
Motion Generation Through Biologically–Inspired Torque Pulses

J. Neubert and N. J. Ferrier

Abstract— Traditional robot controllers are not designed
to produce human–like reactive motion—movements lasting
tens of sample periods and requiring large accelerations. One
of the major obstacles to producing reactive motions with
contemporary controllers is that they rely on kinematic com-
mands. The performance of short duration motions requiring
large accelerations is dominated by the motion’s dynamics;
kinematic commands without an accurate dynamic model of
the robot and task will lead to poor performance. Conversely,
this paper presents a biologically inspired “torque command”
that allows the dynamics of the motion to be communicated
to the controller. The commands can be produced with only
minor modifications to any existing control scheme that will
not impact traditional operation. In addition, sensory input
can be mapped directly to presented commands for latency
sensitive tasks. The ability of the new commands to express
a broad range of motions with a small number of parameters
is shown experimentally. The experimental results also show
that the presented torque commands can be used to learn a
ball intercept task.

I. INTRODUCTION
Prosthetics controlled by the human brain are currently

a reality [1,2], but are limited to slow, controlled motions.
One major reason behind this is the treatment of the user
as a motion source, discarding important information about
the motion’s dynamics [3]. The brain is capable of low-level
limb control using muscle activations, similar to robot joint
torques. Allowing motions to be specified in such a format
will provide the user more control over the device and a
mechanism for producing reactive motions. In addition, the
ability to produce biological-like reactive motion is becoming
more important as robots assume a larger domestic role. If
the robotic cat for monitoring the health of an elderly person
in [4] could skillfully swat at a string it would be more likely
to be treated as a natural part of the environment.

Currently, robots are designed primarily to produce slow,
controlled motions because the majority of tasks require such
motions. Only a small segment of tasks, such as hitting
a baseball, require low latency, quick motions—referred to
here as reactive motions. These motions typically last 10–
200 sample periods and require large accelerations. This
makes factors currently neglected in robot control, such as
the discrete nature of the robot and the motion’s dynamics,
the dominate factors in performance. Constructing a con-
troller that takes into account these factors is an involved
and complex process. Moreover, a complex, specialized
controller is not ideal for general purpose robots where

This work was supported by NSF IRI-9703352
J. Neubert is with the Dept of Mech. Engr., University of North Dakota,

Grand Forks, ND 53202, USA jeremiah.neubert@und.edu
N. J. Ferrier is with the Dept of Mech. Engr., University of Wisconsin-

Madison, Madison, WI 53704, USA ferrier@engr.wisc.edu

Fig. 1. Schematic of a traditional robot controller consisting of a PD joint
controller augmented with a dynamic model for feedforward compensation.

reactive motions comprise only a small percentage of all
motions. Even if existing controllers were able to produce
the desired motions the command would have to specify
positions, velocities, and accelerations. Such commands are
computationally expensive to generate.

In this paper we present a new method for commanding
a motion using joint torques. The proposed method employs
a minimal number of free parameters to specify the torques
needed to produce a trajectory. The limited dimensionality
of the command allows an autonomous learning system
to find a mapping from raw measurements to the needed
motions. Moreover, the new method for delineating a motion
which specifies both the path and destination of the robot.
Both simulation and experimentation are used to show the
capabilities of the system to produce a wide variety of
controlled motion. In addition, the look-and-move system
described in [5] and briefly presented here demonstrates
that the novel torque commands allow unprocessed sensory
input—pixel positions—to be mapped directly to the torque
commands needed to intercept a ball.

