

Abstract—This paper introduces a simple algorithm for
non-prehensile object transportation by a pushing robot on a
flat surface. We assume that the global position and orientation
of the robot and objects are known. The system computes a
dipole field around the object and moves the robot along the
field. This simple algorithm resolves many subtle issues in
implementing reliable pushing behaviors, such as collision
avoidance, error recovery, and multi-robot coordination. We
verify the effectiveness of the algorithm via several experiments
with varying robot and object form factors. Although object
delivery by pushing and motion control by a vector field are not
new, the proposed algorithm offers easier implementation with
fewer parameter adjustments because of its mode-less definition
and scale-invariant formulation.

I. INTRODUCTION
BJECT transportation (or delivery) is one of the most
important tasks of a mobile robot. A robot that can

automatically deliver an object from one place to another can
save human time and labor. The particular class of delivery
tasks we are concerned with is non-prehensile delivery by a
pushing robot on a flat surface (Figure 1). Most delivery
robots use hands or other mechanisms to lift an object, but
many important tasks can be achieved by simple pushing.

Fig. 1: Non-prehensile delivery by a single robot.

The implementation of an efficient pushing behavior for a

single robot is not trivial. The system must compute the
global path from the object to the goal, avoiding all obstacles
and continuously updating the robot position and orientation,
so that the object follows the path during execution. In this
work, we focus on the problem of local control, which in
itself is difficult to perform efficiently.

We conducted a preliminary study in which computer

Manuscript received September 15, 2009.
All authors are with JST ERATO Igarashi Design Interface Project, Tokyo,

Japan. Takeo Igarashi is with The University of Tokyo, Tokyo, Japan (e-mail:
takeo@acm.org). Masahiko Inami is with Keio University, Tokyo, Japan.

science students implemented a pushing behavior in a simple
simulator world. The task is to push an object to a goal
position without considering other obstacles. Most of them
chose the naïve approach of moving the robot to the canonical
pushing position behind the object and then moving the robot
toward the goal (Figure 2a). If the object swerved off course,
the robot stopped pushing and returned to the pushing
position. However, this binary mode technique is not very
efficient, because the explicit recovery operation creates a
large overhead. It is also tedious to appropriately set the offset
distance and mode switch threshold. Some students used a
more sophisticated single mode method (we call this chasing),
in which the robot continuously tried to reach a targeted
position inside the object and slightly behind its center
(Figure 2b). The target position moves as the object moves.
This technique averts explicit recovery operations for small
perturbations, but the user must carefully set the offset
distance, taking into account both robot and object size.
Goal

Robot
Object

a) Binary mode method b) Chasing method c) Dipole method

Fig. 2: Various pushing algorithms.

This paper introduces a very simple yet robust algorithm
for solving the problem of local control for pushing behavior.
The objective is to introduce a graceful transition between
pushing and recovery to mitigate the issues incurred by the
modal approaches. Our algorithm computes a continuous
flow field around the object, creating a smooth transition
between pushing motion at the desired position and return to
this position from other locations (Figure 2c). It is interesting
to note that the combination of a robot with a circular
cross-section and a simple dipole field solves the problem.
The technique is based on a very elegant mathematical
definition (see Section III) and is independent of both object
and robot size, making the implementation very simple. In
this paper, we discuss the definition, derivation, and
extensions of this algorithm and provide empirical validation
using actual robots.

In a sense, object delivery by pushing is already a solved
problem, because successful delivery has been attained in a
number of previous experiments in more adverse
environments [1][2]. Furthermore, some experiments have
used vector fields for robot control, as does our method [3].
Our contribution is in facilitating the implementation of

A Dipole Field for Object Delivery by Pushing on a Flat Surface

Takeo Igarashi, Youichi Kamiyama, Masahiko Inami

O

2010 IEEE International Conference on Robotics and Automation
Anchorage Convention District
May 3-8, 2010, Anchorage, Alaska, USA

978-1-4244-5040-4/10/$26.00 ©2010 IEEE 5114

pushing in noisy environments by providing a scale-invariant
single vector field representation. We believe that this type of
contribution (making things easier rather than making the
impossible possible) will become increasingly important as
more people join in the development of robot applications.

