
An Iterative Mixed Integer Linear Programming Approach
to Pursuit Evasion Problems in Polygonal Environments

Johan Thunberg and Petter Ögren

Abstract— In this paper, we address the multi pursuer version
of the pursuit evasion problem in polygonal environments. It
is well known that this problem is NP-hard, and therefore we
seek efficient, but not optimal, solutions by relaxing the problem
and applying the tools of Mixed Integer Linear Programming
(MILP) and Receding Horizon Control (RHC).

Approaches using MILP and RHC are known to produce
efficient algorithms in other path planning domains, such as
obstacle avoidance. Here we show how the MILP formalism can
be used in a pursuit evasion setting to capture the motion of the
pursuers as well as the partitioning of the pursuit search region
into a cleared and a contaminated part. RHC is furthermore a
well known way of balancing performance and computation
requirements by iteratively solving path planning problems
over a receding planning horizon, and adapt the length of that
horizon to the computational resources available. The proposed
approach is implemented in Matlab/Cplex and illustrated by a
number of solved examples.

I. INTRODUCTION

The visibility based pursuit evasion problem addressed
here was first proposed by Suzuki and Yamashita [9] and
later studied in e.g., [2]–[5]. The problem is to find a search
strategy for a group of pursuers, such that an evader moving
arbitrarily fast, and starting in an unknown location, will be
captured no matter what path he decides to take.

The obvious applications of the pursuit evasion problem
is where security guards, or robots such as the one in Figure
1, are to clear an office, a warehouse, or a shop after closing
time. However, search strategies of this type can also be used
in search and rescue missions, or when looking for an item
that might be moved by a non-adversarial agent in a larger
area, such as a warehouse.

A complete solution to the one-pursuer case was proposed
by Guibas et al. [3] where it was also pointed out that
the extension of that same approach presented considerable
challenges even in the two-pursuer case. This is natural, since
Guibas et al. also showed that the general problem is indeed
NP-hard, a fact that essentially removes the hope of finding
optimal solutions in reasonable time. The concepts of [3]
were built upon in [2], where a field of view limitation
was incorporated into the problem. The one-pursuer case
was successfully treated, but once again, the multiple-pursuer
case turned out to be computationally intractable.

The first author would like to gratefully acknowledge the financial support
by Nationellt Rymdtekniskt Forskningsprogram (NRFP).

J. Thunberg is with the Division of Optimization and Systems Theory,
Department of Mathemathics, Royal Institute of Technology (KTH), Stock-
holm, Sweden SE-100 44, johan.thunberg@math.kth.se

P. Ögren is with the Department of Aeronautical and Systems Technology,
Swedish Defence Research Agency (FOI), Stockholm, Sweden, SE-164 94,
petter.ogren@foi.se

Fig. 1. The security robot Groundbot, developed by Rotundus
(www.rotundus.se), during a demonstration of our earlier results, reported
in [8].

As optimal deterministic strategies with guaranteed cap-
ture are hard to find, the option of using randomized strate-
gies was explored in [5]. It was shown that a single pursuer
can locate an evader in any simply connected environment
with high probability. Randomized approaches such as these
are clearly an option for the multi-pursuer problem, but will
not be investigated here.

A closely related problem is the one where the evader and
pursuers are constrained to move in a graph. One version of
this problem is called the GRAPH-CLEAR problem, and was
studied in [6]. In the GRAPH-CLEAR problem, each vertex
corresponds to a room, and each edge corresponds to a door.
Each vertex and edge furthermore has a number assigned to
it, corresponding to how many pursuers are needed to clear
the vertex (room), or block the edge (door). The problem is
now to deploy pursuers to the edges and vertices in such
a way that the whole graph is cleared. It is easy to see
how most polygonal environments can be divided into rooms
and doors. Therefore, a hierarchical approach with a global
GRAPH-CLEAR problem and a polygonal pursuit evasion
problem for each room can be created. The benefits of such
an approach is to reduce the size of the subproblems, while
the potential drawback is that the possibility of a pursuer to
see from one room to another is removed.

In this paper, we will propose an approach using the
tools of Mixed Integer Linear Programming (MILP) and
Receding Horizon Control (RHC). These tools were applied

2010 IEEE International Conference on Robotics and Automation
Anchorage Convention District
May 3-8, 2010, Anchorage, Alaska, USA

978-1-4244-5040-4/10/$26.00 ©2010 IEEE 5498

to UAV path planning in [7], where MILP was used to find
detailed trajectories over a short planning horizon. The MILP
computations were then iterated in a RHC fashion where
each trajectory ended closer to goal than the previous one.
The polygonal pursuit evasion problem is quite different from
the UAV problem studied in [7], but share the properties of a
complex short term planning step and a long term goal. In the
pursuit evasion problem we let the size of the cleared area be
a measure of how far we are from completing the search, and
encode the motion of the pursuers and the evolution of the
cleared area into a MILP problem that is iteratively solved.
The main contribution of the paper is this MILP formulation
of the visibility based pursuit evasion game. To the best of
our knowledge, this has not been done before.