II. BACKGROUND

The motion of a robotic manipulator is typically governed
by a digital controller such as a digital signal processing
(DSP) unit. The DSP contains the control law responsible for
determining the control signal, ~u, needed to track a position
command, ~θ , and reject disturbances. Creating the needed
control law is particularly difficult because robotic manip-
ulators are multi-input multi-output (MIMO), highly cou-
pled, nonlinear dynamic systems. For this reason advanced
techniques such as sliding mode control [6] and adaptive
control [7] have been employed to enhance stability and
reduce the time required to eliminate disturbances. Precise
tracking of the command is achieved through the use of some
type of command feedforward compensation, as shown in
Fig. 1. This utilizes prior knowledge of the desired trajectory
and the robot’s dynamics to predict the joint torques needed
to track ~θ . An example of command feedforward robot
control can be found in [8]. The main obstacle to produce

2010 IEEE International Conference on Robotics and Automation
Anchorage Convention District
May 3-8, 2010, Anchorage, Alaska, USA

978-1-4244-5040-4/10/$26.00 ©2010 IEEE 4157

such motions creating a full trajectory, including positions,
velocities, and accelerations. Construction of a fully speci-
fied trajectory can be computationally expensive, requiring
operations such as predicting ball speed using the pitcher’s
arm motion, optimization non-linear constraints and nego-
tiating constraints intrinsic to the robot [9]. This generates
an undesirable amount of latency. Moreover, these systems
assume the robot is, at least approximately, an analog system
and do not allow for task dependant external forces to be
specified. A specialized controller with large gains, complex
discrete control law, and involved adaptive techniques may
provide reasonable performance, but employing a controller
optimized to a small segment of motion is undesirable for
general purpose robots.

The alternative proposed here is to allow motions to be
specified using joint torques. Motions parameterized with
torques have been demonstrated to be smooth and human-
like [10]. One such system presented by Atkeson and McIn-
tyre [11] uses practice to determine the torques needed at
each sample instance a priori. These torques are simply
played back to perform the motion. The commands proposed
in this work move beyond replaying torques, and instead
use a limited number of parameters in the encoding. This
makes it possible to map sensory input directly to the joint
torques. This is similar to the mapping of visual input to
joint positions outlined in [12].

III. REACTIVE MOTION

One taxonomy of human motion categorizes it as reflexive,
reactive, or conscious. Reflexive motions do not involve
conscious choice and are performed with minimal latency.
Conscious motions, conversely, are closed loop motions
requiring constant mental involvement. Reactive motions are
a hybrid of the two, consisting of low latency, open-loop
motion based on sensory input. The objective of this work
is to present a motion command that allows robots to mimic
this reactive motor behavior. The resulting motion command
is not intended for general use, but rather the small segment
of tasks that require quick, low-latency motion. A “reactive”
motion
• originates from a fixed starting point,
• is short in duration,
• contains relatively limited variation,
• is repetitive, and
• tolerant to small errors in position.

These criteria are reasonable when compared to human
reactive motion. A baseball batter, for example, begins their
swing from the same point each time and only attempts
to hit the ball over a small region of space. The motion
also requires a great deal of practice to achieve optimal
performance. Additionally, “reactive” motions—open-loop
motions—are not used to complete tasks, such as threading
a needle, that require a high degree of precision.

A. Human reactive Motion

The exact format of human reactive motion has been
the subject of debate for several decades. Some believe

that humans map sensory input to a motion expressed in
visual (hand) coordinates [13]. Conversely, others believe
that the human brain maps sensory input directly to muscle
activations, referred to as motor coordinates [14,15]. Still
others believe that it is a combination of the two meth-
ods [16]. Visual and motor coordinates each have their
strengths and weaknesses. The visual encoding is tightly
linked to task space which simplifies learning, but incurs
the added latency associated with converting the command
to muscle activations. Conversely, motor coordinates require
no such conversion and can be used to convey knowledge
about the motion dynamics. Unfortunately, such commands
are difficult to learn for a given task.

B. Robotic Reactive Motion

The hybrid representation presented in [16] is used in this
investigation because it allows the system to take advantage
of the visual representation’s tight link to task space for effi-
cient learning and the motor coordinate’s ability to produce
low latency motion and express knowledge of the motion’s
dynamics.

