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Abstract— Pronking (aka. stotting) is a gait in which all legs
are used in synchrony, resulting in long flight phases and large
jumping heights that may potentially be useful for mobile robots
on rough terrain. Robotic instantiations of this gait suffer from
severe pitch instability either due to underactuation, or the lack
of sufficient feedback. Nevertheless, the dynamic nature of this
gait suggests that the Spring-Loaded Inverted Pendulum Model
(SLIP), a very successful predictive model for both natural
and robotic runners, would be a good basis for more robust
and maneuverable robotic pronking. In this paper, we describe
how “template-based control”, a controller structure based on
the embedding of a simple dynamical “template” within a
more complex “anchor” system, can be used to achieve stable
and controllable pronking for a planar, underactuated hexapod
model. In this context, high-level control of the gait is regulated
through speed and height commands to the SLIP template,
while the embedding controller based on approximate inverse-
dynamics and carefully designed passive dynamics ensures
the stability of the remaining degrees of freedom. We show
through extensive simulation experiments that unlike existing
open-loop alternatives, the resulting control structure provides
stability, explicit maneuverability and significant robustness
against sensor and actuator noise.

I. INTRODUCTION

A. Motivation and Background

Pronking is a gait often adopted by legged animals to

signal their strength to potential predators [8, 12], with all

legs used in synchrony and a substantial flight phase induced

(see Fig. 1). For robotic platforms, the large jumping heights

associated with this gait may be useful for locomotion on

cluttered natural environments and may even increase effi-

ciency by decreasing damping losses. Moreover, the lateral

symmetry of the gait admits the use of simple planar models

and provides a rich domain for studying feedback control

of dynamic legged locomotion. Such a simplification also

allows the analysis of structurally similar gaits such as the

trot and the pace [4].

Existing pronking controllers often use fully actuated

leg designs. However, despite associated mobility and con-

trol advantages, the resulting electromechanical complexity

significantly impairs performance for autonomous outdoor

operation [18]. In contrast, robots with carefully designed

passive compliant dynamics showed that a large pallet of

behaviors are still possible with very few actuators [2, 20,

26]. Consequently, our emphasis in this paper is on how
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Fig. 1. Snapshot of a pronking stride for a planar hexapod.

robust and maneuverable pronking can be obtained with

underactuated legged robots, such as the RHex hexapod [23].

Regardless of available actuation, stable and maneuver-

able control of pronking is a difficult problem. Open-loop

controllers suffer from severe pitch instability and even the

addition of low-bandwidth sensory components does not

yield sufficient robustness for autonomous operation [17]. In

fact, pronking dynamics under simple energy-based feedback

and largely open-loop leg control was shown to be inherently

unstable for certain ranges of body inertia and locomotion

heights [5]. Even though it is possible to obtain stable

pronking and other similar gaits by careful co-optimization of

morphological and control parameters [9], maneuverability

still remains limited, motivating the present study.

In this paper, we propose a method for highly maneuver-

able control of the pronk through a careful “anchoring” [13]

of the Spring-Loaded Inverted Pendulum (SLIP) “template”

into a complex planar hexapod model. Our approach closely

parallels the ideas introduced in [22] but includes specific

extensions for the pronking behavior as well as a careful

characterization of how robust the resulting controller is

against noise. A similar application for a 3DOF asymmetric

hopper was described in [19]. In the last two decades, the

SLIP model, illustrated in Fig. 2, has been established as a

successful descriptive model for dynamic running behaviors

[1, 7, 27]. Its morphology has been successfully used for

several running monopods [15, 20, 26, 28], while principles

behind its descriptive success have been used to design robots

with more complex morphologies [3, 20]. In the present

paper, we extend formal results on the analysis and control

of the SLIP model and use them for controlling pronking.

