
Intrinsic Repeatability: a new index for repeatability characterisation

Jean-François BRETHE
Groupe de Recherche en Electrotechnique et Automatique du Havre (GREAH)

Le Havre University, BP540, 76058 Le Havre, FRANCE
jean-francois.brethe@univ-lehavre.fr

Abstract—The paper deals with the question of
robot precision and how to characterise repeata-
bility. Hence ISO and ANSI repeatability indexes
advantages and drawbacks are analysed. A new
intrinsic repeatability index is proposed that can
estimate the robot endpoint position variability
satisfying the non-bias and convergence conditions.
Computation of this index is performed using sim-
ulated straight and drifting trajectories. Influence
of load on repeatability is studied using an ex-
perimental determination of an angular covariance
matrix. Therefrom intrinsic repeatability can be
computed in every workspace location using only
this covariance matrix and the stochastic ellipsoid
theory.
Index Terms—Stochastic Ellipsoids, Repeatability,

Robot Accuracy, Industrial Robot

INTRODUCTION

In the field of industrial robots, precision is an important
issue. Precision is characterized by two different indicators:
accuracy and repeatability. If the target is always the same,
and the move is repeated several times, repeatability mea-
sures the dispersion between final points. Accuracy char-
acterises the distance between the cloud of points and the
commanded position as explained in ISO9283 [1] or ANSI
R15.05-1[2].
In the first section, robot precision indices are presented.

Within them, the ISO and ANSI repeatability indices are
compared. In the second section, we study the pros and
cons of the two different approaches. The concept of a
repeatability sphere is discussed. The repeatability estimation
is analysed in a mathematical point of view concerning bias
and convergence. The sample size and the drift influence are
specified.
In the third section, a new repeatability index is proposed

to overcome some disadvantages of the usual procedures:
it is called intrinsic repeatability index and can unify the
ISO and ANSI approach. Simulations are made to illustrate
the concept revealing intrinsic repeatability as a very good
statistical estimator.
In the fourth section, we give the main lines to evaluate

intrinsic repeatability using only the covariance matrix. We
display an experimental procedure to estimate the angular

covariance matrix and show that it is possible to evaluate
load influence on repeatability index from this covariance
matrix. Then, it is possible to evaluate workspace location
influence on the repeatability index.

I. USUAL PRECISION INDICES
1) Repeatability and accuracy: The estimation of indus-

trial robot precision is based on a test where the robot is
set up to attain a commanded point and come back, this
cycle being repeated several times in the same conditions.
Measurements of the final robot positions show that they
are near the commanded point and all the final positions
constitute a cloud of points. Precision is then declined in
accuracy and repeatability as displayed in fig.1. In the ISO
procedure, the distance between the mean of the different
final positions and the commanded position will caracterise
accuracy. The ANSI definition is slightly different as it
considers different locations on a standard path. For each
location, the distance between the final position and the
commanded position, called the deviation is measured. The
accuracy index is then the mean of all the deviations.

Fig. 1. ISO approach of accuracy and repeatability

2) ISO and ANSI repeatability indices: The ISO definition
of repeatability index is the formula REPISO = D + 3SD

where D =
q
(xi − x)2 + (yi − y)2 + (zi − z)2 is the ran-

dom variable (RV) "distance between the point (xi, yi, zi)
and the barycentre (x, y, z)". In this method, the repeatability
is estimated at a given location. Therefore in order to evaluate
repeatability variability in the workspace, it is necessary to
estimate this repeatability index in different locations in the
workspace.
The ANSI definition is slightly different because three

different locations distributed at the extremities and the
middle of the standard path have to be considered and the
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repeatability index is a mean of the distances between the
target and the final position barycentre. So somewhere the
influence of workspace location is summed up already in
the ANSI repeatability index. To make it more clear, there
should be several ISO repeatability indices for a robot but
only one ANSI repeatability index.

II. DISCUSSION ON USUAL REPEATABILITY INDICES
Repeatability sphere ? Concerning repeatability, both

procedures are considering distances between final positions
and the barycentre. ISO considers the mean plus three times
the standard deviation. We could think that this definition is
inspired by the Gaussian distribution. The 3σ interval could
implicitly mean that 99.7% of the final positions are bounded
in a sphere, whose radius would be the repeatability index.
In the ANSI procedure, repeatability index is simply the
mean of the different distances between final position and the
barycentre. In this last case, it is explicitly said that a sphere
with a radius equal to rREP +3SREP will enclose 99.7% of
the results, where rREP is the total mean repeatability and
SREP is the standard deviation. But in fact, both procedures
do not give enough information about the spatial distribution.
They have a pragmatic approach and they sum up the cloud
in one indicator. Consequently the spatial distribution can not
be apprehended in three dimensions. Having just one figure
and this cloud representation, we may think of a repeatability
sphere. But this image is wrong and ellipsoids should be used
[3]. So the 99.7% of the results bounded in the repeatability
sphere may be wrong in most of the cases.
Bias and convergence ? If we consider the estimation

