
 
 

 

  

Abstract—This paper introduces a simple algorithm for 
non-prehensile object transportation by a pushing robot on a 
flat surface. We assume that the global position and orientation 
of the robot and objects are known. The system computes a 
dipole field around the object and moves the robot along the 
field. This simple algorithm resolves many subtle issues in 
implementing reliable pushing behaviors, such as collision 
avoidance, error recovery, and multi-robot coordination. We 
verify the effectiveness of the algorithm via several experiments 
with varying robot and object form factors. Although object 
delivery by pushing and motion control by a vector field are not 
new, the proposed algorithm offers easier implementation with 
fewer parameter adjustments because of its mode-less definition 
and scale-invariant formulation.  

I. INTRODUCTION 
BJECT transportation (or delivery) is one of the most 
important tasks of a mobile robot. A robot that can 

automatically deliver an object from one place to another can 
save human time and labor. The particular class of delivery 
tasks we are concerned with is non-prehensile delivery by a 
pushing robot on a flat surface (Figure 1). Most delivery 
robots use hands or other mechanisms to lift an object, but 
many important tasks can be achieved by simple pushing.  

 
Fig. 1: Non-prehensile delivery by a single robot. 

 
The implementation of an efficient pushing behavior for a 

single robot is not trivial. The system must compute the 
global path from the object to the goal, avoiding all obstacles 
and continuously updating the robot position and orientation, 
so that the object follows the path during execution. In this 
work, we focus on the problem of local control, which in 
itself is difficult to perform efficiently.  

We conducted a preliminary study in which computer 
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science students implemented a pushing behavior in a simple 
simulator world. The task is to push an object to a goal 
position without considering other obstacles. Most of them 
chose the naïve approach of moving the robot to the canonical 
pushing position behind the object and then moving the robot 
toward the goal (Figure 2a). If the object swerved off course, 
the robot stopped pushing and returned to the pushing 
position. However, this binary mode technique is not very 
efficient, because the explicit recovery operation creates a 
large overhead. It is also tedious to appropriately set the offset 
distance and mode switch threshold. Some students used a 
more sophisticated single mode method (we call this chasing), 
in which the robot continuously tried to reach a targeted 
position inside the object and slightly behind its center 
(Figure 2b). The target position moves as the object moves. 
This technique averts explicit recovery operations for small 
perturbations, but the user must carefully set the offset 
distance, taking into account both robot and object size.  
Goal

Robot
Object

 
a) Binary mode method         b) Chasing method             c) Dipole method 

Fig. 2: Various pushing algorithms. 
 

This paper introduces a very simple yet robust algorithm 
for solving the problem of local control for pushing behavior. 
The objective is to introduce a graceful transition between 
pushing and recovery to mitigate the issues incurred by the 
modal approaches. Our algorithm computes a continuous 
flow field around the object, creating a smooth transition 
between pushing motion at the desired position and return to 
this position from other locations (Figure 2c). It is interesting 
to note that the combination of a robot with a circular 
cross-section and a simple dipole field solves the problem. 
The technique is based on a very elegant mathematical 
definition (see Section III) and is independent of both object 
and robot size, making the implementation very simple. In 
this paper, we discuss the definition, derivation, and 
extensions of this algorithm and provide empirical validation 
using actual robots.  

In a sense, object delivery by pushing is already a solved 
problem, because successful delivery has been attained in a 
number of previous experiments in more adverse 
environments [1][2]. Furthermore, some experiments have 
used vector fields for robot control, as does our method [3]. 
Our contribution is in facilitating the implementation of 
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pushing in noisy environments by providing a scale-invariant 
single vector field representation. We believe that this type of 
contribution (making things easier rather than making the 
impossible possible) will become increasingly important as 
more people join in the development of robot applications.  

II. RELATED WORK 
Object transportation by pushing has been investigated in 

connection with parts delivery in a factory [1][2]. In this 
context, a controlled environment is usually assumed, and the 
exact location and pushing direction are computed for a 
specific target object. In contrast, we seek a single general 
algorithm that works reasonably well for a variety of objects 
without parameter adjustment. In the parts delivery 
application, it is also assumed that the robot follows the 
calculated path perfectly, whereas our algorithm seamlessly 
integrates pushing and error recovery for an imperfect control 
system.  

Pushing has also been studied extensively in the context of 
multi-robot coordination [4][5][6][7][8][9]. In these 
applications, the objective is to implement the coordinated 
transportation of an object by multiple autonomous robots 
that communicate with one another without using a global 
sensor.  