B. Methodology and Contributions

Our method is based on decomposing system degrees

of freedom into two components: A dynamical template,

handling degrees of freedom relevant to the description and

control of the high level task, and the anchor, encompassing

the remaining degrees of freedom. Having been successfully

applied to the control of alternating tripod gaits, this idea

is not only appealing from an engineering perspective [24],

but is also supported by experimental data demonstrating the

ability of simple models to accurately capture biomechanical
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Fig. 2. The template SLIP model

data [13]. A similar decomposition was successfully applied

to the control of bipedal walking [16] and running [10]

through the use of zero-dynamics and optimization methods.

The suitability of the SLIP model as a template for

locomotion tasks is established through both its consistent

and undeniable identification in biological systems [6, 7, 11],

as well as due to the presence of numerous control strategies

that have been proposed for this system [14, 20, 25]. These

controllers are capable of very accurate realization and track-

ing of high level commands in the form of desired forward

velocity and hopping height, presenting a very convenient

and maneuverable interface to pronking.

Our primary contribution in this paper is the application

of the template-based control idea to pronking and a careful

simulation study to document stability and robustness proper-

ties of the resulting controller under various noise conditions.

II. DYNAMICS AND CONTROL OF SLIP

A. System Model

The SLIP model consists of a point mass m and a

freely rotating massless leg, endowed with a passive, linear

spring-damper pair of compliance ks and viscous damping

ds. Throughout locomotion, the model alternates between

stance and flight phases, which are further divided into

the compression, decompression and ascent, descent
subphases, respectively. In flight, the body is assumed to be

a projectile acted upon by gravity, whereas in stance the toe

is assumed to be fixed on the ground with the body mass

feeling radial forces induced by the leg. Table I details the

notation we use for the SLIP model.

TABLE I

SLIP MODEL NOTATION

SLIP States and Parameters

ξ, ψ, ξ̇, ψ̇ Leg length, leg angle and their derivatives
ks, ξ0 leg spring stiffness and rest length

ξtd, ψtd, ttd Leg length, angle and time at touchdown
ξlo, ψlo, tlo Leg length, angle and time at liftoff

bza , bẏa
Apex height and apex horizontal velocity

Controlling SLIP locomotion can be achieved with a

variety of control inputs [27]. In this paper, we use the leg

touchdown angle ψtd and leg lengths at touchdown ξtd and

liftoff ξlo. This set of control inputs not only makes stance

dynamics fully passive [28], but also admits their embedding

using RHex’s underactuated leg morphology [24] through

explicit placement of a “virtual toe” at touchdown.

B. Deadbeat Stride Control

In this section, we briefly describe the analytical stance

map for the SLIP model introduced in [14], and propose

an associated single-step deadbeat controller for high-level

control of locomotion.

Two of the control inputs, the touchdown and liftoff leg

lengths can be easily computed using the desired energy

difference ∆E between successive apex states. In particular,

if ∆E > 0, the leg is precompressed during flight to yield

ξtd = ξ0 −
√

2 ∆E/ks, (1)

ξlo = ξ0. (2)

Similarly, if ∆E < 0, ξlo is shortened accordingly while

ξtd is kept equal to the rest length. It is important to note

that these derivations pertain to the ideal SLIP model, for

which the stance phase is lossless. In our embedding of this

ideal SLIP in the hexapod model, we will introduce further

energy based corrections to explicitly account for the effects

of damping and embedding inaccuracies.

Computation of the touchdown leg angle requires the

derivation of an accurate stance map for the SLIP model. As

described in [14], the effect of gravity on the lossless stance

dynamics can be linearized such that the angular momentum

and total mechanical energy become constants of motion.

