
Constrained Closed Loop Inverse Kinematics

Behzad Dariush Youding Zhu Arjun Arumbakkam Kikuo Fujimura

Abstract— This paper introduces a kinematically constrained

closed loop inverse kinematics algorithm for motion control of

robots or other articulated rigid body systems. The proposed

strategy utilizes gradients of collision and joint limit potential

functions to arrive at an appropriate weighting matrix to

penalize and dampen motion approaching constraint surfaces.

The method is particularly suitable for self collision avoidance

of highly articulated systems which may have multiple collision

points among several segment pairs. In that respect, the

proposed method has a distinct advantage over existing gradient

projection based methods which rely on numerically unstable

null-space projections when there are multiple intermittent

constraints. We also show how this approach can be augmented

with a previously reported method based on redirection of

constraints along virtual surface manifolds. The hybrid strategy

is effective, robust, and does not require parameter tuning.

The efficacy of the proposed algorithm is demonstrated for a

self collision avoidance problem where the reference motion is

obtained from human observations. We show simulation and

experimental results on the humanoid robot ASIMO.

I. INTRODUCTION

Motion planning with kinematic constraints has been an

important and widely studied problem since the inception

of robotics technology. The majority of early research in

this area was focused on obstacle avoidance, typically for

applications involving mobile robot navigation and industrial

manipulation [1], [2]. In these applications, the workspace

was often predefined, static, or slowly varying. Moreover,

application developers typically adopted the philosophy of

segregating the workspace of robots and humans as a safety

countermeasure to avoid collisions with humans.

Today, the field of robotics is moving towards development

of high degree of freedom, human-like, and personal robots,

which are often designed to share a common workspace

and physically interact with humans. Such robots are often

highly redundant which fundamentally adds new capabilities

(self-motion and subtask performance capability). However,

increased redundancy has also added new challenges for

constraining the internal motion to avoid joint limits and self

collisions. With these challenges, researchers have become

increasingly aware of the need for robust joint limit and colli-

sion avoidance strategies to accommodate such applications.

In particular, self collision avoidance, which was largely

overlooked or not required when obstacle avoidance strate-

gies were first developed, has recently become an impor-

tant topic of research [3], [4], [5]. Enforcing self collision

B.Dariush, A. Arumbakkam, and K. Fujimura are at the Honda Research
Institute, USA, 800 California St. Suite 300, Mountain View CA 94041
dariush(aarumbakkam)(kfujimura)@honda-ri.com

Y. Zhu is at Department of Computer Science, The Ohio State University,
zhu.81@osu.edu

constraints is challenging for humanoid robots performing

human-like tasks, especially in a real-time or online setting.

The strategy must not only accommodate multiple colliding

segments simultaneously, but also tolerate smaller collision

distance thresholds than those established for early obstacle

avoidance algorithms. In addition, such constraints should

not significantly alter the reference or originally planned

motion. This is particulary important in applications in-

volving reproduction of robot motion from observed human

motion [5], [6], [7], [8].

This paper introduces an online, kinematically constrained

motion generation algorithm for motion control of robots

or other articulated rigid body systems in task space. The

strategy is formulated in the framework of the closed loop

inverse kinematics (CLIK) algorithm [9]. The presented

CLIK formulation is based on a weighted and regularized

pseudo-inverse solution which computes joint variables given

a set of motion descriptors specified in Cartesian space.

The first contribution of this paper is the construction of an

appropriate weighting matrix which results in collision free

motion. The weighting matrix is based on the gradient of a

potential function which penalizes and dampens joints whose

motion directs the segments toward joint limit and collision

constraints. The proposed method is particularly suitable for

self collision avoidance of highly articulated systems which

may have multiple and changing collision points among

several segments. In this respect, the proposed method has

a distinct advantage over existing gradient projection based

methods which are susceptible to numerical instability when

dealing with multiple and intermittently colliding segment

pairs [1], [10].

The second contribution of this paper is to show that the

proposed method may be augmented with our previously re-

ported collision avoidance strategy to improve robustness [5].

In particular, the hybrid strategy is effective in guaranteeing

collision free motion without the need to tune parameters for

the construction of collision potential functions.