Visual Coordinates: Human visual or hand coordinates, for
all intents and purposes, are equivalent to Cartesian coor-
dinates. A robotic trajectory can be expressed in Cartesian
space as a set of poses paired with time values, P =
{(~P1, t1), ...,(~Pm, tm)}, and an objective function or parameter.
The poses are represented by a plücker vector,

~Pi = [x y z θx θy θz]T , (1)

and ti is a scalar representing the desired time at which the
manipulator is to pass through ~Pi. This pair is referred to as a
via point. The motion of the end effector between via points
is specified by the given objective function or parameter that
must be optimized. The most common objectives include
minimizing motion jerk, motion time, and actuator effort.
A description and comparison of various objectives can be
found in [17]. Optimization results in a continuous function,
Pd(t), that gives the desired end effector position as a
function of time, t.

The function Pd(t) is important because it is needed to
construct the task function [18],

e(Pd(t)−P(~qest(t))) , (2)

for use in identifying the optimal pulse parameters.
P(~qest (t)) represents the realized end effector pose calcu-
lated by using the measured joint displacements at time t,
~qest(t) ∈ Rn, where n is the number of robot joints. The
visual coordinate representation is obtained from a standard
trajectory planning algorithm. Because it is used primarily in
training, the visual representation can be generated after the
motion is complete using all available sensor data to ensure
it represents the “ideal” trajectory.
Motor Coordinates: The second representation of the mo-
tion is expressed in motor coordinates, otherwise referred
to as muscle activations. A variety of theories have been
forwarded on how the activations are encoded. The most

4158

Fig. 2. An example torque pulse for joint j during the ith interval. The
distance the joint moves is dictated by the pulse magnitude mi j , while path
of the end effector is dictated by si j and di j .

intriguing theory put forth is presented by [19]. They theorize
that the activations are stored as a series of pulses. The
timing and magnitude of the pulses are adjusted to control
total displacement and trajectory of the limb. This method
for representing the motor commands is desirable because it
contains a small number of degrees of freedom. By limiting
the dimensionality of the solution space the search for the
optimal command becomes a tractable task.

In a robotic system, the control signal, ~u, would be
comparable to muscle activations. u is a voltage that dictates
the desired armature current as shown in Fig. 3. The arma-
ture current is directly proportional to joint torque. Thus,
the pulses are referred to as torque pulses. More complex
motions can be produced by combining multiple pulses to get
C = {c1, ...,cm}. The elements of C are referred to as torque
commands. The torque command ci produces the ith segment
of a motion which must be completed in the pulse interval
δi. The torque command contains one pulse for each joint,
ci = {~ci1, ...,~cin}. The torque pulse for the jth joint in the ith

segment is delineated by ~ci j ∈R3 consisting of a magnitude,
mi j, a pulse initiation time, si j, and a pulse duration, di j. An
example pulse is shown in Fig. 2.

C. Robot Controller for Producing Reactive Motions

The custom controller shown in Fig. 3 is similar to that
in Fig. 1 with one important modification—the ability to
accept a torque command, ~md , as well as the standard
joint space command, ~θd . In addition, the dynamic model
has been removed, reducing the computational complexity
of the control law. During a reactive motion the torque
command is used to move the robot from one attractor point
to another. The location of the attractor points is specified
with the position command, ~θd . The value of ~θd is fixed
as the robot moves, during which time a new value of ~θd
is calculated. The value of ~θd is only updated after the
motion is complete. Note that the controller does utilize a
velocity command because this simplifies the control law.
Furthermore, one major reason for using torque pulses is to
avoid the generation of a velocity command. To maintain
stability the differential portion of the control law, −Kv ∗ d~θ

dt ,
assumes zero desired velocity; thus a large differential gain,
Kv, will prevent the robot from achieving high speeds during
a reactive motion. While increasing the complexity of the
controller is undesirable, the problem can be addressed by
lowering or eliminating the contribution from the differential
part of the controller when ‖~md‖ 6= 0.