II. RELATED WORK
Object transportation by pushing has been investigated in

connection with parts delivery in a factory [1][2]. In this
context, a controlled environment is usually assumed, and the
exact location and pushing direction are computed for a
specific target object. In contrast, we seek a single general
algorithm that works reasonably well for a variety of objects
without parameter adjustment. In the parts delivery
application, it is also assumed that the robot follows the
calculated path perfectly, whereas our algorithm seamlessly
integrates pushing and error recovery for an imperfect control
system.

Pushing has also been studied extensively in the context of
multi-robot coordination [4][5][6][7][8][9]. In these
applications, the objective is to implement the coordinated
transportation of an object by multiple autonomous robots
that communicate with one another without using a global
sensor.

Our application of interest is object delivery in a home
environment, such as delivering a dish to a table or moving a
trash bin from one place to another [10]. Rudimentary
pushing behaviors have already been reported in some
applied systems [11], but these use a simple binary mode
approach (personal communication).

Our algorithm computes a vector field from a given
environmental configuration and moves the robot along the
field. Many successful examples of this approach have been
reported [12][13]. Munasinghe et al. presented an obstacle
avoidance using dipole field [16]. The research most closely
related to our work was performed by Emery and Balch [3],
who developed a control system for a pushing task by a
non-holonomic robot. Their technique uses separate modes
for dock and push. Dock guides the robot behind the object,
using a vector field similar to our dipole, and push moves the
robot toward a point with a given offset from the object center
(a variant of chasing). Our method unifies the dock and push
behaviors into a single scale-invariant formulation, which
reduces the need for parameter tweaking when applying it to a
new situation.

III. THE ALGORITHM

A. Problem Definition
We introduce a local control algorithm for robot delivery of

an object to a goal position on a flat surface by non-prehensile
pushing. The algorithm is designed mainly for a circular
holonomic robot pushing a circular object, but it is also
applicable to a non-holonomic robot with a circular bumper
that can spin in place (e.g. a differential drive robot). We also

show that the algorithm works reasonably well for
non-circular objects (Section V). We assume that the global
position and orientation of the robot and object are known to
the system via some type of tracking system. We also assume
that the global path from the current object position to the
goal is specified and that the robot is roughly behind the
object. (These problems can be solved separately using any
mobile path planning method [14] or object avoidance
method [3].)

The input to the algorithm is the object’s instantaneous
direction of motion (i.e. a tangent to the global path) and the
current object and robot location. The output of the algorithm
is the robot’s desired direction of motion (Figure 3). The
system then rotates the robot in the proper direction (in the
case of a non-holonomic robot) and moves the robot a
pre-defined distance. Some parameter adjustment (e.g. motor
torque and timing) is necessary to physically maneuver the
robot, but the computation of the robot’s desired direction of
motion can be handled independently of these low-level
control issues.

Input to the algorithm

robot position

object position

target moving direction
of the object

Output of the algorithm

target moving direction
of the robot

Fig. 3: Problem setting.

B. The Algorithm
The system first defines a local coordinate frame whose

origin is at the center of the object, with x-axis parallel to its
desired direction of motion. The system then computes the
polar coordinates (r, θ) of the robot in this local coordinate
frame. The desired direction of motion of the robot in this
local coordinate frame is given by (cos2θ, sin2θ). Note that
this definition is scale invariant. It is independent of the
robot–object distance and the sizes of the robot and the object.
Figure 4 illustrates the algorithm and a pseudo-code for it.

Local coordinate frame
around the object

robot position
(cosθ, sinθ)

target movement
(cos2θ, sin2θ)

θ
pushing direction

x = d

y

q p

compute(d = desired direction of motion,

p = object position, q = robot position){
 x = d; y=rotate(x, π/2);

θ = compute_angle(x, q-p);
return normalize(x cos2θ + y sin2θ);

}
Fig. 4: The algorithm.

5115

C. Derivation and Analysis
The above definition is derived by carefully blending two

different behaviors: orbiting and pushing (Figure 5). When
the robot is directly behind the object (i.e. –cosθ is large), the
robot should move toward the object to push it. The pushing
direction is given by (–cosθ, –sinθ) in the local coordinate
frame. If the robot is not in the correct position behind the
object (i.e. sinθ is large), the robot should move toward the
correct position by orbiting around the object to avoid
collision. The orbiting direction is given by (–sinθ, cosθ). We
then blend these directions together with the corresponding
weights, yielding the above definition.