of repeatability as a classical estimation problem, we would
search for an estimation indicator that would have two
important properties: no bias and convergence. Let us see
how the ISO and ANSI repeatability indices accomodate
with these two criteria. The question of having a non-biased
index is essentially linked with the warm-up delay. ISO
suggests to begin measures after several moves to warm up
the robot and to wait for a stabilization of the final endpoint
positions. When the robot begins the cycles, because of
thermic dilatation, we observed a drift phenomena. We
remarked that the necessary delay to obtain stabilisation can
be long (one or several hours), and moreover it is difficult
to caracterise the time when stabilization is obtained. This
is a real disadvantage in an industrial application because of
wasted time in the process setup and it is a real disadvantage
also for robot specification because we do not know when
to begin the experiments to have a representative result.
The danger is that both repeatability and drift may be
caracterised together. ISO and ANSI have a special procedure
to caracterise warm-up delay and then it would be interesting
if the repeatability index could be estimated without being
mixed with the warm-up effects.
The sample size. The question of convergence is also

a crucial issue. The confidence interval for the repeatability
depends on the size of the data sample. In the ISO procedure,
the size of the sample is 30. In [4], the case of an isotropic
Maxwell distribution is studied, and we computed the 0.95

confidence interval for the repeatability estimation and it was
±16%. If the size increased to 100 samples, the confidence
interval reduced to ±8%. So in theory the larger the size
of the sample, the thinner the uncertainty about repeatability
estimation. But in practise, if the sample was larger, the drift
would bring a bias on the result.
Both problems can be illustrated by the example of fig.2

where a linear drift affects the trajectory. If the repeatability
index is calculated using sets of size 30, the effect of linear
drift will always bias the final estimation. We may think
that a better result could be obtained computing mean of
the consecutive repeatability indexes (by set of size 30), but
even in this case the influence of the drift will always subsist.
This is quite annoying as the quantity of information about
the process being larger, the estimation precision should be
better. ISO does not consider the question of computing the
mean of consecutive repeatability indexes though it could be
interesting to improve the estimation precision despite the
bias is still there. As this repeatability index variability is
quite important, the danger is that robot manufacturer would
choose the best figure in the whole experiments and the
displayed repeatability would rather be a minimum of the
repeatability indexes than a mean !
In the ANSI procedure, the sample size is 500 after

stabilisation. With this large sample size, the uncertainty
width which is proportional to 1√

N
is thin. One drawback

is that experiments would require time and another difficult
is being sure stabilization is obtained.
The drift. In fact both norms want to estimate repeatabil-

ity when experimental conditions are such that every try can
be considered as a realisation of a unique random variable,
which means in practise that the probability density function
is the same for the whole trajectory. We have studied this
property and it is not clear if such an hypothesis is valid.
In fact when studying the process in a statistical point of
view, it reveals that the process is stationary for the second
order, ie the standard deviation can be considered constant.
But the first order stationarity was not always established in
our experimental work as explained in [5].

Fig. 2. Simulation of a linear drift leading to a repeatability index bias

To sum up, a correct repeatability estimation should have
no bias and should converge. The experimental procedures
proposed in the ISO and ANSI norm suffer from this point
of view. The need for a mathematical estimator respecting
both non-bias and convergence conditions is crucial.
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III. INTRINSIC REPEATABILITY, A NEW REPEATABILITY
INDEX

We are looking for an estimator that has no bias, converges
and can be used as soon as the robot begins working without
waiting for the warm-up delay.
In this purpose, we try to eliminate the drift influence. This

is done first calculating the moving average Mean(10) on
the last ten attempts and studying the difference between this
moving average and the measured position. The statistical
distribution of this new RV is studied. It is obvious from
fig. 3 that there is an improvement in the fact that the
trajectory drift is already smaller. Then we tried to restrict
the moving average Mean(3) to the three last attempts,
the trajectory for the new RV was even straighter. At last,
the information concerning moving average was taken on
the previous attempt Mean(1) and the jump process was
studied. A complete statistical analysis proved that the jump
process was stationary and so it was the right RV to work
with in order to estimate repeatability.