Our application of interest is object delivery in a home 
environment, such as delivering a dish to a table or moving a 
trash bin from one place to another [10]. Rudimentary 
pushing behaviors have already been reported in some 
applied systems [11], but these use a simple binary mode 
approach (personal communication).  

Our algorithm computes a vector field from a given 
environmental configuration and moves the robot along the 
field. Many successful examples of this approach have been 
reported [12][13]. Munasinghe et al. presented an obstacle 
avoidance using dipole field [16]. The research most closely 
related to our work was performed by Emery and Balch [3], 
who developed a control system for a pushing task by a 
non-holonomic robot. Their technique uses separate modes 
for dock and push. Dock guides the robot behind the object, 
using a vector field similar to our dipole, and push moves the 
robot toward a point with a given offset from the object center 
(a variant of chasing). Our method unifies the dock and push 
behaviors into a single scale-invariant formulation, which 
reduces the need for parameter tweaking when applying it to a 
new situation.  

III. THE ALGORITHM 

A. Problem Definition 
We introduce a local control algorithm for robot delivery of 

an object to a goal position on a flat surface by non-prehensile 
pushing. The algorithm is designed mainly for a circular 
holonomic robot pushing a circular object, but it is also 
applicable to a non-holonomic robot with a circular bumper 
that can spin in place (e.g. a differential drive robot). We also 

show that the algorithm works reasonably well for 
non-circular objects (Section V). We assume that the global 
position and orientation of the robot and object are known to 
the system via some type of tracking system. We also assume 
that the global path from the current object position to the 
goal is specified and that the robot is roughly behind the 
object. (These problems can be solved separately using any 
mobile path planning method [14] or object avoidance 
method [3].)  

The input to the algorithm is the object’s instantaneous 
direction of motion (i.e. a tangent to the global path) and the 
current object and robot location. The output of the algorithm 
is the robot’s desired direction of motion (Figure 3). The 
system then rotates the robot in the proper direction (in the 
case of a non-holonomic robot) and moves the robot a 
pre-defined distance. Some parameter adjustment (e.g. motor 
torque and timing) is necessary to physically maneuver the 
robot, but the computation of the robot’s desired direction of 
motion can be handled independently of these low-level 
control issues.  

Input to the algorithm

robot position

object position

target moving direction 
of the object

Output of the algorithm

target moving direction 
of the robot

Fig. 3: Problem setting. 

B. The Algorithm 
The system first defines a local coordinate frame whose 

origin is at the center of the object, with x-axis parallel to its 
desired direction of motion. The system then computes the 
polar coordinates (r, θ) of the robot in this local coordinate 
frame. The desired direction of motion of the robot in this 
local coordinate frame is given by (cos2θ, sin2θ). Note that 
this definition is scale invariant. It is independent of the 
robot–object distance and the sizes of the robot and the object. 
Figure 4 illustrates the algorithm and a pseudo-code for it. 

Local coordinate frame
around the object

robot position
(cosθ, sinθ)

target movement
(cos2θ, sin2θ)

θ
pushing direction

x = d

y

q p

 
compute(d = desired direction of motion,  

p = object position, q = robot position){ 
 x = d; y=rotate(x, π/2); 

θ = compute_angle(x, q-p); 
return  normalize(x cos2θ + y sin2θ); 

} 
Fig. 4: The algorithm. 

 

5115



 
 

 

C. Derivation and Analysis 
The above definition is derived by carefully blending two 

different behaviors: orbiting and pushing (Figure 5). When 
the robot is directly behind the object (i.e. –cosθ is large), the 
robot should move toward the object to push it. The pushing 
direction is given by (–cosθ, –sinθ) in the local coordinate 
frame. If the robot is not in the correct position behind the 
object (i.e. sinθ is large), the robot should move toward the 
correct position by orbiting around the object to avoid 
collision. The orbiting direction is given by (–sinθ, cosθ). We 
then blend these directions together with the corresponding 
weights, yielding the above definition. 

. 
Orbit Push

 
Fig. 5: Derivation of the algorithm. 