.
Orbit Push

Fig. 5: Derivation of the algorithm.

It is difficult to prove that this specific formulation is the best
possible definition. However, we have tested numerous
variations and have empirically confirmed the effectiveness
of our definition (see Section VI). Moreover, we feel that its
simplicity and elegance have a certain appeal. It is interesting
to note that the derived vector field (cos2θ, sin2θ) resembles a
dipole in physics. A dipole occurs when positive and negative
electric charges or opposite electric currents exist with a small
separation between them (Figure 6). Geometrically, this
corresponds to circular trajectories that are tangent to a point
on a line.

+
-

Fig. 6: Dipoles in physics.

IV. EXTENSIONS

A. Escaping from the Front Side
One problem with the basic dipole method is that the path

from the front to the back of the object is too long and
therefore inefficient. In the extreme case when the robot is
right in front of the object, the robot moves infinitely far away
from the object. (This happens when the robot pushes the
object past the goal.) There are many methods of augmenting
the basic algorithm to solve this problem, but we have found
that the following simple strategy works well in practice.

If the robot is closer to the goal position than the object, the
robot simply orbits the object at a constant radius until it
reaches the backside. This can be accomplished by simply
nullifying the radial component of the desired direction of
motion (v), as computed by the dipole algorithm, if v is
pointing away from the object (if the robot is directly in front
of the object, the robot moves in a random direction). In a
pseudo-code, we replace the last line of the basic code (Figure
4) with the following four lines:

v = x cos2θ + y sin2θ;
if (cos(v, n = (p-q)/|p-q|) < 0)

v = v – (n•v)n;
return normalize(v);

In addition to being easy to understand and simple to

implement, this method has the following advantages. First,
the resulting vector field is smoothly connected to the dipole
field at the transition. This stabilizes the resulting robot
motion near the boundary. (The robot can repeatedly change
direction if the flow direction is discontinuous as in a naïve
binary controller.) Second, this algorithm is scale
independent. One can use the same code regardless of object
and robot size. This means that there is no need for parameter
tuning, which greatly reduces the labor involved in practical
deployment.

B. Avoiding Excessive Orbiting near a Small Goal
The basic dipole method works well when the object is far

away from the goal position or the goal is larger than the
object, but it does not work well when the object is
approaching a relatively small goal. In the worst case scenario,
the robot and object start orbiting endlessly around the goal.
This occurs because the dipole method pushes the object
sideways when the robot tries to move to the back of it.

To solve this problem, we propose increasing the orbiting
factor when the object is close to the target. This method can
be regarded as a generalization of the original method and one
that preserves its scale-independent nature. The robot’s
desired direction of motion is given by (cos2θ-αsin2θ,
sinθcosθ+αsinθcosθ), where α is a weighting factor. Larger
values of α result in slower but more cautious pushing
behavior. α = 1 is the default dipole motion (Figure 7).

 a) α = 1 b) α = 4

Fig. 7: Weighting the orbiting factor.

We increase the weighting factor α as the object gets closer

to the goal position. Specifically, we define α = |θ /φ |, where
φ is the angle between the robot–object and robot–goal
vectors and θ is the angle between the object–robot and
goal–object vectors (Figure 8). The idea is to make α
inversely proportional to φ and to make it larger when the

⎥
⎦
⎤

⎢
⎣
⎡

=⎥
⎦
⎤

⎢
⎣
⎡ −

+⎥
⎦

⎤
⎢
⎣
⎡
−
−

−
θ
θ

θ
θ

θ
θ
θ

θ
2sin
2 cos

cos
sin

sin
sin
cos

cos

push orbitweight weight

5116

distance between the object and the goal is small relative to
the distance between the robot and the object. We then
multiply by θ to prevent α from being infinitely large when
the robot, object, and goal are almost aligned. Figure 9 shows
the resulting vector field, combining the extensions described
in Sections IV-A and -B. In practice, excessively large values
of α cause abrupt turns behind the object, making it difficult
to control. We therefore set an upper limit for α (10 in our
experiments).

Goal

Robot

Object

θ

φ

Fig. 8: Angles used to compute the weight α.

a b

Goal
Object

Fig. 9: Final vector field. a) Goal is far away to the left. b) Goal is nearby.