Fig. 3. Moving average to get rid of the drift effect

We find then a relation between the jump and position
process. A statistical study of the position process show
that the Gaussian distribution is a good modeling. So two
parameters are necessary to caracterise this distribution:
mean and variance. But the mean of the position distribution
is affected by the drift and so was difficult to estimate. In
fact, the mean does not really interest us in the case of
repeatability because we have just said that we wanted to
build a new index, independent of the drift.
Let E(Xn) and σn (resp. E(Xn+1) and σn+1) be the

mathematical expectation and standard deviation of the
Xn Gaussian position distribution (resp. Xn+1). The mean
E(Xn) of the position process is not stationary but is affected
by a drift illustrated in fig.4.
Experimentally the variations of E(Xn) are small com-

pared to the process standard deviation σ but are significant
on a long time schedule: E(Xn+1) ' E(Xn) and sometimes
|E(Xn+30)−E(Xn+1)| À σ. The standard deviation σn of
the position process Xn is considered constant: σn = σ.
With these assumptions, the jump process Jn = Xn+1 −

Xn is a centered Gaussian distribution with a standard

Fig. 4. Probability density function of the position process

deviation of σ
√
2.

This stochastic property is interesting as it is then possible
to estimate the repeatability from the jump process taking
into account wider parts of the trajectory. Estimation is
no longer affected by the drift of the position process.
Numerous shots increase the variance estimation precision as
the uncertainty decreases with 1√

N
. Moreover experiments

can begin early without waiting for stabilization and the
temperature variations in the room do not affect the results.
In 3-D, the jump process covariance matrix is equal to the
position process covariance matrix multiplied by a factor 2.
So if all the drift affecting the position process disappears,
it is as if the jump and position spatial distributions are

√
2

ratio homothetic. The computation of the repeatability index
from the jump process can be achieved in a similar way as
in the ISO and ANSI norms but in the end, the result has
to be divided by

√
2 to find the usual repeatability indices

and be able to compare the results. Let J be the Euclidean
norm of the 3-D jump process then the definitions of the
jump process are:

REPintr =
1√
2

£
J + 3× SJ

¤
- ISO procedure

REPintr =
1√
2
J - ANSI procedure

3) Case of a simulated straight trajectory: To illustrate
the relevance of this new procedure, a 3D random normal
trajectory of size 300 is simulated on fig.5. It is then possible
from this trajectory to estimate ISO and ANSI repeatability
indices and compare them with the corresponding intrinsic
repeatability indices.
For the ISO procedure, 10 different repeatability indices

can be computed taking into account sample 1: attempts 1-
30, sample 2: attempts 31-60,... These indices are plot on
fig.6. It is clear that the variability of the indices are impor-
tant, so which one will be chosen ? On the same figure, we
display the mean of ISO repeatability indices computed on

the first k samples: rep_progressive_mean(k) =
kX
i=1

rep(i)

and the intrinsic repeatability computed on the k × 30
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first position values: REPintr_progressive_value(k) =
REPintr(1− > 30× k). Several simulations showed that in
the end repeatability indices progressive mean and intrinsic
repeatability progressive value are very close and converge
to the final value in the same pace, which are very interesting
properties.

Fig. 5. (x,y,z) position simulation in µm

Fig. 6. Comparison of ISO repeatability and intrinsic repeatability

For the ANSI procedure, we display on fig.7 the ANSI
and intrinsic repeatability indices computed on the first k
attempts. The values are very close and it shows that the
intrinsic repeatability and ANSI repeatability have the same
value when the position trajectory is straight, meaning with
a first order stationarity.
4) Case of a simulated drifting trajectory: Now the sim-

ulated trajectory of fig.8 is affected by a drift that could
represent the thermic dilatation effects during the warm-
up period. This was modelled by the sum of a Gaussian
distribution added with a sinusoid signal.
We used the same methodology as in the previous sub-

section and the results are displayed in fig.9. It is clear that
the different repeatability indices still keep their variability
but the mean of these indices and the intrinsic repeatability
converge nearly to the same value with a difference below
6%.
On fig.10 the results for the ANSI procedure. At the begin-

ning, both values are very close but on the long time period,

Fig. 7. ANSI and intrinsic repeatability for the straight trajectory

Fig. 8. A simulated drifting trajectory

the ANSI repeatability is severely affected by the drift. On
the contrary the ANSI intrinsic repeatability remains stable.

The conclusions are clear. When the trajectory is straight,
intrinsic repeatability gives the same results as ISO or ANSI
indices. It is better than the ISO because it converges
whereas the ISO different indices vary. When the trajectory
is affected by a drift, intrinsic repeatability is close to
ISO repeatability progressive mean. On the contrary, ANSI
repeatability indices overestimates the process variability. So
intrinsic repeatability is a convenient estimator because it
converges in 1√

N
and can eliminate the long-period drift

effect. Consequently, the measures can be taken without
waiting for the warm-up delay.