To demonstrate the effectiveness of the proposed algo-

rithm, we illustrate simulated and experimental results on the

Honda humanoid robot ASIMO, where the reference motion

is obtained from captured human motion. The reference

motions are complex, fast, and exhibit frequent self collisions

under the traditional CLIK motion generation. With the

proposed algorithm, the motions are shaped in real time to

produce kinematically constrained motions. The algorithm is

also implemented in our online motion retargeting framework

and demonstrated on the ASIMO platform.

2010 IEEE International Conference on Robotics and Automation
Anchorage Convention District
May 3-8, 2010, Anchorage, Alaska, USA

978-1-4244-5040-4/10/$26.00 ©2010 IEEE 2499



II. CLOSED LOOP INVERSE KINEMATICS

Closed loop inverse kinematics (CLIK) is an effective

method to perform trajectory conversion from task space

to joint space [9]. A CLIK algorithm uses a set of task

descriptors as input and estimates the robot joint commands

that minimize the tracking error between the reference and

predicted Cartesian motion. In this section, we present an

overview of the CLIK formulation.

Let n represent the number of robot degrees of freedom.

Let the vector q = [q1, · · · , qn]T describe degrees of freedom

which fully characterize the configuration space of the robot.

Suppose the task variables operate the full six dimensional

task space, three for position and three for orientation and the

number of task variables is nt. Let k (k = 1 · · ·nt) be the

index of the spatial velocity vector ẋk corresponding to the

kth task descriptor. The associated Jacobian is given by Jk =
∂xk

∂q
.The mapping between the joint space velocities and task

space velocities is obtained by considering the differential

kinematics relating the two spaces

ẋk = Jk(q) q̇. (1)

The spatial velocity vector is defined by

ẋk =
[
ωk ṗk

]T
, (2)

where ωk and ṗk are vectors corresponding to the angular

velocity of the task frame and the linear velocity of the

task position referenced to the base frame, respectively. We

construct all task variables to form an augmented spatial

velocity vector ẋ and an augmented Jacobian matrix J as

follows:

ẋ =
[
ẋT

1 · · · ẋT
k · · · ẋT

nt

]T
, (3)

J =
[
JT

1 · · · JT
k · · · JT

nt

]T
. (4)

The Jacobian matrix may be decomposed to its rotational and

translational components, denoted by Jo and Jp, respectively.

J =

[
Jo

Jp

]
. (5)

If for example, only a position descriptor pk is observable,

then the parameters in Equation 1 can be modified to ẋk =
ṗk, and Jk = Jpk

.

Let the velocity of the reference task descriptors in the

augmented space be described by

ẋr =
[
ẋT

r1
· · · ẋT

rk
· · · ẋT

rnt

]T

. (6)

Given ẋrk
= ẋk, the standard inverse kinematics procedure

involves calculation of q̇ from Equation (1). A feedback

error term is typically added to correct for numerical drift,

resulting in the following closed loop inverse kinematics

equation:

q̇ = J∗(ẋr + K e), (7)

where J∗ denotes the regularized right pseudo-inverse of J
weighted by the positive definite matrix W , and defined by:

J∗ = W−1JT (JW−1JT + λ2I)−1. (8)

The parameter λ > 0 is a damping term, and I is an identity

matrix. The vector ẋrk
= [ωrk

ṗrk
]
T

represents the

spatial velocity. The rate of convergence of the error for the

kth descriptor is controlled by Kk, a diagonal 6× 6 positive

definite gain matrix. The vector e is the concatenation of

the individual error terms ei = [eok
epk

]T , where(epk
) and

(eok
) are the position and orientation error vectors between

the reference and computed task descriptors [11], [12], [9].

III. CONSTRAINED CLOSED LOOP INVERSE KINEMATICS

The CLIK algorithm described in the previous section does

not explicitly enforce kinematic constraints. For redundant

systems, a prioritized inverse kinematics strategy is often

used whereby constraints can be projected onto the null space

of the higher priority tasks [13]. Formulating constraints as

a secondary task cannot guarantee that constraints will be

satisfied. One solution is to enforce constraints as highest

priority operation and project the operational tasks into the

constraint null-space [10]. However, when there are multiple

simultaneous constraints to satisfy (such as self collision

avoidance in a humanoid robot), there may be insufficient

degrees of freedom to satisfy both the constraints, and

operational tasks. Task and algorithmic singularities arise

which create numerical instabilities. The intermittent nature

of the constraints could lead to further numerical instability

especially with null-space projection methods.