C. Pushing a Heavy Object with Multiple Robots
An object might be too heavy for a robot to push,

necessitating the assistance of an additional robot. Our
algorithm can address this simply by setting the dipole field
for guiding the second robot around the first robot so that its
orientation parallels the orientation of the first robot. The
extension described in the previous subsection requires the
distance between the goal and the object. For the current
purpose, we use the distance between the object and the first
robot. The second robot is made to push the first robot from
behind.

Typical multi-robot pushing methods place the robots in
parallel around the object [4]. However, parallel pushing is
difficult when the target object is smaller than the robot, and
our serial pushing method can be useful in such cases.
However, parallel pushing is advantageous when the object is
larger than the robot, and we plan to investigate techniques
that support parallel pushing in future work.

V. IMPLEMENTATION

A. Hardware
We implemented a prototype system to demonstrate the

feasibility of the proposed method. This system consists of a
mobile robot, a ceiling-mounted camera, and a host computer
(Figure 10). The host computer uses the camera to track the
position and orientation of the robot and object and wirelessly
sends control signals to the robot. We used a notebook PC
(Toshiba Dynabook SS RX1 with an Intel Core™ 2 Duo
ULV U7500 1.06 GHz processor running Windows XP) and

a USB web camera (Logicool Qcam Pro for Notebook, 2M
pixels).

We tested two types of non-holonomic robots in different
sizes to illustrate the versatility of the algorithm. One was a
small custom-made differential drive tabletop robot with a
circular bumper running. The other was a commercially
available robot running on a carpeted floor (iRobot Create).

Camera

USB

Dining table

AR tag

Bluetooth PC

Fig. 10: Hardware configuration.

B. Software
The tracking and control program was written in Java™. It

uses a simple 2D tracking system with proprietary visual
markers, similar to the AR toolkit [15]. The markers display a
3 × 3 black-and-white pattern enclosed in a black frame,
enabling the system to uniquely detect identity, position, and
orientation. It uses 5× 5 cm markers when the camera is 1 m
above the surface, and 10 × 10 cm markers when the camera
is 2 m above the surface. The camera resolution is 640 × 480
at 30 fps, with a delay of approximately 30 ms.

The control program receives the updated marker position
and orientation and sends control commands to the robot. It
first computes the object’s desired instantaneous direction of
motion as a tangent of the global path toward the goal. It then
computes the robot’s desired direction of motion using the
algorithm described in the previous section. Finally, it sends
low-level control commands (move forward, spin left, spin
right, and stop) to the robot in accordance with the computed
direction of motion.

There are many ways of driving a non-holonomic robot in a
given direction, but a very basic method is used in this study.
The system compares the difference between the current
robot orientation and the desired direction of motion. If the
difference is less than a small threshold value, the robot starts
to move forward (or continues moving). Otherwise, the robot
spins (or continues spinning).

The system repeats the above procedure as necessary and
terminates the process when the distance between the object
and the goal is smaller than a chosen tolerance.

VI. EMPIRICAL EVALUATION
To verify the effectiveness of the algorithm, we ran two
experiments using the two types of robots. Figure 11
illustrates the layout. A trial was considered to be complete
when the distance between the goal position and the object
center was less than 20 pixels in the camera view (40 pixels in
the case of the iRobot Create). A trial was considered to be a
failure if the robot or the object went outside the field and/or

5117

the system was in an infinite loop (in which case we
terminated the execution after 5 min).

Initial Position
(Object)

1600mm / 800pixel

Margin(diameter)
40mm / 20pixel

Initial Positions
(Robot)

Goal

72
0m

m
 /

36
0p

ix
el

A

B
C

2800mm / 960pixel

21
00

m
m

 /
72

0p
ix

el

Margin(diameter)
116mm / 40pixel

Initial Positions
(Robot)

Goal

Initial Position
(Object)

A

B
C

Fig. 11: Layout. Top: Tabletop robot. Bottom: iRobot Create.