Based on these assumptions, approximate expressions for

stance trajectories can be written as

ξ(t) = ξ0(1 + a + b sin(ω̂0t)), (3)

ψ(t) = ψtd + ω(1 − 2a)(t − ttd)

+
2bω

ω̂0
[cos(ω̂0t) − cos(ω̂0ttd)], (4)

where a, b, ω̂0 and ω are constants that depend on system

parameters and touchdown states as detailed in [14]. These

solutions are formulated with respect to an unknown time

origin but (3) can be used together with the leg length control

inputs to identify associated time instants as

ttd = (π − arcsin((ξtd/ξ0 − 1 − a)/b))/ω̂0, (5)

tlo = (2π + arcsin((ξlo/ξ0 − 1 − a)/b))/ω̂0, (6)

extending the derivations of [14] where transition leg lengths

were always assumed to be equal to the leg rest length. Once

these times are computed, an analytical approximation for the

entire apex return map f̂a(ψtd) can be written.

In all of our simulations, we have observed that this one-

dimensional return map is monotonic in ψtd and is hence

invertible. Unfortunately, this inverse cannot be obtained

analytically. Nevertheless, the only remaining input is the

touchdown leg angle ψtd for which a numerical solution is

trivial and yields the desired forward velocity b∗ẏa
. Formally,

we solve the minimization problem

ψtd = argmin
−π
2

< ψ <−π
2

(b∗ẏa
− (πbẏa

◦ f̂a)(ψ))2, (7)

where πḃya
operator retrieves the forward velocity compo-

nent of the return map. This results in an effective, step-based

deadbeat controller for the SLIP model.
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Fig. 3. Slimpod: A planar dynamic model for hexapedal pronking

III. THE PLANAR HEXAPOD MODEL

Due to the dominant sagittal symmetry of pronking, we

adopt a planar approximation (the Slimpod model [22]) both

in our derivations and our simulations. Our hypothesis is

that planarity can be ensured in practice through laterally

differential leg torque adjustments. We now describe this

model, its dynamics and associated simplifications.

A. System Model

The Slimpod model, illustrated in Fig. 3, consists of a rigid

body with three compliant legs, each of which represents a

sagittally symmetric pair of legs. We also define a ”virtual

leg” extending from the body center of mass (COM) to the

ground which we will use for our embedding controller. We

define a fixed inertial frame W , a body reference frame B
located at the COM and finally a virtual toe frame V , whose

orientation is the same as W , located at the virtual toe. Legs

are attached to the body at fixed positions ai in B. The body

has mass m and inertia I , with its position and the orientation

in W denoted by b and α, respectively.

Each leg can independently be either in stance or flight,

resulting in a hybrid dynamic system model. Legs in stance

are assumed stationary at fi with no slippage. However,

toe dynamics during flight are modeled with small masses

mt ≪ m at each toe, assuming that body dynamics remain

unaffected by legs in flight. All legs are composed of a radial

spring with stiffness ki and a viscous damper with coefficient

di. As in the RHex platform, each hip joint is independently

controlled through a torque input τi. Further details of the

equations of motion for this model can be found in [22, 24].

IV. CLOSED LOOP CONTROL OF PRONKING

A. Structure of the Flight Controller

As described in Section II-B, control of SLIP locomotion

is achieved by proper selection of control inputs at every

apex event. We now associate the apex event for the Slimpod

model’s flight with the SLIP apex and invoke the correspond-

ing deadbeat controller to find suitable control inputs for the

following stride. The flight controller for Slimpod will then

try to achieve these control inputs (i.e. touchdown angle and

leg precompression) for the virtual leg attached to the body

COM by position control of individual leg angles.

1) Leg Control During Flight: The flight controller for

pronking must both ensure simultaneous touchdown of all

three legs, and also make sure that desired SLIP control

inputs can be realized by explicit placement of the virtual

toe. To this end, it continuously solves kinematic equations

Fig. 4. Leg kinematics at the time of touchdown

for all legs and applies PD control to bring them to desired

locations as illustrated in Fig. 4. Based on the SLIP control

decisions ψtd and ξtd, target leg angles are given by

φ∗
it = arccos(piz/ρ0) − αtd (8)

[

piy

piz

]

= ξtd

[

sin ψtd

cos ψtd

]

+ R(αtd) ai , (9)

where φ∗
it are the target leg angles to generate this pose,

realized with feedback control of the hips as

τi = −Kφ (φi − φ∗
i ) − Kφ̇ φ̇i. (10)

Since a numerical estimate of the pitch angle at touch-

down, αtd may not be very accurate, our controller simply

uses the current, measured pitch angle α in (9), which yields

the same result at the moment of touchdown.