The traditional PD controller is left intact for three reasons.
First, it is needed to complete the vast majority of tasks that
do not require reactive motions. Recall that only a small

Fig. 3. The robot controller from Fig. 1 modified to allow a torque
command ~md to be used to move the robot from one attractor point to
another. The location of the attractor points is specified by ~θd .

segment of tasks meet the required criteria for a reactive mo-
tion. Second, the controller provides the attraction points that
punctuate the beginning and end of a motion, guaranteeing
stability. Third, it resists the motion generated by the pulses.
This is important because a human limb has protagonist and
antagonist muscles. As the protagonist actuates the joint,
the antagonist is stretched generating increasing resistance to
the motion. The proportional portion of the control signal,
Kv ∗~e, acts in a similar manner. As the pulse moves the
joint the proportional part of the controller provides spring–
like resistance reducing the magnitude of the pulse as the
motion concludes. The result is more human–like motion
and a reduction in motion jerk at the conclusion of a pulse.

IV. DETERMINING THE DESIRED TORQUE COMMAND

One objective of this work is demonstrating that torque
commands can produce a variety of motions with a specific
trajectory. To accomplish this an efficient method is needed
for locating the optimal pulse parameters. The optimal set of
pulses must pass through all the via points so that

e
(
~Pi−P(~qest (ti))

)
< λvia ∀ (Pi, ti) ∈P, (3)

and minimize

σdev =
∫ t f

0
‖e(Pd(t)−P(~qest(t)))‖dt. (4)

The threshold λvia in (3) is task dependant. In (4) the task
function is integrated with respect to time because it allows
larger deviations to be tolerated in portions of the motion
where the robot is moving with greater speed. This is optimal
because as speed increases larger errors should be expected.
The search begins by locating the timing parameters needed
to minimize (4). Once the optimal timing is found, the final
estimate of the magnitudes are determined to ensure that the
criterion presented in (3) is met.

Determining the optimal pulse timing is difficult because
there is no clear mechanism to guide the search. Fortunately,
robot controllers are typically discrete, which limits the
search to a finite set of values. While the solution space is
finite, attempting each combination would be extremely time
consuming. Through experimentation it has been found that
the value of (4) varies smoothly with the timing parameters.
Based on this, the number of timing parameter combinations
evaluated is reduced by using a coarse to fine search. In this
type of search an initial coarse sampling of s and d space is
used to identify a small set of regions likely to contain the

4159

global minima of (4). These areas then become the focus of
the search, allowing the majority of the solution space to be
ignored.

To be able to determine the quality of a particular set of
timing parameters the pulse magnitudes must be found so
the motion can be performed. The magnitudes are found by
repeating a motion several times and adjusting them based
on the joint position errors. The desired joint positions, ~qi, at
the end of pulse interval i are determined by using the inverse
kinematics of the robot and the desired robot pose, ~Pi. The
difference between the desired joint displacement, ~qi, and
the measured joint displacements at the end of the interval,
~qest(ti), is the joint error, ~ei = ~qi−~qest(ti). The estimate of
the optimal pulse magnitude for a joint j is updated using
the equation

m′i j = mi j + k j ∗ ei j, (5)

where k j is a user selected gain. In the authors’ experience
the system converges with 10 practice motions for λvia ≈
0.001m. This is significantly reduced when a similar motion’s
pulse magnitudes are used as a starting point for the search.