 
It is difficult to prove that this specific formulation is the best 
possible definition. However, we have tested numerous 
variations and have empirically confirmed the effectiveness 
of our definition (see Section VI). Moreover, we feel that its 
simplicity and elegance have a certain appeal. It is interesting 
to note that the derived vector field (cos2θ, sin2θ) resembles a 
dipole in physics. A dipole occurs when positive and negative 
electric charges or opposite electric currents exist with a small 
separation between them (Figure 6). Geometrically, this 
corresponds to circular trajectories that are tangent to a point 
on a line.  
 

+
-

 
Fig. 6: Dipoles in physics. 

IV. EXTENSIONS 

A. Escaping from the Front Side 
One problem with the basic dipole method is that the path 

from the front to the back of the object is too long and 
therefore inefficient. In the extreme case when the robot is 
right in front of the object, the robot moves infinitely far away 
from the object. (This happens when the robot pushes the 
object past the goal.) There are many methods of augmenting 
the basic algorithm to solve this problem, but we have found 
that the following simple strategy works well in practice.  

If the robot is closer to the goal position than the object, the 
robot simply orbits the object at a constant radius until it 
reaches the backside. This can be accomplished by simply 
nullifying the radial component of the desired direction of 
motion (v), as computed by the dipole algorithm, if v is 
pointing away from the object (if the robot is directly in front 
of the object, the robot moves in a random direction). In a 
pseudo-code, we replace the last line of the basic code (Figure 
4) with the following four lines: 

v = x cos2θ + y sin2θ; 
if (cos(v, n = (p-q)/|p-q|) < 0)  

v = v – (n•v)n; 
return  normalize(v); 

 
In addition to being easy to understand and simple to 

implement, this method has the following advantages. First, 
the resulting vector field is smoothly connected to the dipole 
field at the transition. This stabilizes the resulting robot 
motion near the boundary. (The robot can repeatedly change 
direction if the flow direction is discontinuous as in a naïve 
binary controller.) Second, this algorithm is scale 
independent. One can use the same code regardless of object 
and robot size. This means that there is no need for parameter 
tuning, which greatly reduces the labor involved in practical 
deployment.  

B. Avoiding Excessive Orbiting near a Small Goal 
The basic dipole method works well when the object is far 

away from the goal position or the goal is larger than the 
object, but it does not work well when the object is 
approaching a relatively small goal. In the worst case scenario, 
the robot and object start orbiting endlessly around the goal. 
This occurs because the dipole method pushes the object 
sideways when the robot tries to move to the back of it. 

To solve this problem, we propose increasing the orbiting 
factor when the object is close to the target. This method can 
be regarded as a generalization of the original method and one 
that preserves its scale-independent nature. The robot’s 
desired direction of motion is given by (cos2θ-αsin2θ, 
sinθcosθ+αsinθcosθ), where α is a weighting factor. Larger 
values of α result in slower but more cautious pushing 
behavior. α = 1 is the default dipole motion (Figure 7).  

 

  
     a) α = 1                       b) α = 4 

Fig. 7: Weighting the orbiting factor. 
 
We increase the weighting factor α as the object gets closer 

to the goal position. Specifically, we define α = |θ /φ |, where 
φ is the angle between the robot–object and robot–goal 
vectors and θ is the angle between the object–robot and 
goal–object vectors (Figure 8). The idea is to make α 
inversely proportional to φ and to make it larger when the 
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distance between the object and the goal is small relative to 
the distance between the robot and the object. We then 
multiply by θ to prevent α from being infinitely large when 
the robot, object, and goal are almost aligned. Figure 9 shows 
the resulting vector field, combining the extensions described 
in Sections IV-A and -B. In practice, excessively large values 
of α cause abrupt turns behind the object, making it difficult 
to control. We therefore set an upper limit for α (10 in our 
experiments). 

Goal

Robot

Object

θ

φ

 
Fig. 8: Angles used to compute the weight α. 

 

a b

Goal
Object

 
Fig. 9: Final vector field. a) Goal is far away to the left. b) Goal is nearby. 

 

C. Pushing a Heavy Object with Multiple Robots 
An object might be too heavy for a robot to push, 

necessitating the assistance of an additional robot. Our 
algorithm can address this simply by setting the dipole field 
for guiding the second robot around the first robot so that its 
orientation parallels the orientation of the first robot. The 
extension described in the previous subsection requires the 
distance between the goal and the object. For the current 
purpose, we use the distance between the object and the first 
robot. The second robot is made to push the first robot from 
behind. 