2) Virtual Foot Placement: We consider the SLIP tem-

plate to have transitioned into stance as soon as at least

one of the physical legs touches the ground. Following this

event, the virtual toe location is determined by the controller,

also defining the coordinate frame V for the following stride.

Since actuator limitations of the RHex platform do not admit

physical precompression of its legs, our use of a virtual toe

to achieve precompression is necessary. After touchdown,

embedding controls will attempt to realize template dynamics

within the newly formed virtual toe frame.

Due to the nontrivial flight dynamics of each Slimpod

leg, the virtual toe placement as anticipated by the flight

leg controller may not be exact. In those cases, we select the

best possible virtual toe location by giving priority to the

touchdown angle over the leg precompression value. Final

decisions for the adjusted touchdown angle and the length

of the virtual leg hence take the form

ψ̄td = ψtd, (11)

ξ̄td = bz,td/ cos ψtd. (12)

where bz,td is the height of the body COM at touchdown.

After the placement of the virtual toe, we introduce polar

virtual leg coordinates ξ and ψ in V and the pitch angle α

c := [ ξ , ψ , α ]
T

. (13)

B. Control of Stance Dynamics

At the core of our control methodology is the realization of

the template SLIP dynamics for the COM through feedback

control during stance. In other words, we would like the

COM dynamics in V to closely match those of the SLIP

template. To this end, let Kξ , Kψ and Kα be the forcing

elements acting on the body COM, induced on the virtual toe

coordinates as a result of Slimpod dynamics. We define the
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stance forcing vector resulting from radial leg forces, Fr,s,

and hip torques, τ s as

K := [ Kξ , Kψ , Kα ]
T

= (Dcφ)τ s+(Dcρ)Fr,s , (14)

where Dcφ and Dcρ denote the Jacobian matrices of hip

angles and leg lengths with respect to the virtual leg coordi-

nates ξ, ψ and α. In the following sections, we will define

J := Dcφ and use Jψ and Jψ,α to denote the rows of J

associated with ψ and ψ, α, respectively.

Our method forces the stance dynamics of the anchor to

closely parallel those of the SLIP template, whose dynamics

are characterized by a compliant radial force. Combined with

a simple PD pitch stabilizing torque, this requires that

K = [U∗(ξ) , 0 , −Cα α − Cα̇ α̇ ] . (15)

Here, U∗(ξ) is the desired radial spring potential law and

the null component forces the total moment acting about

the virtual toe frame to be zero. In configurations where

J is invertible and all three legs are in stance, leg torques

necessary to realize the desired forcing vector are given by

τ s = J
−1 (K∗ − B)

where B := (Dcρ) Fr,s. Unfortunately, J often ends up

rank deficient for most robot configurations during pronking,

particularly in the ξ direction [22], making direct inversion

impossible. However, the structure of the Jacobian suggests

that the radial component is dominated by the robot’s passive

dynamics, which are already compliant and close to what the

SLIP template is trying to achieve. Consequently, we propose

an approximate solution and only consider the remaining two

virtual toe coordinates, yielding the solution

τψ,α = J
T
ψ,α

(

Jψ,α J
T
ψ,α

)−1
( [0,M∗

α] − Bψ,α ) (16)

that minimizes all hip torques while satisfying the angular

and pitch dynamics for the COM under the assumption that

associated components of the Jacobian are not singular.