The outline of the paper is as follows. In Section II the
polygonal pursuit evasion problem is formally stated and in
Section III the proposed solution is described. Then, Section
IV describes an RHC extension of the algorithm. Finally,
Section V contains simulation examples to illustrate the
approach and Section VI concludes the paper.

II. PROBLEM FORMULATION

Following Guibas et al. [3], the pursuers and evader are
modeled as points moving in the polygonal free space, F .
Let e(τ) denote the position of the evader at time τ ≥ 0.
It is assumed that e : [0,∞) → F is continuous, and the
evader is able to move arbitrarily fast. The initial position
e(0) and path e is not known to the pursuers. At each time
instant, F is partitioned into two subsets, the cleared and
the contaminated, where the latter might contain the evader
and the former might not. Given N pursuers, let pi(τ) :
[0,∞) → F denote the position of the i:th pursuer, and
P = {p1, . . . , pN} be the motion strategy of the whole group
of pursuers.

Let V (q) denote the set of all points that are visible from
q ⊂ F , i.e., the line segment joining q and any point in V (q)
is contained in F .

Problem 1 (Pursuit Evasion): Given an evader, a set of N
pursuers and a polygonal free space F , find a solution strat-
egy P such that for every continuos function e : [0,∞)→ F
there exists a time τ and an i such that e(τ) ∈ V (pi(τ)), i.e.,
the pursuer will always be seen by some evader, regardless
of its path.

It was shown in [3] that computing the minimal number
of pursuers needed to solve Problem 1 is NP-hard. Hence it
is also NP-hard to determine if a solution exists for a given
number of pursuers. To find efficient solutions in reasonable
time one must thus sacrifice optimality. This can be done
by exploring randomized approaches [5], or by relaxing the
problem and applying other optimization schemes.

In the following section we will first relax Problem 1
by discretizing it, and then apply a combination of Mixed
Integer Linear Programming (MILP) and Receding Horizon
Control (RHC). These tools have proved to be very useful
when addressing other hard path planning problems [7] and
we will argue that they are applicable to Problem 1 as well.

III. PROPOSED SOLUTION

In the proposed solution, we first discretize Problem 1
by partitioning the polygonal free space F into a set of
convex regions, F = ∪i∈JFi, J = {1, . . . ,K}. The relations
between those regions are then described by Mj ⊂ J and
Nj ⊂ J , where Mj is the index set of other regions that
are neighbors to Fj , and Nj is the index set of regions that
are visible from Fj . Then, a MILP is formulated, capturing
what regions are occupied by pursuers at what times, and
when the regions are cleared or contaminated over time. By
maximizing the cleared area at the end time of the MILP,
the continuous pursuer trajectories pi(τ) can be constructed
from the discrete MILP output.

A. Discretization of the free space environment

The first step of the discretization of Problem 1, i.e., the
partitioning F = ∪iFi, is illustrated in Figure 2. As can
be seen, all straight obstacle boundaries are extended until
they reach another obstacle, or the perimeter of F . These
extended boundaries form the partition F = ∪iFi.

Lemma 1: In the partition there are O(n2) regions, where
n is the number of straight boundaries of the obstacle
polygons and the perimeter.
Proof. In the partitioning, each extended straight obstacle
boundary intersects a number of other extended boundaries.
There are at most n2 such intersections. Each such inter-
section borders at most four regions. Thus the number of
regions k, satisfy k ≤ 4n2 and k ∈ O(n2).

(a) (b)

Fig. 2. An example environment with one irregularly shaped obstacle (a),
and the corresponding partition of the free space F into convex polygons
F1 . . . F21 (b).

The second step of the discretization of Problem 1 deals
with the motion, pi(τ), of the pursuers. These are now
discretized into moving between the regions Fi. A pursuer
standing in Fi can in the next, discretized, time instant
occupy any region with index in the set Mi, i.e., any
neighboring region. This is illustrated in Figure 3 (a).

The third step in discretizing Problem 1 involves the
visible set V (·). Let Ni be the index set of regions such
that Fj ⊂ V (x) for all j ∈ Ni and all x ∈ Fi. Note that
visibility is symmetric, i.e. j ∈ Ni implies i ∈ Nj .