A. Scale Invariability
The goal of the first experiment was to show that the
proposed algorithm works well for various configurations
without changing parameters. We tested two circular objects
of differing sizes, and a square object with bumpers of two
different sizes attached to the tabletop robot. We also tested
two boxes of differing sizes with the iRobot Create. Figure 12
displays the measurements. We tested two control algorithms,
one being the proposed dipole method (with the two
extensions described in Sections IV-A and -B) and the other
being the simple chasing method. With the chasing method,
we tested two different offset values (distance between the
object center and the target position of the robot), one being
manually adjusted to work well for a small object and the
other being adjusted for a large object. We ran 10 trials for
each setting.

Fig. 12: Robot and object sizes.

Left: Small tabletop robot. Right: iRobot Create.

Tables 1 and 2 contain the results, and Figure 13 shows
sample trajectories observed during the experiment. Our
algorithm successfully delivered objects of varying sizes and
shapes to a small goal position without changing the
parameters. In contrast, a single parameter setting does not

work well under different conditions when using the chasing
algorithm (as shown in the failures cases in Table 1).

Initial position
Robot
Object

A C

Goal

A

C

Fig. 13: Typical object and robot trajectories in the tabletop setting.

Table 1: The result of pushing by the tabletop robot

(success ratio out of 10 trials)

small
bumper

large
bumper

small
bumper

large
bumper

small
bumper

large
bumper

A 100 100 100 50 0 0
B 100 100 100 80 0 0
C 100 100 100 90 0 0
A 100 100 60 10 100 100
B 100 100 70 0 100 100
C 100 100 0 0 100 10
A 100 100 100 30 0 0
B 100 100 100 100 0 0
C 100 100 100 0 0 0

dipole chasing
(d = 80mm)

chasing
(d = 150mm)

small dish

large dish

square dish

dish size
initial

position

Table 2: The result of pushing by iRobot Create
(success ratio out of 10 trials)

box size
initial

position dipole
chasing

(d=220mm)
chasing

(d=250mm)

A 100 100 0
B 100 100 0
C 100 100 0
A 100 60 100
B 100 70 100
C 100 0 100

small box

large box

B. Pushing with Multiple Robots

The second experiment was designed to demonstrate that the
proposed algorithm can be used to control multiple robots
pushing a heavy object. The iRobot Create was used in this
experiment. Two different boxes (3.5 or 7 kg) were pushed by
a single robot and by two robots controlled by the algorithm
described in Section IV-C. We ran 10 trials in each setting.
Table 3 contains the results, which show that two robots can
successfully deliver an object that is too heavy for one robot
to move. However, three robots do not improve success ratio
over two, probably because of overhead resulting from
mechanical interference (friction, etc.).

Table 3: The result of pushing by multiple robots
(success ratio out of 10 trials)

of robots
initial

positions
light box
(3.5kg)

heavy box
(7kg)

A 100 0
B 100 0
C 100 0

A,B 100 100
A,C 100 100
B,C 100 100
C,A 100 100
C,B 100 100
B,A 100 100

single robot

two robots

5118

VII. DISCUSSION
An interesting fact that emerges from this study is that a

circular front bumper works better than a flat bumper for
pushing. At first we naïvely anticipated that a flat bumper
would be the better choice and so tested it. It turns out that the
flat bumper works well as long as the object remains in front
of the robot. However, the object inevitably swerves away,
and the robot must adjust its position accordingly. As soon as
the robot starts spinning to adjust its position, the bumper
pushes the object in the wrong direction, eventually losing
contact. Thus, the robot must retreat from the object and then
approach it from the correct direction, which creates
significant overhead. In contrast, when the robot has a
circular bumper, the object is not pushed during spinning.
The object is then pushed in the desired direction when the
robot returns to the correct pushing position in accordance
with our algorithm. Figure 14 illustrates this. It is possible to
attach an arm to hold the object, but a circular bumper is
advantageous because it can handle a large object without
having a large arm.

Target direction
of the object

Target direction
of the robot

Target direction
of the object

Rotation
of the robot

Motion
of the robot

Target direction
of the robot

Resulting motion
of the object

Resulting motion
of the object

Fig. 14: Flat vs. circular bumper. The flat bumper pushes the object in the
wrong direction during spinning (left), whereas the circular bumper pushes
the object in the correct direction (right).