In order to ensure practical applicability of our controller,

we also impose limits on hip torques based on RHex’s

actuator specifications. Moreover, we impose additional con-

straints to prevent premature leg liftoff which often causes

instability associated with loss of actuation degrees of free-

dom. These constraints yield an allowable torque space

T = { τ | τi,min ≤ τi ≤ τi,max } . (17)

In cases where torques returned by (16) are outside this

range, we prioritize the angular momentum around the virtual

toe, defining the associated feasible torque space as

Tψ := {τ | Jψ τ + Bψ = 0} , (18)

whose elements can be written as τ = τψ + τ⊥, where

τ⊥ ∈ Nullspace( Jψ )

τψ = J
T
ψ ( Jψ J

T
ψ )−1

Bψ

In situations where this set of torques intersects the allowable

torque space T , we find the best choice using the equation

τ s = min
τ∈(τ ψ ∩ T )

‖ τ − τψ,α ‖ (19)

which is solvable with simple linear programming methods.

Otherwise, if τψ ∩ T = ∅ , then the best solution is

τ s = min
τ∈T

τT
ψ (τ − τψ)

‖τψ‖
. (20)

Further details of these derivations can be found in [22].

C. Handling Partial Touchdown and Liftoff

The embedding algorithm of Section IV-B was formulated

under the assumption that all three legs are in stance. How-

ever, close to touchdown and liftoff events and particularly

in the presence of noise, the number of legs in stance may be

smaller. The embedding solution of (14) still applies when

only two legs are on the ground but a recovery strategy must

be introduced when only a single leg is in stance.

Earlier work on pronking [17] and our preliminary sim-

ulations showed that pitch instability is the dominant mode

of failure for this behavior. Moreover, control affordance of

a single leg is usually much more pronounced in the pitch

degree of freedom. Consequently, when only a single leg

is in contact with the ground, we only enforce the pitch

stabilization goal with τs = J−1
α (M∗

α − Bα), limited to the

allowed range for the leg motor.

D. Corrections for Damping and Embedding Inaccuracies

One of the most significant sources of error in the em-

bedding controller for alternating tripod running in [22]

was the presence of damping, making explicit control of

running height very difficult. In this section, we introduce

a number of model-inspired corrections that enables us to

explicitly control the apex height during pronking. Pronking

was not possible at all in the absence of these corrections

due to the apex height not being properly regulated and legs

prematurely touching the ground during protraction.

We first assume that the total damping force acting on

the center of mass can be represented as a viscous damping

force on the virtual leg, Fd := dsξ̇(t), where ds is the sum

of damping coefficients for all legs. Under this assumption,

the total damping losses are given by

∆Ed =

∫ Ts

0

ds ξ̇2(t)dt, (21)

where Ts is the duration of stance. Assuming that ξ̇t, ξ̇l and

Ts do not change substantially across strides at steady-state,

we fit a sinusoidal function to these data points to obtain

an estimate of the radial trajectory ξ̇(t). The energy loss

estimated through this approximate trajectory is then added

to the energy input ∆E.

The second problem comes from our assumption that

passive leg dynamics will automatically yield the desired

radial SLIP dynamics with Kξ = U∗(ξ). However, due to

kinematic differences introduced by the virtual toe placement

and nonzero pitch angles, the embedding controller always

gains more energy than the target SLIP model. Finding an

analytic estimate for this difference is very difficult due to
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Hip attachment coordinates of the legs

a1 a2 a3

[−0.24; 0] [0; 0] [0;−0.24]

Inertial parameters

m mt I
9kg 0.1kg 0.2kg m2

Leg parameters

ρ0 k d
0.19m 4000N/m 24Nm/s

Motor Characteristics

Stall Torque Max Speed Torque Loss

36.7N m 49.4rad/s 0.1

TABLE II

KINEMATIC AND DYNAMIC PARAMETERS OF THE SLIMPOD MODEL
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Fig. 5. An example simulation of duration 7s, from an initial condition
with bz = 0.3m, bẏ = 1.6m/s, α = −0.01rad and the apex goal selected
as b∗z = 0.21m, b∗ẏ = 1.4m/s.

the complex morphology of the system. Consequently, we

modify the selection of the leg precompression in (1) as

ξtd = ξ0 −
√

2 (KE ∆E)/k,

where KE is an energy scaling factor, experimentally tuned

to be 0.11 for our simulations. Finally, we impose an upper

limit on the amount of precompression which causes legs to

remain much closer to parallel during stance and significantly

improves the energetic accuracy of the embedding controller.