Remark 1: Note that the discretization of V (·) is con-
servative, since regions Fj that are partially visible are

5499

(a) (b)

Fig. 3. The neighborhood that can be moved to, M1 (a) and the
neighborhood that can be seen, N1 (b), from area F1.

considered not visible at all. In other approaches, such as
[2], [3], this is not the case.

The final step of discretizing Problem 1 is to capture the
regions being clear, or contaminated during the search in
terms of a MILP.

B. MILP formulation

As described above, a pursuer located in polygon i sees
the polygons with index in set Ni and can move to polygons
with index in the set Mi.

During the search we keep track of where the pursuers are,
and which polygons are cleared and which are contaminated.
In order to do so, we introduce the following binary variables
λit, σit, θit ∈ {0, 1}, where i ∈ J and t ∈ {1, 2, ..., T}. Let
λit = 1 if and only if a pursuer is located in polygon i at
time t. Let furthermore σit = 1 if and only if polygon i is
seen at time t and θit = 1 if and only if polygon i is cleared
but unseen at time t.

Before formulating the MILP we define four different
search-states that each region Fi can be in. Theoretically,
there are eight combinations of the three binary variables
λit, σit, θit, but given the meanings we assign to them, only
four of those eight combinations are possible, and we denote
them S1, S2, S3, S4. These four states will help us capture
the time evolution of the search in the MILP formalism. We
differentiate between three different cleared states, S1, S2, S3

and one contaminated state, S4.
S1 The region is seen by a pursuer and contains a pursuer,

i.e., λit = 1, σit = 1 and θit = 0.
S2 The region is seen by a pursuer, but does not contain a

pursuer, i.e., λit = 0, σit = 1 and θit = 0.
S3 The region is not seen by a pursuer, but can not contain

the evader, i.e., λit = 0, σit = 0 and θit = 1.
S4 The region might contain the evader, i.e., λit = 0, σit =

0 and θit = 0.
Note that no other combinations of λit, σit, θit are possible
by definition.

We now state the MILP formulation and then show, in
Lemma 2, that a feasible solution does indeed correspond
to traversable pursuer paths pi(τ) and an expanding cleared
region {i : θit = 1}. Note that the proof of Lemma 2, as a
side effect, gives motivations for all the constraints (2)-(12).

Problem 2 (MILP): Given a T ∈ Z+ solve the following
integer linear program.

max Z = α
∑
i∈J

θiT + (1− α)
∑
i∈J

σiT (1)

subject to ∑
j∈Ni

λjt − σit ≥ 0, (2)

σit − λjt ≥ 0 ∀j ∈ Ni (3)∑
i∈J

λit −N = 0 (4)∑
j∈Mi

λjt − λi(t−1) ≥ 0 (5)

N − (N − 1)λit −
∑

j∈Mi

λjt ≥ 0 (6)

2−
∑

j∈Mi

λj(t−1) − λit ≥ 0 (7)

2−
∑

j∈Mi

λjt ≥ 0 (8)

σjt + θjt − θit ≥ 0, ∀j ∈Mi − {i},(9)
σi(t−1) + θi(t−1) − θit ≥ 0, (10)

1− σit − θit ≥ 0, (11)
θi1 = 0, (12)

where α ∈ [0, 1], i ∈ J and t ∈ {2, 3, ..., T} in (5), (7) and
(10) and t ∈ {1, 2, ..., T} in the other constraints.
Note that α = 1 corresponds to maximizing the cleared but
unseen region (S3), α = 0 corresponds to maximizing the
visible region (S1 or S2), while α = 0.5 corresponds to
maximizing the cleared region (S1, S2 or S3) at the final time
T . In Section V below we will see that α = 1 is actually the
best measure of progress for the clearing task. Note also that
constraint (4) implicitly assumes that pursuers never occupy
the same region. This restriction is somewhat conservative,
as it is not present in Problem 1.

Lemma 2: A feasible solution to Problem 2 can be used
to generate pursuer paths pi(τ), τ ∈ [0, T ′], i ∈ {1, 2, ..., N},
guaranteeing the following. If e(τ) 6∈ V (pi(τ)) for all i and
τ ∈ [0, T ′], then e(T ′) ∈ Fi such that Fi is in state S4 at
time T, i.e., if the evader has not been seen up till time T ′,
then it must be in the contaminated area. Above, T ′ is the
continuous final time corresponding to the discrete final time
T .
Proof. We first prove that N valid pursuer paths can be
generated from a feasible solution. In (4) it is guaranteed
that there are exactly N pursuers at each time t. In (5) it is
guaranteed that there must must be a pursuer in the move
neighbourhood of polygon i at time t+1 if there is a pursuer
at the polygon i at time t. Constraints (6), (7) and (8) together
guarantee that a pursuer move between adjacent regions in
consecutive time steps. Now, pursuer paths pi(τ) can be
created from λit where all pursuers cross borders between the
Fi at the same time. Finally, a mapping between continuous
time τ and discrete time t can be created to accommodate
the pursuer velocity bounds.