The time required to find the optimal pulse timing can be
further reduced by replacing λvia in (3) with λsearch, where
λsearch u 10λvia. Increasing the tolerance for errors at the
via points requires a modification to the evaluation of the
motion’s shape so only the errors related to pulse timing
are reflected in σdev. This is accomplished by combining
the realized poses, P(~qest (ti−1)) and P(~qest (ti)), with the
objective function to generate P̂d(t). P̂d(t) is then used in (4)
to get a reasonable estimate of σdev with the effects of the
via point errors removed. This allows the pulse magnitudes
to be found in about one fifth the time. Experiments have
demonstrated that relaxing the first criteria has minimal effect
on the search results. In the rare case where the solution was
altered the difference was minor, e.g. a timing parameter
differed by one sample period with little effect on the final
σdev. Once the optimal pulse timing has been found the
original value of λvia is restored so that the final pulse
magnitudes can be found which satisfy (3).

V. EXPERIMENTS AND RESULTS
There are four parts to the investigation. In the first part

a simulated robot, modeled after the CRS 465, is moved
to 300 points uniformly distributed over a volume of space
to demonstrate the variety of motions that can be produced
with the presented command. In the second part of the
investigation it is shown that the timing of the pulses is
important for shaping the trajectory of the robot. The third
part of the investigation verifies the results of the simulation
by repeating the previous experiment with the CRS 465.
The investigation concluded with a summary of the results
presented in [5], demonstrating that sensory input can be
mapped directly to torque commands to accomplish a ball
intercept task. A video of the results of the final experiment
is supplied. During this investigation the pulse interval used
was δ = 0.13 sec. For a motion to be successful, the end
effector had to be within λvia = 0.001m of the via points.
The algorithm presented in Section IV was used to find the

Fig. 4. Robot modeled for simulation and later used in the investigation.

optimal C . The short duration and simplicity of the motions
dictated that only one pulse was necessary—thus |C |= 1.

A. Experimental Setup

The experiments were conducted on the open architecture
6 dof (degree of freedom) articulated robot shown in Fig. 4.
In these experiments the wrist (last 3 dof) was neglected. The
robot controller was a desktop computer running WinCon
real time kernel and outfitted with a Quanser MultiQ card
that allowed full control of the robot’s amplifiers and access
to its joint encoders. The control law, shown in Fig. 3, was
implemented on the computer in Simulink. The computer
could reliably execute the control law at 100 Hz. It should
be noted that dedicated controllers can easily exceed 500
Hz. Despite the reduced bandwidth of the controller it was
able to show the expressiveness of the pulses and reliably
intercept a ball.

The controller’s sample period of 0.01 sec and the use
of δ = 0.13 sec dictated that s and d were limited to 13
possible values. To maximize the amount of motion that
the robot could produce, the largest possible pulse duration
that did not limit the system’s ability to shape the robot’s
trajectory was used. The desired pulse duration was identified
by conducting an investigation with the following values for
d: 0.08, 0.09, 0.10, 0.11, and 0.12 sec. It was found that
there was little difference in the variety of motion that could
be produced using a duration of 0.08, 0.09, or 0.10 sec,
but values larger than 0.10 sec had a significant impact on
trajectory control. For this reason the pulse duration was
fixed at 0.10 sec. Using the stated pulse duration allowed
the end effector to be moved up to 0.2m in δ = 0.13 sec
time.

B. Simulation

The dynamic model of the robot used in the simulation is
described by the differential equation τ1

τ2
τ3

= M

 θ̈1
θ̈2
θ̈3

+C(θ1,θ2,θ3, θ̇1, θ̇2, θ̇3)

 θ̇1
θ̇2
θ̇3

+F(θ̇1, θ̇2, θ̇3)+G(θ1,θ2,θ3),

(6)

where θ j, θ̇ j, and θ̈ j are joint j’s position, velocity, and
acceleration respectively. The physical dimensions of the
robot used in the motion can be found in Fig. 4. The joint
friction, F(·), is based on the model presented in [20]. The
term G(·) denotes the forces exerted on the robot due to
gravity. The shorter link is assumed to have mass of 2.3kg

4160

while the assumed mass of the other is 2.5kg. Based on
the link masses and the assumption of slender cylindrical
links, the computation of inertia, M(·), and coriolis, C(·),
matrices is relatively straightforward. A detailed description
of manipulator dynamics along with the terms M(·) and C(·)
can be found in [21]. The differential equations were solved
using the Runge–Kutta method.