In our earlier work, we described an algorithm for solv-

ing the constrained closed loop inverse kinematics problem

which proved to be an effective and stable solution for

self collision avoidance [5]. The method used a weighted

least squares solution to constrain joints from violating their

limits and a virtual surface control method to redirect the

motion of segments away from collisions. While the virtual

surface control method is effective in preventing collisions,

the redirected task motion may be farther away from the

reference motion than necessary.

In this section, we extend the weighted least squares

solution used for joint limit avoidance to also handle self

collision constraints. The objective is to generate the joint

motion which minimizes the Cartesian tracking error subject

to joint limit and collision constraints. The approach is based

on time-local information and is targeted to real time control.

The proposed method involves construction of an appro-

priate weighting matrix, W , in Equation 8 to penalize and

dampen joints whose motion directs the segments toward the

constraint manifold. We construct W as a diagonal matrix

whose elements are derived by considering the gradients of

the joint limit and collision potential functions. The matrix

W is influenced by the n × n joint limit weighting matrix

WJL and the n × n collision avoidance weighting matrix

WCOL.

A. Joint limit constraints

In this section, we review the weighted least squares

solution to handle joint limit constraints as reported in [5],

[14]. Joint limit avoidance is achieved by the proper selection

of the weighting matrix W in Equation 8. The solution

2500



considers a candidate joint limit function, denoted by H(q) ,

that has higher values when joints near their limit and tends

to infinity at the joint limits. The gradient of H , denoted as

∇H , represents the joint limit gradient function, an n × 1
vector whose entries point in the direction of the fastest rate

of increase of H .

∇H =
∂H

∂q
=

[
∂H
∂q1

, · · · , ∂H
∂qn

]
. (9)

The gradient of a candidate H associated with the ith (i =
1 · · ·n) degree of freedom is given by [14],

∂H(q)

∂qi

=
(qi,max − qi,min)2 (2qi − qi,max − qi,min)

4(qi,max − qi)2 (qi − qi,min)2
,

where qi represents the generalized coordinates of the ith
degree of freedom, and qi,min and qi,max are the lower and

upper joint limits, respectively.

The gradient
∂H(q)

∂qi
is equal to zero if the joint is at the

middle of its range and goes to infinity at either limit. As

described in [14], we construct the joint limit weighting

matrix WJL by an n × n diagonal matrix with diagonal

elements wJLi
. The scalars wJLi are defined by

wJLi
=

{
1 + |∂H

∂qi
| if Δ|∂H/∂qi| ≥ 0,

1 if Δ|∂H/∂qi| < 0.
(10)

The term Δ|∂H/∂qi| represents the change in the magnitude

of the joint limit gradient function. A positive value indicates

the joint is moving toward its limit while a negative value

indicates the joint is moving away from its limit. When a

joint moves toward its limit, the associated weighting factor,

described by the first condition in Equation 10, becomes very

large causing the motion to slow down. When the joint nearly

reaches its limit, the weighting factor approaches infinity

and the corresponding joint virtually stops. If the joint is

moving away from the limit, there is no need to restrict or

penalize the motions. In this scenario, the second condition

in Equation (10) allows the joint to move freely.

B. Collision constraints

Collision avoidance may be categorized as self-collision

avoidance or obstacle avoidance. Self collision avoidance

involves two segments coming into contact; whereas ob-

stacle avoidance involves contact between an object in the

environment (See Figure 1). Self collision avoidance may be

classified as one of two types: 1) avoiding collision between

two connected segments, and 2) avoiding collision between

two unconnected segment pairs. By connected segment pairs,

we imply that the two segments are connected at a common

joint and assume that the joint is rotational.

If two segments are connected, self collision may be

handled by limiting the joint range. Joint limits for self

collision avoidance need not correspond to the physical joint

limits; rather, they may be more conservative virtual joint

limits whose values are obtained by manually verifying

the bounds at which collision occurs. Therefore, for two

segments connected by a rotation joint, joint limit avoidance

and self collision avoidance may be performed by using the

same formulation presented in Section III-A.