Typical multi-robot pushing methods place the robots in 
parallel around the object [4]. However, parallel pushing is 
difficult when the target object is smaller than the robot, and 
our serial pushing method can be useful in such cases. 
However, parallel pushing is advantageous when the object is 
larger than the robot, and we plan to investigate techniques 
that support parallel pushing in future work. 

V. IMPLEMENTATION 

A. Hardware 
We implemented a prototype system to demonstrate the 

feasibility of the proposed method. This system consists of a 
mobile robot, a ceiling-mounted camera, and a host computer 
(Figure 10). The host computer uses the camera to track the 
position and orientation of the robot and object and wirelessly 
sends control signals to the robot. We used a notebook PC 
(Toshiba Dynabook SS RX1 with an Intel Core™ 2 Duo 
ULV U7500 1.06 GHz processor running Windows XP) and 

a USB web camera (Logicool Qcam Pro for Notebook, 2M 
pixels).  

We tested two types of non-holonomic robots in different 
sizes to illustrate the versatility of the algorithm. One was a 
small custom-made differential drive tabletop robot with a 
circular bumper running. The other was a commercially 
available robot running on a carpeted floor (iRobot Create).  

Camera

USB

Dining table

AR tag

Bluetooth PC
 

Fig. 10: Hardware configuration. 

B. Software 
The tracking and control program was written in Java™. It 

uses a simple 2D tracking system with proprietary visual 
markers, similar to the AR toolkit [15]. The markers display a 
3 × 3 black-and-white pattern enclosed in a black frame, 
enabling the system to uniquely detect identity, position, and 
orientation. It uses 5× 5 cm markers when the camera is 1 m 
above the surface, and 10 × 10 cm markers when the camera 
is 2 m above the surface. The camera resolution is 640 × 480 
at 30 fps, with a delay of approximately 30 ms.  

The control program receives the updated marker position 
and orientation and sends control commands to the robot. It 
first computes the object’s desired instantaneous direction of 
motion as a tangent of the global path toward the goal. It then 
computes the robot’s desired direction of motion using the 
algorithm described in the previous section. Finally, it sends 
low-level control commands (move forward, spin left, spin 
right, and stop) to the robot in accordance with the computed 
direction of motion. 

There are many ways of driving a non-holonomic robot in a 
given direction, but a very basic method is used in this study. 
The system compares the difference between the current 
robot orientation and the desired direction of motion. If the 
difference is less than a small threshold value, the robot starts 
to move forward (or continues moving). Otherwise, the robot 
spins (or continues spinning).  

The system repeats the above procedure as necessary and 
terminates the process when the distance between the object 
and the goal is smaller than a chosen tolerance.  

VI. EMPIRICAL EVALUATION 
To verify the effectiveness of the algorithm, we ran two 
experiments using the two types of robots. Figure 11 
illustrates the layout. A trial was considered to be complete 
when the distance between the goal position and the object 
center was less than 20 pixels in the camera view (40 pixels in 
the case of the iRobot Create). A trial was considered to be a 
failure if the robot or the object went outside the field and/or 
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the system was in an infinite loop (in which case we 
terminated the execution after 5 min).  
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Fig. 11: Layout. Top: Tabletop robot. Bottom: iRobot Create. 

 

A. Scale Invariability 
The goal of the first experiment was to show that the 
proposed algorithm works well for various configurations 
without changing parameters. We tested two circular objects 
of differing sizes, and a square object with bumpers of two 
different sizes attached to the tabletop robot. We also tested 
two boxes of differing sizes with the iRobot Create. Figure 12 
displays the measurements. We tested two control algorithms, 
one being the proposed dipole method (with the two 
extensions described in Sections IV-A and -B) and the other 
being the simple chasing method. With the chasing method, 
we tested two different offset values (distance between the 
object center and the target position of the robot), one being 
manually adjusted to work well for a small object and the 
other being adjusted for a large object. We ran 10 trials for 
each setting. 

 
Fig. 12: Robot and object sizes.  

Left: Small tabletop robot. Right: iRobot Create. 
 

Tables 1 and 2 contain the results, and Figure 13 shows 
sample trajectories observed during the experiment. Our 
algorithm successfully delivered objects of varying sizes and 
shapes to a small goal position without changing the 
parameters. In contrast, a single parameter setting does not 

work well under different conditions when using the chasing 
algorithm (as shown in the failures cases in Table 1).  

Initial position
Robot
Object

A C

Goal

A

C

 
Fig. 13: Typical object and robot trajectories in the tabletop setting. 