The objective of the first part of the investigation was to
show that torque commands could be used to generate a
wide range of motions. For each motion the initial position
of the end effector was (0.45m, 0.0m, 0.40m) with the
elbow up. It was moved, using a linear motion, from the
initial position to three hundred points that were selected
at random from a cubic volume defined by the corners
(0.47m, −0.06m, 0.46m) and (0.53m, 0.06m, 0.56m) with
a uniform distribution. The motions produced had an average
error area, the area between the desired and actual trajectory,
of 16.0∗10−5m2. Error area is used here because it is a more
widely understood metric of performance than (4). There
were seven failed attempts to find a torque command to move
the robot within λvia of the endpoint. The failures occurred
when the arm needed to be nearly fully extended, a singular
configuration, to reach the endpoint.

The objective of the second part of the investigation was
to show that the linear motions were not just a product of the
robot configuration. To accomplish this the motion produced
by the torque commands was compared to a motion pro-
duced using a traditional PD controller. For this experiment
the end effector was moved from (0.57m,0.03m,0.51m) to
(0.61m,−0.03m,0.41m). The plot in Fig. 5(a) shows the
end effector trajectory produced using only PD control as
a blue dashed line with circles, the motion generated by
the torque command is shown as a red line with triangles,
and the ideal path is shown with a black line. Looking
at the plot, it becomes evident that the torque command
follows the desired path more closely. The error area between
the PD trajectory and the ideal motion is 25.0 ∗ 10−5m2,
approximately five times the error area of torque pulse
motion, 5.3 ∗ 10−5m2, demonstrating that pulse timing is a
powerful tool for controlling the trajectory of the robot.

C. Verification of Simulation

In the third part of the investigation the results from the
simulation were verified on the CRS 465 robot using the
same motion. Again, a baseline was needed to compare
the results. In this case, one motion was produced using a
randomly selected set of timing parameters and another with
the optimal values. The results can be seen in Fig. 5(b). The
motion produced by the optimal torque command is shown as
a red line with triangles. The error area of the optimal motion
was 74.4∗10−5m2. This was higher than that of the simulated
motion, but differences were expected. The simulation uses a
relatively simple model with assumptions such as cylindrical
links. While there are moderate differences, the overall
results of the simulation match that the CRS 465 robot.

The final portion of the investigation was to verify that the
pulses facilitated the process of learning to map unprocessed

observations, F , to a set of torque commands, C , to com-
plete a simple task, intercepting a ball. The experimental
setup shown for this is shown in Fig. 4. It consists of a
CRS 465 robot at the origin of the depicted frame and
a camera mounted at (−0.432m, 0.3175m, 0.432m). The
camera captures two images of the ball 0.03sec apart. Given
the possible motion of the robot in 0.13sec only a ball that
passes through a 0.178m by 0.127m window approximately
0.610m from the robot can be intercepted. To ensure the ball
passes through this window it was mounted on a string and
suspended from the ceiling.

To determine the efficiency of learning to mapping F to
the desired C , the system was tested after 5, 10, 20, 40,
60, 80, and 100 practice motions. Each test consisted of 30
attempts to intercept the ball. The release point of the ball
and the length of the string was changed randomly before
each drop. From the images two features are collected, the
centroid of the ball in the first image and the change in
the centroid’s position in the second image corresponding to
F = [uo vo ∆u ∆v]T . This input vector, expressed in pixels,
was used as the input to a set of feedforward multilayer per-
ceptions, consisting of 36 hidden neurons total, to determine
the C needed to intercept the ball—a detailed description of
the structure and training of the neural network can be found
in [5]. The optimal C intercepts the ball with the front of
the end effector 0.13sec after the second image at a location
in the 0.178m by 0.127m window using a linear, open-loop
motion.

