filtering process, we obtained the tracking results (Fig.f).

in the object appearance. Therefore, poor weak classifiers
are removed and newly trained classifiers are added, which
is motivated by Ensemble Tracking [16]. The whole learning
algorithm is shown in Fig.7.

V. LEARNING FOR TRACKING

When the targets are in close proximity or interact
with each other, laser-based independent tracker is difficult
to maintain the correct tracking. Specifically, when the
“merge/split” conditions occur, associating the identities of
the targets becomes a significantly challenging problem. In
this case, the visual information and the learned classifiers
should help us to deal with them. In this section, we will
provide details about how these classifiers assisted in track-
ing to deal with some challenging situations encountered in
the tracking.

A. Correlated Targets Tracking

Once we detected that some targets were in close prox-
imity from the laser data, we concluded that they were
correlated targets. When this condition occurred, a set of
random image patches were sampled within the interacting
region on image, and the feature vectors of these image
patches were imputed to the classifiers of interacting targets
respectively. The outputs of these classifiers are scores.
Hence, we could obtain the score maps of these interacting
targets effortlessly.

Once we obtained the score maps of the interacting targets,
we employed the particle filter technique [17] to obtain the
positions of these targets. The likelihood for updating in the

particle filter was

𝑃𝑠𝑐𝑜𝑟𝑒𝑠(y𝑡∣x𝑡,𝑘) =
1√
2𝜋/𝜎

𝑁∑

𝑖=1

𝛽𝑖 exp(
(d(x𝑡,𝑘)− d𝑖

𝑡,𝑘)
2

𝜎2
)

(1)
where 𝛽𝑖 was the normalized score of image patch 𝑖, d(x𝑡,𝑘)
the center position of candidate target 𝑘, d𝑖

𝑡,𝑘 the center
position of image patch 𝑖, and 𝜎 was the covariance which
depended on the size of the image patch. For each target, the
observation was further peaked around its real position. As a
result the particles were much focused around the true target
state after each level’s re-weighting and re-sampling. Sub-
sequently, we obtained the new position of these interacting
targets. The overview of the process is shown in Fig.8.

B. Merge/Split Condition

Sometimes, it is difficult to obtain the separate detections
by the laser-based clustering algorithm. Moreover, the targets
in image may occlude each other completely. Hence, the so-
lution described above is not available. Once we detected that
such situation occurred, we dealt with it as a “merge/split”
condition.

If some targets were merging together, we initialized the
state of the “merging targets” and tracked it as one target. If
we detected that this “merging target” split and became an
interacting condition or non-correlated condition, we utilized
the classifiers of these targets to identify them (as shown in
Fig.9). Hence, we can link the trajectories of these targets
without difficulty.

With the help of the classifiers and visual information,
our method is able to deal with various complex situations
in the tracking. In addition, the tracking and learning, laser
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Fig. 10. Tracking results. The first row is the results of our system, the second and the third are the results of laser only and camera only respectively.
Please note the key target A, B, C, D and E (E appeared in 17707). Target A and C, A and E were merging in frame 17707 and 17789 respectively. 42
frames after (17831), only our tracking system maintained their correct trajectories.

and vision complement each other in the proposed method,
consequently becoming an adaptive loop, which ensures that
the entire process can be completely on-line and automatic.

VI. EXPERIMENTS AND RESULTS

We evaluated our tracking system in the real scene at a
library. In order to deal with the occlusions among targets,
we utilized two single-row laser scanners. In addition, one
camera was set on the third floor of the building. We
tested our system with 30-minute long data (about 45000
frames). When the distance between targets was less than
1.5 meters, we started to train the classifiers, and once
the distance between them was less than 0.3 meters, we
considered it as the challenging situations. In this section,
we will present our tracking results and the perform some
quantitative evaluations.

A. Tracking Results
Fig.10 shows an example of the tracking results. The first

row is our tracking results, the second is the results with
laser only, and the third is the results with camera only
(we utilized PD-PF [18] to perform the visual tracking).
We found that once the interactions occurred, laser-based
independent trackers frequently made the false labeling. On
the other hand, the vision-based trackers were difficult to
deal with “merge/split” problem. Please note the key target
A, B, C, D, and E. Target A and C, A and E were merging
in frame 17707 and 17789 respectively, 42 frames after, only
our tracking system maintained their correct trajectories.

We selected 6000 continuous frames which interactions
frequently took place and made a statistical survey about

TABLE I
DISPOSAL OF CHALLENGING SITUATIONS

Correlated Targets Merge/Split

Total/Disposal Disposal Rate Total/Disposal Disposal Rate

Our System 3832/3396 88.62% 537/439 81.75%
Laser Only 3832/1821 47.52% 537/145 27.00%
Vision Only 3832/2566 66.96% 537/189 35.20%

how many challenging situations (such as correlated targets
or “merge/split” condition) we could deal with. Once one of
these conditions occurred, but no failed tracking was caused
by it, a successful disposal was counted. The details for
this are shown in Table 1. From this table, we can see that
our tracking system can deal with most correlated targets
or merge/split conditions, which is difficult for the laser or
vision only.

B. Performance Evaluation

We evaluated the performance of our tracking system from
two aspects: tracking accuracy and time-cost (cpu computa-
tional time). We made a statistical survey of 3000 continuous
frames and the details of them are shown in Fig.11. Please
note that the ground truth was obtained by a semi-automatic
way (trackers+manual labeling). By comparing the tracking
results with ground truth, it was easy for us to recognize
different failed tracking situations, including target missed,
false location and identity switch. In addition, the time-cost
was normalized into 0 to 1. Moreover, once we started to
train the classifiers, the interactions should be counted in
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Fig. 11. Performance evaluation. (a) shows the failed tracking of three
systems in these frames. (b) shows the target and interaction number in
3000 frames, and (c) shows the time-cost of three systems per frame (Note
that the time-cost is normalized into 0 to 1 ).

TABLE II
OVERALL TRACKING PERFORMANCE

Average Accuracy Average Time-cost
Our System 89.53% 0.1511

Laser Only 73.37% 0.0296
Vision Only 80.95% 0.6906

this experiment.
From Fig.11, we can see that when there was no interac-

tion (from 1-273 frames), the time-cost of our system was
same to the laser-based one and much more efficient than the
vision-based. When the interactions occurred, although our
system needed some extra computation, it could deal with
most interactions which was difficult to the laser-based one.
In addition, the time-cost of our system was still less than
the vision-based because only a limited targets needed the
visual processing. The overall tracking accuracy and time-
cost are shown in Table 2. In the condition of average 10.26
targets per frame, 16.35% interactions, our system obtained
the highest tracking accuracy and was much faster than
the vision-based. Actually, with the increasing number of
tracking targets and interactions, our system can obtain a
much better performance than the other two systems.

VII. CONCLUSION

In this paper, we present a novel multi-target tracking
system using laser and vision in the open and wide area.
By combining the laser and vision, tracking and learning, the
proposed system can easily deal with various challenging sit-
uations in the tracking. In addition, experimental results show
that our system fully incorporates the respective advantages
of the two sensors and obtain a superior performance in both
tracking accuracy and time-cost.

However, we found that sometimes we should face dif-
ferent targets (such as pedestrians, bicycles, cars and etc.)
that have quite different dynamic models. For the present

system, we utilized the same tracking model for them,
which decreases our tracking performance. In the future, a
classification module will be added to deal with this problem.
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