For those segment pairs that do not share the same joint,

the collision avoidance strategy must consider the minimum

Euclidian distance between the two colliding segments as

an input. Let d (d ≥ 0) correspond to the minimum distance

between two segment pairs. Let P (q, d) represent a candidate

collision function that has a maximum value at d = 0 and

decays exponentially toward zero as d increases.

We define the gradient of P , denoted as ∇P , as the

collision gradient function, an n × 1 vector whose entries

point in the direction of the fastest rate of increase of P .

∇P =
∂P

∂q
=

[
∂P
∂q1

, · · · , ∂P
∂qn

]
. (11)

The collision gradient can be computed as follows

∂P

∂q
=

∂P

∂d

∂d

∂q
. (12)

Consider first the case of self collision, or collision between

two bodies of the articulated chain. In this scenario, it can

be shown that the second term in Equation 12 is

∂d

∂q
=

1

d

[
JT

a (pa − pb) + JT
b (pb − pa)

]T
, (13)

where pa and pb represent position vectors, referred to the

base, of the two collision points, and Ja and Jb are the

associated Jacobian matrices. The coordinates pa and pb can

be obtained using a standard collision detection software.

In this work, we use the SWIFT++ library [15]. Figure 1

illustrates an example of a set of collision points between

the forearm and trunk.

1ap
1
d

1bp

Obstacle

2ap

2bp
2
d

Connected

Segments

Fig. 1. Illustration of self collision and collision with an obstacle.

If one of the collision point pairs, for example point b,

represents a point on an environment obstacle that is not

attached to the articulated structure (See Figure 1), then 13

simplifies to

∂d

∂q
=

1

d

[
JT

a (pa − pb)
]T

. (14)

2501



The collision gradient function in Equation 11 represents

the degree to which each degree of freedom influences the

distance to collision. We wish to select a function P (q), such

that the gradient
∂P (q)

∂qi
is zero when d is large and infinity

when d approaches zero. We define the collision gradient

weighting matrix, denoted by WCOL, by an n× n diagonal

matrix with diagonal elements wcoli (i = 1 · · ·n) defined by

WCOL =

⎡
⎢⎢⎢⎣

wcol1 0 0 0
0 wcol2 0 0

0 0
. . . 0

0 0 0 wcoln

⎤
⎥⎥⎥⎦ . (15)

The scalars wcoli are defined by

wcoli =

{
1 + | ∂P

∂qi
| if Δ|∂P/∂qi| ≥ 0,

1 if Δ|∂P/∂qi| < 0.
(16)

The collision function P can have different forms. For

example, we consider the following candidate function.

P = ρe−αdd−β . (17)

The function is at infinity when d = 0 and decays expo-

nentially as d increases. The rate of decay is controlled by

adjusting the parameters α and β. By increasing α, we can

control the exponential rate of decay so that the function

approaches zero more quickly. The parameter ρ controls the

amplitude. The partial derivative of P with respect to d is

∂P (q)

∂d
= −ρe−αdd−β(β d−1 + α). (18)

The quantity ∂P
∂q

in Equation 12 can be analytically computed

from Equation 13 (or Equation 14) and Equation 18.

The term Δ|∂P/∂qi| in Equation 16 represents the change

in the magnitude of the collision gradient function. A positive

value indicates the joint motion is causing the collision point

to move toward collision while a negative value indicates the

joint motion is causing the collision point to move away

from collision. When a collision point is moving toward

collision, the associated weighting factor, described by the

first condition in Equation 16, becomes very large causing

the joints affecting the motion of the collision point to slow

down. When two segments are about to collide, the weighting

factor is near infinity and the joints contributing to collision

virtually stop. If two segments are moving away from

collision, there is no need to restrict or penalize the motions.

In this scenario, the second condition in Equation (16) allows

the joint to move freely.

The next step is to construct a weighting matrix W . This

matrix is comprised of the joint limit weighting matrix WJL

and the collision weighting matrix WCOL. Suppose a total

of Nc segment pairs are checked for self collision. Let j
(i = 1 · · ·Nc) be the index of the jth collision pair, and dj

the minimum distance between the two colliding segments.