The results shown in Fig. 5(c) demonstrate that the format
of the commands is conducive to efficient learning. The
majority of learning was complete after 40 practice motions.
The system achieved a 90% success rate after just 80 practice
motions, but the 10% failure rate could not be eliminated.
The reason for the failures was likely variations in network
latency. As with any robotic system, the robot commands
were created on a secondary computer and transmitted to
the computer responsible for executing the control law. The
communication between the PCs was done using TCP/IP
because it provided the minimum median latency. Unfortu-
nately, at times there was visible lag between the command
and the motion. The observed latency may be due to the
interrupt routine employed inside the operating system. The
communication software did not run inside the real time
kernel due to constraints of the WinCon system, so there
was no guarantee that the interrupt would be handled in
a timely fashion. Serial communication was also tried, and
while latency variation was reduced, the median latency was
several orders of magnitude greater than that of the TCP/IP
commands.

A video of the robot performing the interception task is
supplied. The video shows several releases of the ball. At
each release the robot collects the needed features F and
maps them directly to a command C using a trained neural
network to intercept the ball. During these trails the velocity
of the ball is controlled by varying the release point. It is
important to note that, while the string length was unchanged
in this video, during training and testing the length of the

4161

(a) (b) (c)
Fig. 5. The numbers on the axes of (a) and (b) denote position with respect to the world frame in meters. (a) A plot showing the path of the simulated
robot’s end effector as it moves between two points using a linear motion. The black line is the ideal motion, while the red is the motion produced with
the pulses. (b) is a verification of the results shown in (a). Again the ideal motion is shown in black and the motion produced using the optimal pulses is
shown in red. (c) The effect of practice on the ability of the robot to intercept a ball.

string was varied with each trial.

VI. DISCUSSION AND FUTURE WORK

The objective of this work was to explore the use of
torque pulses to specify robotic motion. The simulation
showed that as long as the destination point of the robot
is not near a singularity the command can be used suc-
cessfully. In addition, the results showed that the timing
parameters can be used to shape motions even with a robot
controller having a sample period five times greater than
that of contemporary controllers. An increased sample rate
may marginally improve the pulse’s performance, but any
substantial improvement is unlikely given the small error area
with the current system. Additionally, the results showed that
with less than 100 practice motions it is possible to learn to
map sensory input directly to the required pulses to complete
a simple task. This result is important as the goal of this work
is the creation of robotic reactive motions.

Continued work is needed in several areas. First, an
intelligent method of segmenting motions is needed. While
anecdotal evidence suggests that a fixed pulse interval will
provide reasonable performance, an intelligent motion seg-
mentation algorithm will allow (4) to be further minimized.
Additionally, the large jerk associated with square torque
pulses are not desirable. While the motor amplifiers act
as low pass filters, further reduction of the motion jerk is
desirable. This can be accomplished by altering the shape of
the pulses or by using a low pass filter with the current square
pulses. Lastly, work needs to be conducted to determine if
such a system can be used to generate reactive motions with
a prosthetic limb controlled using neural output. Mapping the
neural output to such commands has the potential to greatly
improve the lives of prosthetics users by allowing them to
participate in activities such as baseball.

REFERENCES
[1] A. Schwartz, “Cortical neural prosthetics.” Annu Rev Neurosci, vol. 27,

pp. 487–507, 2004.
[2] M. Velliste, S. Perel, C. Spalding, A. Whitford, and A. Schwartz,

“Cortical control of a prosthetis are for self feeding,” Nature, vol.
483, pp. 1098–1101, 2008.

[3] H. Kim, S. Park, and M. Srinivasan, “Developments in brain-machine
interfaces from the perspective of robotics,” Human Movement Sci-
ence, vol. 28, no. 2, pp. 191–203, 2009.