At this stage, we can notice that the slope of the drift
depends on several factors among then the cycle time, the
load and posture which have an influence on the motor
torques, the current intensity, the Joule effects, the thermic
equilibrium delay... That is the reason why we want to
eliminate this drift because it depends partly on the user
and is not an intrinsic characterisation of the manufacturer
control and architecture.
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Fig. 9. ISO and intrinsic repeatability - case of the drift

Fig. 10. ANSI and intrinsic repeatability for the drifting trajectory

IV. COMPUTING INTRINSIC REPEATABILITY FROM THE
COVARIANCE MATRIX

We built a new intrinsic repeatability index that has a lot
of advantages. But this index has the same disadvantage as
the traditional ones because it does not describe the 3D-
spatial distribution of the repeatability phenomenon. On the
contrary, the stochastic ellipsoid approach can give precise
information about this spatial distribution. In this section, we
just present a simple experimental procedure to estimate the
covariance matrix and then explain how to compute directly
intrinsic repeatability from this covariance matrix.
Angular covariance matrix. For the angular covariance

matrix estimation, we just use one micrometer and move
one axis at a time, the other axes are blocked by the brakes.
For each axis, at least 200 cycles are commanded. From
the statistical series, we estimate the standard deviation
and at this stage, it is better to use the jump process.
This procedure was completed for a KUKA IR384 and a
SAMSUNG Faraman, for a medium load and a high load.
Here is for instance the covariance matrix D0 for the Kuka
robot loaded with 3.5 kg:

D0 = diag [28.9; 20.6; 67.1; 219; 130; 291] (10−12 rad2)

Influence factors for repeatability. Many factors have
been suspected to influence repeatability, as speed, load,
workspace location, backlash, temperature,... But there are
not so many statistical work performed to discriminate

which factor was the most influent. Riemer and Edan were
interested in workspace location influence [6], Offodile and
Ugwu in load and speed influence [7].
It is possible to evaluate the load influence on repeatability

considering the differences in the covariance matrix for
medium and high load. For instance, for the Kuka robot with
8.5kg, the covariance matrix D1 is:

D1 = diag [34.4; 24.5; 64.7; 166; 1710; 685] (10−12 rad2)

It is clear than the load has a very important influence
on the variance for the 5th and 6th axes. For the other
axes, the estimations are statistically the same. Certainly, it
is possible to improve the design of the 5th axis control. It is
now interesting to know if these differences have important
consequences on the value of intrinsic repeatability. For this,
we must take into account the lever arm lengths and spatial
combination of all these uncertainty sources.
Computation of intrinsic repeatability from the covari-

ance matrix is easier when the density is isotropic as the
density follows the Maxwell function. In other cases, the
computation is numerical with the following steps.
1. The mean computation L. Let σ2x, σ2y, σ2z be the

eigenvalues of the covariance matrix in a given location, L =
kXk2 the distance from final point X = (x, y, z) to the
barycentre. The mean of the distance is computed from the
following integral:

L=
(2π)

− 3
2

σxσyσz

ZZZ
kXk2 exp

·
−1
2

µ
x2

σ2x
+

y2

σ2y
+

z2

σ2z

¶¸
dX

Let Cθ = cos θ ; Sθ = sin θ. Using ellipsoidal coordinates
x = rσxCϕCθ; y = rσyCϕSθ; z = rσzSϕ, we obtain:

L=α

ZZ q
(CϕCθσx)

2 + (CϕSθσy)
2 + (Sϕσz)

2Cϕdθdϕ

where α = 2 × (2π)− 3
2 . This integral has to be evaluated

numerically.
2. The variance computation SL From the formula:

S2L = V ar(L) = L2 − L
2
. The mean of L2 is easier to

compute and leads to the simple result: L2 = σ2x+σ
2
y+σ

2
z =

tr(C) = tr(D). So the final expression of the intrinsic

repeatability index is REPISO = L+3

q
tr(D)− L

2 in the
ISO approach and REPANSI = L in the ANSI approach..

CONCLUSIONS
In this paper, we presented a new index for repeatability

characterization: intrinsic repeatability. Intrinsic repeatability
has the following interesting properties: it has no-bias ; it
converges in 1√

N
more quickly than ISO or ANSI indices

; it can be evaluated without waiting for warm-up delay.
For all these reasons, this index is wellsuited for industrial
applications. It could replace the ISO or ANSI indices.
Moreover, it is possible to compute intrinsic repeatability
from the angular covariance matrix, which can be estimated
experimentally using only one micrometer. The influence of
load on repeatability can be estimated from the differences
in the covariance matrices. Workspace location influence can
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also be evaluated through computation of intrinsic repeata-
bility and this simplifies the test procedure. There is no more
need to specifiy "a standard test path" for instance. Finally,
the spatial distribution of the cloud can be determined from
the covariance matrix giving a reliable 3-D confidence set
for the robot endpoint.
Because of all these advantages, we suggest that robot

manufacturers should provide covariance matrices corre-
sponding to medium and nominal load and should adopt the
concept of intrinsic repeatability.
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