Let paj
and pbj

represent the coordinates, referred to the

base, of the two colliding point pairs for the jth collision

pairs.

The candidate potential function for each collision pair is

given by,

Pj = ρe−αjdj d
−βj

j (19)

Its gradient can be computed as before,

∂Pj

∂q
=

∂Pj

∂dj

∂dj

∂q
(20)

It follows that the collision weighting matrix for each colli-

sion pair, denoted by WCOLj
can be computed as outlined

above. The collision weighting matrix is comprised of the

contribution of each collision pair as given by,

WCOL =
1

Nc

Nc∑
j=1

WCOLj
(21)

C. The composite constraint matrix

The next step is to construct a composite constraint

weighting matrix W comprised of the joint limit weighting

matrix WJL and the collision weighting matrix WCOL.

While a rigorous formulation of this integration is warranted

and is currently being examined, we present a simple and ef-

fective solution based on our empirical results. The proposed

composite weighting matrix is given by,

W = a WJL + (1 − a) WCOL, (22)

where a is a scalar index which can be used to modulate

the contribution of the joint limit weighting and the colli-

sion weighting. We have found that the following index is

effective for the various motions considered,

a =
1

(Nc + 1)
. (23)

IV. RESULTS

We consider the human to robot motion retargeting ap-

plication to test the efficacy of the proposed algorithm [5].

The humanoid robot ASIMO was the platform used in the

simulation and experimental results. We first associate a set

of desired upper body human motion descriptors with the

human model. The human motion descriptors consist of up

to eight upper body Cartesian positions corresponding to the

waist joint, two shoulder joints, two elbow joints, two wrist

joints, and the neck joint (see Figure 2). The human motion

data was obtained from the Carnegie Mellon University

(CMU) human motion data base [16] as well as from a

marker-less system we have previously developed [17]. The

human motion data was low pass filtered, interpolated, and

scaled to the humanoid robot ASIMO dimensions. The

resulting motion corresponds to the reference robot motion

descriptors used as input in our proposed kinematically

constrained CLIK formulation.

The total upper-body degrees of freedom utilized in our

ASIMO model was 14 (6 at torso, 3 at each shoulder, 1 at

each elbow). The dimension of Cartesian motion when using

all eight position task descriptors is 24, resulting in an over-

constrained task specification. If four task descriptors at the

waist, two wrists, and the neck are used, the task dimension

2502



Fig. 3. Snapshots of simulated dancing motion with and without collision avoidance.

is 12. This task specification is under-constrained and creates

2 degrees of redundancy. The experiments conducted in this

section use 4 task descriptors. In section V, we utilize both

4 as well as 8 task descriptors.

2
p

8
p

1
p

4
p

7
p

5
p

6
p3

p

Fig. 2. Eight upper body human motion descriptors, represented by p̄i are
used to control the humanoid robot. These motion descriptors are normalized
to the dimensions of the humanoid robot ASIMO.

Fig. 4. Euler rotation corresponding to the Adduction/Abduction motion
of the left shoulder. Left: without joint limits. Right: with joint limits

Figure 3 illustrates snapshots of simulated retargeting

results of a fast dancing motion (obtained from the CMU

database) with a full body 360 degree twisting. These

simulated results are generated using the humanoid robot

ASIMO’s model and geometry. Since this motion is high

speed and involves complex twisting, the motion cannot be

performed on the physical robot. Nevertheless, we can test

the collision avoidance algorithm in simulation. We have

restricted the motion to the upper body. The top row in

Figure 3 illustrates snapshots of the motion without invoking

the collision avoidance algorithm. The colliding segments,

detected using the SWIFT++ collision detection software, are

highlighted in yellow. The bottom row illustrates the results

of the same motion when the collision avoidance was used.

For the dancing sequence, Figure 5 and Figure 6 show the

minimum distance between collision points on the left hand

and torso segment pairs. The minimum distances are plotted

with and without using the collision avoidance algorithm.