VIII. CONCLUSION AND FUTURE WORK
We developed an algorithm for object delivery by an

armless robot pushing on a flat surface. The algorithm has a
very simple definition in terms of (cos2θ, sin2θ), similar to a
dipole in physics. We also introduced extensions to resolve
practical issues when applying the basic concept to real-world
problems. We empirically validated its effectiveness by
testing it with various configurations. Pushing is a very basic
operation, and we believe that the proposed algorithm has
practical value.

Our immediate future objective is to develop an algorithm
for a four-wheeled car with front-wheel steering. The
algorithm presented here assumes in-place spinning and is not
designed to handle such a car. It might be possible to
continuously push the object when it swerves away, as in the
current algorithm, but it might first be necessary to back in
order to avoid contact with the object.

The current algorithm ignores dynamics (inertia),
assuming relatively slow robot motion and high friction.
However, dynamics must be taken into account to support
faster robot motion and/or a low friction surface. Faster
robots are a challenge, because they need accurate control and

tracking mechanisms, but high-speed object delivery by
pushing is certainly an interesting research goal.

REFERENCES
[1] K. M. Lynch and M. T. Mason. Stable pushing: Mechanics,

controllability, and planning. International Journal of Robotics
Research, 15(6): 533–556, December 1996.

[2] K. M. Lynch. Locally controllable manipulation by stable pushing.
IEEE Transactions on Robotics and Automation, 15(2):318–327, April
1999.

[3] Emery, R. and Balch, T., Behavior-Based Control of a Non-Holonomic
Robot in Pushing Tasks, IEEE International Conference on Robotics
and Automation (ICRA-2001), Seoul, 2001.

[4] M. J. Mataric, M. Nilsson, and K. Simsarian, Cooperative multi-robot
box-pushing, in Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems, Pittsburgh, Pennsylvania, August 1995, pp. 556–561.

[5] D. Rus. Coordinated manipulation of objects in the plane. Algorithmica,
pages 129–147, 1997.

[6] Fink, J., Hsieh, M.A., Kumar, V., Multi-robot manipulation via caging
in environments with obstacles, ICRA 2008. IEEE International
Conference on Robotics and Automation, 2008, 19–23 May 2008
Page(s):1471 – 1476

[7] C. R. Kube and H. Zhang. Collective robotics: from social insects to
robots. Adaptive Behaviour, 2(2):189{218, 1993.

[8] C. Ronald Kube and Eric Bonabeau. Cooperative transport by ants and
robots, Robotics and Autonomous Systems, Vol. 30, Issue 1–2, pages
85–101, 2000.

[9] B. P. Gerkey and M. J. Mataric´, “Pusher-watcher: An approach to
fault-tolerant tightly-coupled robot coordination,” in Proc. IEEE Int.
Conf. Robotics and Automation (ICRA), Washington, DC, May 2002,
pp. 464–469

[10] X. Xu, T. Deyle, C. Kemp, “1000 Trials: An Empirically Validated End
Effector That Robustly Grasps Objects from the Floor”, 2009 IEEE
International Conference on Robotics and Automation, May 12–17,
2009, Kobe, Japan.

[11] S. Zhao, K. Nakamura, K. Ishii, and T. Igarashi, “Magic Cards: A Paper
Tag Interface for Implicit Robot Control”, Proceedings of the ACM
Conference on Human Factors in Computing Systems, CHI2009, pp.
173–182, Boston, USA, April, 2009.

[12] A. Masoud, “Harmonic Potential Field Approach with a Probabilistic
Space Descriptor for Planning in Non-Divisible Environments”, 2009
IEEE International Conference on Robotics and Automation, May
12–17, 2009, Kobe, Japan

[13] R. C. Arkin, Behavior-Based Robotics. New York, NY: Cambridge
University Press, 1998.

[14] Hwang, Y. K. and Ahuja, N. 1992. Gross motion planning—a survey.
ACM Comput. Surv. 24, 3 (Sep. 1992), 219–291.

[15] H. Kato, M. Billinghurst, B. Blanding, and R. May, “ARToolKit”.
Technical Report. Hiroshima City University. December 1999.

[16] Munasinghe, S.R., Oh, C., Lee,J.J. and Khatib, O., "Obstacle avoidance
using velocity dipole field method", International Conference on
Control, Automation, and Systems, ICCAS 2005, in Kintex, Gyeong Gi,
Korea,1657 - 1661.

5119