V. RESULTS AND DISCUSSION

This section presents our simulation results, analyzing

the existence and stability of limit cycles as well as the

tracking accuracy of the proposed controller both for an

ideal simulation and under state measurement noise. All

experiments were run in Matlab, within a simulation toolbox

whose results we verified against SimSect [21].

Table II details kinematic and dynamic parameters of

the Slimpod model used throughout our simulations. These

parameters were selected to closely match the morphology

and properties of our physical hexapod RHex to support

practical applicability of the proposed method.

A. Existence and Nature of Stable Limit Cycles

Fig. 5 illustrates an example pronking run with no noise,

starting from an arbitrary initial condition and converging to

the selected goal of b∗z = 0.21m, b∗ẏ = 1.4m/s. Locomotion

0.5 1 1.5 2 2.5 3 3.5 4
0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

ḃy(0) [m/s]

b z
(0

)
[m

]

Fig. 6. Cross section (ḃy-bz) of the stable domain of attraction for the goal

ḃ∗y = 1.4m/s and b∗z = 0.21m. Green region illustrates initial conditions
from which the hexapod converges to stable pronking in 7s. Dashed lines
illustrate a few example runs to show convergence behavior.

−0.6 −0.4 −0.2 0 0.2 0.4 0.6
0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

α̇(0) [rad/s]

b z
(0

)
[m

]

Fig. 7. Cross section (α̇-bz) of the stable domain of attraction for the goal

ḃ∗y = 1.4m/s and b∗z = 0.21m. Green region illustrates initial conditions
from which the hexapod converges to stable pronking in 7s. Dashed lines
illustrate a few example runs to show convergence behavior.

quickly converges to a limit cycle with very small steady-

state errors indicating that both the embedding controller

and the SLIP deadbeat controller are performing well. In

all of our simulations, we observed that the controller either

converges to a single, stable limit cycle, or irrecoverably fails

due to a structural faults such as toe stubbing or the robot

body colliding with the ground. No controller parameters or

initial conditions produced period-two or more oscillations.

B. Stability and Basins of Attraction

In order to generalize the results shown in Fig. 5 and

more accurately characterize the stability properties of the

pronking controller, we systematically ran simulations from

a variety of different initial conditions toward the same goal

setting of b∗z = 0.21m, b∗ẏ = 1.4m/s. We considered a run

stable if the apex states of the last 5 steps were within 1%

of their average. Two different cross-sections of the resulting

region of attraction are shown in Figs. 6 and 7. Even though

it is not surprising to see that pronking fails at very high

speeds (above 3.2m/s), it also does not perform well for

slow speeds. We believe that this is primarily due to the

underactuated nature of our platform which becomes unable

to inject energy into the system at slow speeds where leg

angles are shallow and the effects of leg torques are primarily
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Fig. 8. Maneuverability of the pronking controller. The blue region
illustrates the set of apex goal settings for which stable pronking is possible.

in the forward direction. Nevertheless, this does not present

a serious problem since the pronking behavior is considered

useful mainly for achieving medium to high speeds.

C. Maneuverability

As noted before, one of the primary contributions of this

paper is the maneuverability of pronking. To show this, we

ran a series of simulations with different apex goal settings,

starting from initial conditions close to the goal. As in the

previous section, we identified goal settings for which stable

pronking was possible by checking the last 5 apex states and

making sure they are within 1% of their average and within

5% of the desired goal.

Our results in Fig. 8 show that pronking speed and height

can be explicitly controlled within a very large region using

our embedding controller. There seems to be a preferred

speed of approximately 1.5m/s at which the largest apex

height can be controllably achieved. However, given the leg

length of 0.19m for our RHex platform, stable pronking at

apex heights as large as 0.26m are achievable, corresponding

to previously unachieved flight phases for this robot.