Without collision avoidance, the collision points attached to

the left hand and torso segment penetrate the collision zone

and eventually collide between frames 470 and 505 as shown

in more detail in Figure 6. Note that a negative distance im-

plies collision and penetration of the two bodies. Penetration

distance is clamped when penetration of the two bodies is

beyond −2.5 cm. When collision avoidance is turned on,

contact between the two segments does not occur. Figure 7

shows more dramatic contact between the left hand segment

and the torso segment. The collision avoidance algorithm

can successfully avoid penetration. In this simulation and all

other simulations, the collision function parameters were set

at ρ = 1, α = 50, β = 2. For high speed motions such as

those from the CMU motion capture database, the collision

avoidance strategy was effective in more than 98 % of the

frames analyzed. However, the parameter α was tuned to

avoid collision in all frames.

For the dancing motion, we also plotted the results of the

joint limit avoidance strategy which is also used to prevent

self collisions of connected body segments (see Figure 4). In

the left plot, the 2nd Euler rotation (Adduction/Abduction) of

the left shoulder joint is shown when joint limit avoidance is

not used. The right plot shows the results after enforcing

joint limits. The upper and lower joint limits are shown

by the dashed lines. If joint limit avoidance is not used,

the shoulder joint rotates rapidly well beyond its limit,

resulting in collision between the arm and the torso. With

joint limit avoidance, the joint angle dampens gradually when

it approaches its limits, creating a very smooth and natural

2503



looking motion.

We have also performed online motion retargeting based

on human motion data obtained from a real time, marker-less

human pose tracking system developed at Honda Research

Institute, USA, Inc. [17], [18]. The collision avoidance al-

gorithm had very little difficulty with these motions because

they are generally less dynamic than those obtained from

the CMU motion database. Snapshots from the collision

free online motion retargeting experiments are shown in

Figure 8. We have shown some explicit postures in which the

human performer is self colliding or comes near collision,

yet ASIMO’S motion is collision free.

0 100 200 300 400 500 600 700 800 900 1000
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

frame number

m
in

im
um

 d
is

ta
nc

e 
(m

)

Collision distance between left and right hand

With collision avoidance
Without collision avoidance

Fig. 5. Minimum distance between left and right hand collision points for a
dancing sequence [16] using the weighted least squares solution (weighting
method).

460 470 480 490 500 510 520
−0.1

−0.05

0

0.05

0.1

frame number

m
in

im
um

 d
is

ta
nc

e 
(m

)

Collision distance between left and right hand

With collision avoidance
Without collision avoidance

Fig. 6. Left and right hand minimum distance: Zoomed in Figure 5 to
observe frames 460 - 520.

V. HYBRID APPROACH

In our earlier work, we introduced a collision avoidance

strategy based on redirection of collision points along a vir-

tual surface manifold surrounding each link segment [5]. The

0 100 200 300 400 500 600 700 800 900 1000
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

frame number

m
in

im
um

 d
is

ta
nc

e 
(m

)

Collision distance between left hand and body

With collision avoidance
Without collision avoidance

Fig. 7. Minimum distance between left hand and torso collision points
for a dancing motion using the weighted least squares solution (weighting
method).

Segment A

ap�

cd

ap��

rp�

reference

task

rp��

ap
d

bpSegment B

Virtual surface

Fig. 9. Segment A approaches a stationary segment B. Upon penetration
into a critical zone, the collision point pa is redirected along the virtual
surface tangent line by altering the trajectory of the reference task descriptor,
pr .

virtual surface method is conceptually illustrated in Figure 9.

Suppose segment A approaches a stationary segment B.

Consider a 3D virtual surface surrounding segment A. The

goal is to redirect the collision point pa along the virtual

surface tangent when the minimum distance between the

two segments is less than a critical distance (i.e. d < dc).

To avoid a discontinuous redirection, a blending approach

is used. In order to redirect the collision point, the refer-

ence task descriptor trajectory is modified using a series of

transformations which relate the redirected collision point

velocities ṗ′a to the redirected reference velocities ṗ′r. The

closed loop inverse kinematics equation with the modified

parameters is given by

q̇ = J∗(ṗ′r + K ′ e′), (24)

2504



Fig. 8. Snapshots of ASIMO replicating the motion of a human demonstrator in real time.

where e′ = p′r−p and K ′ is an adaptively changing diagonal

feedback gain matrix whose values decrease as the distance

d decreases.