 
Table 1: The result of pushing by the tabletop robot 

(success ratio out of 10 trials) 

small
bumper

large
bumper

small
bumper

large
bumper

small
bumper

large
bumper

A 100 100 100 50 0 0
B 100 100 100 80 0 0
C 100 100 100 90 0 0
A 100 100 60 10 100 100
B 100 100 70 0 100 100
C 100 100 0 0 100 10
A 100 100 100 30 0 0
B 100 100 100 100 0 0
C 100 100 100 0 0 0

dipole chasing
(d = 80mm)

chasing
(d = 150mm)

small dish

large dish

square dish

dish size
initial

position

 
 

Table 2: The result of pushing by iRobot Create 
(success ratio out of 10 trials) 

box size
initial

position dipole
chasing

(d=220mm)
chasing

(d=250mm)

A 100 100 0
B 100 100 0
C 100 100 0
A 100 60 100
B 100 70 100
C 100 0 100

small box

large box

 
B. Pushing with Multiple Robots 

The second experiment was designed to demonstrate that the 
proposed algorithm can be used to control multiple robots 
pushing a heavy object. The iRobot Create was used in this 
experiment. Two different boxes (3.5 or 7 kg) were pushed by 
a single robot and by two robots controlled by the algorithm 
described in Section IV-C. We ran 10 trials in each setting. 
Table 3 contains the results, which show that two robots can 
successfully deliver an object that is too heavy for one robot 
to move. However, three robots do not improve success ratio 
over two, probably because of overhead resulting from 
mechanical interference (friction, etc.). 
 

Table 3: The result of pushing by multiple robots 
(success ratio out of 10 trials) 

# of robots
initial

positions
light box
(3.5kg)

heavy box
(7kg)

A 100 0
B 100 0
C 100 0

A,B 100 100
A,C 100 100
B,C 100 100
C,A 100 100
C,B 100 100
B,A 100 100

single robot

two robots
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VII. DISCUSSION 
An interesting fact that emerges from this study is that a 

circular front bumper works better than a flat bumper for 
pushing. At first we naïvely anticipated that a flat bumper 
would be the better choice and so tested it. It turns out that the 
flat bumper works well as long as the object remains in front 
of the robot. However, the object inevitably swerves away, 
and the robot must adjust its position accordingly. As soon as 
the robot starts spinning to adjust its position, the bumper 
pushes the object in the wrong direction, eventually losing 
contact. Thus, the robot must retreat from the object and then 
approach it from the correct direction, which creates 
significant overhead. In contrast, when the robot has a 
circular bumper, the object is not pushed during spinning. 
The object is then pushed in the desired direction when the 
robot returns to the correct pushing position in accordance 
with our algorithm. Figure 14 illustrates this. It is possible to 
attach an arm to hold the object, but a circular bumper is 
advantageous because it can handle a large object without 
having a large arm.  
 

Target direction
of the object 

Target direction 
of the robot

Target direction
of the object 

Rotation 
of the robot

Motion
of the robot

Target direction 
of the robot

Resulting motion
of the object

Resulting motion
of the object

 
Fig. 14: Flat vs. circular bumper. The flat bumper pushes the object in the 
wrong direction during spinning (left), whereas the circular bumper pushes 
the object in the correct direction (right). 

VIII. CONCLUSION AND FUTURE WORK 
We developed an algorithm for object delivery by an 

armless robot pushing on a flat surface. The algorithm has a 
very simple definition in terms of (cos2θ, sin2θ), similar to a 
dipole in physics. We also introduced extensions to resolve 
practical issues when applying the basic concept to real-world 
problems. We empirically validated its effectiveness by 
testing it with various configurations. Pushing is a very basic 
operation, and we believe that the proposed algorithm has 
practical value. 

Our immediate future objective is to develop an algorithm 
for a four-wheeled car with front-wheel steering. The 
algorithm presented here assumes in-place spinning and is not 
designed to handle such a car. It might be possible to 
continuously push the object when it swerves away, as in the 
current algorithm, but it might first be necessary to back in 
order to avoid contact with the object.  

The current algorithm ignores dynamics (inertia), 
assuming relatively slow robot motion and high friction. 
However, dynamics must be taken into account to support 
faster robot motion and/or a low friction surface. Faster 
robots are a challenge, because they need accurate control and 

tracking mechanisms, but high-speed object delivery by 
pushing is certainly an interesting research goal.  
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