D. Noise Performance

Our final set of simulations investigate controller per-

formance under substantial noise conditions. Firstlt, while

the results of the previous section were obtained through

continuous integration of controller equations with system

dynamics, we now discretize our controller actions and apply

torque commands at a frequency of 1KHz with zero-order

hold. Results under this update frequency are much more

realistic since any physical robotic platform will have the a

similar constraint while performing closed loop control.

In addition to this “discretization noise”, we also add

zero-mean, white gaussian noise of variance 2% to our

force, velocity and pitch rate measurements in an attempt

to realistically model sensory noise that would be present in

a physical robot. Noise in positional measurements is less

critical since instrumented legs often provide rather accurate

estimates of both leg configurations as well as body position

during stance. Fig. 9 illustrates the same example run as

Fig. 5 under these noise conditions. This example shows that
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Fig. 9. An example noisy discrete simulation from an initial condition with
bz = 0.3m, bẏ = 1.6m/s, α = 0.01rad/s and the apex goal selected as
b∗z = 0.21m, b∗ẏ = 1.4m/s.
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Fig. 10. Cross section (ḃy-bz) of the stable domain of attraction for the goal

ḃ∗y = 1.4m/s and b∗z = 0.21m. Red region illustrates initial conditions
from which the hexapod converges to stable pronking in 7s.

the added noise leads to degraded steady-state performance

in pronking, but the nature of the limit cycle remains the

same. simulations to identify the domain of attraction

for the pronking behavior under the aforementioned noise

conditions. Red regions in Figures 10 and 11 show two

cross sections of this region of attraction, which are non

suprisingly slightly smaller than their counterparts under no

noise conditions, but are still substantial for the pronking

behavior. These results show that the embedding controller

is robust against the kinds of noise that would be typically

observed for a physical platform.

Clearly, there are still numerous challenges toward the

deployment of this behavior on a physical robot. However,

the robustness of our controller to at least the most basic

types of discretization and state measurement noise suggest

that such a deployment is not entirely infeasible.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we introduced a novel feedback controller

to achieve stable and maneuverable control of hexapedal

pronking. Our method is based on active embedding of

simple template dynamics, the SLIP model in our case, into

a more complex hexapedal morphology. The end result is a

clean separation of a simple dynamical model for the spec-
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Fig. 11. Cross section (α̇-bz) of the stable domain of attraction for the goal

ḃ∗y = 1.4m/s and b∗z = 0.21m. Red region illustrates initial conditions
from which the hexapod converges to stable pronking in 7s.

ification and control of higher level task parameters, while

remaining degrees of freedom are independently controlled

and stabilized.

The novelty of our work is both in achieving successful

pronking in the presence of severe underactuation and in

careful characterization of the performance of the resulting

control algorithm under noise due to both discrete control

and measurement uncertainty. We provided simulation evi-

dence to establish the existence and stability of limit cycles

with large basins of attraction. We also established that

the resulting controller nicely illustrates the maneuverability

advantages presented by the template abstraction, with a

large region of possible locomotion speeds and heights across

which explicit control is possible. Both the stability regions

and maneuverability properties of our controller were found

to be superior to those that were obtained for alternating

tripod gaits in [24]. We believe that the realization of

this algorithm on the experimental RHex platform will be

possible based on our results with realistic disturbances in

the form of discretization and measurement noise.

In the long term, we would like to reduce the dependence

of the pronking controller on high bandwidth state mea-

surements, resulting in more open-loop controllers through

careful investigation and analysis of the results obtained from

closed-loop pronking. This will eventually enable the RHex

platform to add pronking to its repertoire of robust behaviors

that it can safely deploy in the outdoors. Finally, we also

believe that pronking is the most likely behavior on which

the template based control strategy, so far only successfully

applied in simulation, will be physically realized.
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