The virtual surface method is effective in directly control-

ling the collision distance to be within a specified tolerance

(determined by the critical distance dc) for any type of

motion without having to tune any parameter. The method

is especially suitable in enforcing collision constraints while

executing tasks which do not exhibit redundancy. However,

since the reference motion is redirected, the performance of

the virtual surface method in Cartesian tracking control of

under-constrained task trajectories is not optimal.

The weighted least squares solution proposed in Sec-

tion III-B is effective in handling redundant(under-

constrained) as well as over-constrained task specifications.

However, the limitation in the approach (as with gradient

projection methods) is that the collision distance cannot be

directly controlled. The collision avoidance function param-

eters may need to be tuned to produce a desirable effect or

to guarantee that the constraints are enforced. A fixed set

of parameters may not work in general, especially for high

speed motions.

To address this issue, we consider a hybrid approach,

combining the virtual surface and weighting matrix methods

to exploit the benefits of each. The integration of the two

methods is straightforward. We compute W and J∗ as

described in Section III-B and use the result in Equation 24.

In the hybrid approach, we give the weighting method a

higher priority and rely on the virtual surface method as

the second layer of protection which does not interfere with

the weighting method until d < dc. Selecting a relatively

small critical distance dc will produce a desirable outcome

to minimize interference with the weighting method unless

necessary.

We investigated the hybrid approach using a simulated

experiment. The critical distance dc used in the virtual

surface method and the hybrid method was set at 5cm and

2.5cm, respectively. A motion captured boxing sequence

obtained from the CMU motion capture database [16] was

used as the reference motion. The original motion is char-

acterized by considerable amount of self-collisions between

the two hands and the torso. First, we examine the over-

constrained case where eight upper-body task descriptors are

used. The root mean square (RMS) deviation of the modified

task trajectories from the reference trajectory when collision

avoidance is invoked is illustrated in Figure 10 for the three

approaches: 1) virtual surface, 2) weighting matrix, and 3)

hybrid (virtual surface combined with weighting). In this

over-constrained case, the three approaches yielded similar

results.

The task tracking benefit of the weighting and hybrid

methods becomes evident when the number of tasks is

reduced to 4 (under-constrained) as shown in Figure 11.

As compared to the over-constrained case, the (RMS) de-

viation of the modified collision free trajectory from the

reference trajectory increased significantly in the virtual

surface method. The weighting matrix method, however, had

a similar RMS deviation. As in the over-constrained case

(Figure 10), the hybrid approach produced similar results as

the weighting matrix approach. The benefit of the hybrid

approach is that that it is as effective as the weighted

least squares solution in both over-constrained and under-

constrained situations. At the same time, it offers an extra

layer of protection to prevent collision without parameter

tuning.

Waist

R.Shoulder

R.Shoulder

R.Elbow

R.Wrist

L.Elbow

L.Wrist

Head

Task Descriptor

RMS Deviation

R
M

S
 D

e
v
ia

ti
o
n
 (

m
e
te

rs
)

Weighting

Weighting + VS

VS

.01

.02

0.0

.03

.04

.05

.06

.07

Fig. 10. RMS Deviation of modified task trajectories from the reference
trajectory when collision avoidance is invoked using all eight task variables.
In this over-constrained case, the three methods have similar performance.

VI. SUMMARY

Enforcing kinematic constraints due to self collisions is

particularly challenging in highly articulated robots with tree

structures because of the possibility that a large number of

segments pairs can simultaneously approach and move away

from collision. We described a weighted least squares solu-

tion which is effective in handling over-constrained as well

as under-constrained task specifications. One shortcoming

of this approach for high speed motions is that it requires

tuning the collision function parameters to obtain a desirable

2505



Task Descriptor

Waist

Rwrist

Head

Lwrist

RMS Deviation

R
M

S
 D

e
v
ia

ti
o
n
 (

m
e
te

rs
)

Weighting

Weighting + VS

VS

Fig. 11. RMS Deviation of modified task trajectories from the reference
trajectory when collision avoidance is invoked using four task variables. In
this under-constrained case, the weighting method and the hybrid method
have similar performance and outperform the virtual surface method. The
hybrid method is advantageous since it can guarantee collision free motion
without parameter tuning.

effect. To address this issue, we presented a hybrid approach

which combined the weighted least squares method with

our previously reported virtual surface control method. The

efficacy of the proposed algorithm was demonstrated based

on simulations and experiments performed on the Honda

humanoid robot ASIMO. Currently, we’re working towards

formulating this approach for higher order task space as well

as joint space control methodologies.