[4] A. Libin and J. Cohen-Mansfield, “Therapeutic robocat for nursing
home residents with dementia: Preliminary inquiry,” Am J Alzheimers
Dis Other Demen, vol. 19, no. 2, pp. 111–116, 2004.

[5] J. Neubert and N. Ferrier, “Direct mapping of visual input to motor
torques,” in IEEE Intr. Conf. on Pattern Recognition. Washington,
DC, USA: IEEE Computer Society, 2006, pp. 634–638.

[6] H. Hu and P. Woo, “Fuzzy supervisory sliding-mode and neural-
network control for robotic manipulators,” IEEE Trans. on Ind. Elec-
tronics, vol. 53, no. 3, pp. 929–940, June 2006.

[7] N. Hung, H. Tuan, T. Narikiyo, and P. Apkarian, “Adaptive control for
nonlinearly parameterized uncertainties in robot manipulators,” IEEE
Trans. on Control Systems Tech., vol. 16, no. 3, May 2008.

[8] n. V. Santiba and R. Kelly, “PD control with feedforward compensation
for robot manipulators: Analysis and experimentation,” Robotica,
vol. 19, no. 1, pp. 11–19, 2001.

[9] A. Gasparetto and V. Zanotto, “A technique for time-jerk optimal
planning of robot trajectories,” Robotics and Computer-integrated
Manufacturing, vol. 24, pp. 415–426, 2008.

[10] Y. Wada and M. Kawato, “A theory for cursive handwriting based on
the minimization principle,” Bio Cybrn, vol. 73, no. 1, pp. 3–13, 1995.

[11] C. Atkeson and J. McIntyre, “Robot trajectory learning through
practice,” in IEEE Intr. Conf. on Robot. and Autom., vol. 3, April
1986, pp. 1737–1742.

[12] F. Nori, L. Natale, G. Sandini, and G. Metta, “Autonomous learning
of 3D reaching in a humanoid robot,” in IEEE Intr. Conf. on Robot.
and Autom., vol. 2. IEEE, Oct 2007, pp. 1142–1147.

[13] D. Moran and A. Schwartz, “Motor cortical representation of speed
and direction during reaching.” J Neurophysiol, vol. 82, no. 5, pp.
2676–2692, November 1999.

[14] A. d’Avella, A. Portone, L. Fernandez, and F. Lacquaniti, “Control
of fast-reaching movements by muscle synergy combinations,” J.
Neurosci., vol. 26, no. 30, pp. 7791–7810, 2006.

[15] J. Krakauer, G. Maria-Felice, and C. Ghez, “Independent learning
of internal models for kinematic and dynamic control of reaching,”
Nature Neuroscience, vol. 2, no. 11, pp. 1026–1031, 1999.

[16] H. Nakahara, K. Doya, and O. Hikosaka, “Parallel cortico-basal
ganglia mechanisms for acquisition and execution of visuo-motor
sequences : A computational approach,” J. of Cognitive Neuroscience,
vol. 13, no. 5, pp. 626–647, 2001.

[17] A. Gasparetto and V. Zanotto, “A new method for smooth trajectory
planning of robot manipulators,” Mechanism and Machine Theory,
vol. 42, no. 4, pp. 455 – 471, 2007.

[18] B. Espiau, F. Chaumette, and P. Rives, “A new approach to visual
servoing in robotics,” IEEE Trans. Robotics and Automation, vol. 8,
no. 3, pp. 313–326, 1992.

[19] A. Fagg, A. Barto, and J. Houk, “Learning to reach via corrective
movements,” in Yale Workshop on Adaptive and Learning Systems,
June 1998, pp. 179–185.

[20] P. Dupont, “Friction modeling in dynamic robot simulation,” in IEEE
Intr. Conf. on Robot. and Autom., vol. 2, 1990, pp. 1370–1376.

[21] R. Schilling, Fundamentals of Robotics: Analysis and Control. En-
glewood Cliffs, NJ: Prentice-Hall, 1990, pp. 208–212.

4162