REFERENCES

[1] A. A. Maciejewski and C. A. Klein. Obstacle avoidance for kinemat-
ically redundant manipulators in dynamically varying environments.
International Journal of Robotics Research, 4:109–117, 1985.

[2] O. Khatib. Real-Time Obstacle Avoidance for Manipulators and
Mobile Robots. The International Journal of Robotics Research

(IJRR), 5(1):90–98, 1986.

[3] H. Sugiura, M. Gienger, H. Janssen, and C. Goerick. Real-time
collision avoidance with whole body motion control for humanoid
robots. In IEEE Int. Conf. on Intelligent Robots and Systems (IROS

2007), 2007.

[4] O. Stasse, A. Escande, N. Mansard, S. Miossec, P. Evrard, and
A. Kheddar. Real-time (self)-collision avoidance task on a hrp-2
humanoid robot. In Proceedings of ICRA, pages 3200–3205, Pasadena
CA, 2008.

[5] B. Dariush, M. Gienger, A. Arumbakkam, Y. Zhu, B. Jian, K. Fu-
jimura, and C. Goerick. Online transfer of human motion to hu-
manoids. International Journal of Humanoid Robotics, 6:265–289,
2009.

[6] A. Nakazawa, S. Nakaoka, K. Ikeuchi, and K. Yokoi. Imitating
human dance motions through motion structure analysis. In Intl.

Conference on Intelligent Robots and Systems (IROS), pages 2539–
2544, Lausanne, Switzerland, 2002.

[7] S. Tak, O. Song, and H. Ko. Motion balance filtering. Comput. Graph.

Forum. (Eurograhics 2000), 19(3):437–446, 2000.

[8] S. Tak and H. Ko. A physically-based motion retargeting filter. ACM

Trans. on Graphics, 24(1):98–117, 2005.

[9] F. Chiaverini, B. Siciliano, and O. Egeland. Review of damped least-
squares inverse kinematics with experiments on an industrial robot
manipulator. IEEE Trans. Control Systems Tech., 2(2):123–134, 1994.

[10] L. Sentis and O. Khatib. A whole-body control framework for
humanoids operating in human environments. In Proc. of Int. Conf.

on Robotics and Automation (ICRA), Orlando, FL, 2006.
[11] B. Dariush, M. Gienger, B. Jian, C. Goerick, and K. Fujimura. Whole

body humanoid control from human motion descriptors. In Int. Conf.

Robotics and Automation (ICRA), Pasedena, CA, 2008.
[12] J.Y.S. Luh, M.W. Walker, and R.P.C. Paul. Resolved-acceleration

control of mechanical manipulators. IEEE Transactions on Automatic

Control, 25:468–474, 1980.
[13] Y. Nakamura. Advanced Robotics, Redundancy and Optimization.

Adisson-Wesley, 1991.
[14] T. F. Chan and R. V. Dubey. A weighted least-norm solution based

scheme for avoiding joint limits for redundant joint manipulators.
IEEE Transactions on Robotics and Automation, 11(2), 1995.

[15] UNC Chapell Hill: Swift++ Library. Speedy walking via im-
proved feature testing for non-convex objects. Internet page.
http://www.cs.unc.edu/ geom/SWIFT++/.

[16] Carnegie Mellon University. CMU graphics lab motion capture
database. Internet page. http://mocap.cs.cmu.edu/.

[17] Y. Zhu, B. Dariush, and K. Fujimura. Controlled human pose
estimation from depth image streams. In CVPR Workshop on Time of

Flight Computer Vision, Anchorage, Alaska, 2008.
[18] Y. Zhu and K. Fujimura. Constrained optimization for human pose

estimation from depth sequences. In Proceedings of Asian Conference

on Computer Vision, Tokyo, Japan, 2007.

2506