5500

To see that the right regions are denoted as seen, σit = 1,
we note that in (2) and (3) the variable σit is set to 1 if and
only if there is a j ∈ Ni such that λjt = 1.

To see that the cleared area, θit = 1, evolves correctly
note the following. In (9) it is verified that the polygon i
cannot be in state S3 at time t if any of the Mi-neighbours
are in state S4, and in (10) it is verified that the polygon i
cannot be in state S3 at time t if it was in state S4 at time
t− 1. In (11) it is verified that polygon i cannot be in state
S3 if it is in state S1 or state S2 at time t and (12) verifies
that that no polygon is in state S3 when the search starts.

To conclude we note that evader e(τ) can not start in the
cleared area S3 and that the cleared area is always separated
from the contaminated S4 by seen or occupied areas S1, S2.
Thus, if it is not seen, it must be in the contaminated area.

Lemma 3: A feasible solution strategy P to Problem 2
with N pursuers ending with an empty contaminated area,
i.e., ∑

i∈J

(σiT + θiT) = card(J), (13)

is a solution to Problem 1.
Proof. A straightforward application of Lemma 2 above.

Remark 2 (Backwards): Given a solution strategy P of
Problem 1, a new solution can be created by running the
pursuer trajectories pi(τ) backwards. To see this note that
the cleared unseen area (S3) is always separated from the
contaminated area (S4), and we start with an empty cleared
unseen area and finish with an empty contaminated area.
Running the trajectories backwards would thus result in
exchanging the labels cleared unseen and contaminated, i.e.
switching states S3 and S4.

Remark 3 (Number of pursuers): In the proposed MILP
formulation, the number of variables or the number of
constraints will not increase with the number of pursuers,
i.e., the size of the problem does not grow with the number
of pursuers. However, the number of constraints does grow
linearly with the number of regions.

IV. REDUCING THE COMPUTATION TIMES USING RHC
AND RELAXATION

In this section we will describe how the computation
times for solving Problem 1 can be reduced using RHC and
relaxing some of the integer constraints in the MILP.

A. An RHC Solution to the Pursuit Evasion Problem

Depending on the problem size, large time horizons T
might be needed to find a solution to Problem 2 with empty
contaminated area, and large time horizons T often result
in long computation times. As explained in Section I above,
a classical way to balance performance with computational
resources is RHC, where an optimization problem over a
shorter time horizon is iteratively solved instead of solving
it once over a longer horizon. In our setting the RHC concept
might be implemented as follows.

Algorithm 1:

1) Solve the MILP with α = 1 or α = 0.5 and some
given horizon length T .

2) If the final states σiT and θiT satisfies∑
i∈J

(σiT + θiT) = card(J), (14)

the whole area is cleared, and the algorithm terminates.
3) Else, if there was no increase in

∑
i∈J(σiT + θiT)

increase either the horizon length T or the number of
pursuers N .

4) Prepare a new RHC iteration by removing constraint
(12) and adding constraints setting the initial states
of the next iteration θi1, λi1, σi1 equal to the terminal
states θiT , λiT , σiT of the current iteration.

5) Goto 1.
Remark 4: In step (3) of Algorithm 1 it is preferable to

first increase the time horizon, and if this does not work
increase the number of pursuers.

Lemma 4: If Algorithm 1 terminates, a solution to Prob-
lem 1 is found.
Proof. A straightforward application of Lemma 3 above.

B. Relaxation of the MILP Problem

To increase the computational efficiency when solving
Problem 2 we note that some of the integer constraints can
be relaxed.

Problem 3 (Relaxation): The variables σit and θit in
Problem 2 are relaxed such that they are no longer binary
variables but belong to [0, 1], i.e

0 ≤ σit ≤ 1, (15)
0 ≤ θit ≤ 1. (16)

Using CPLEX 10.2, Problem 3 seems to be twice as fast
as the original formulation.

Lemma 5: The pursuer paths λit in the solution to Prob-
lem 3 are also pursuer paths in an optimal solution to
Problem 2.
Proof. Note that if there is a j such that λjt = 1, j ∈ Ni then
σit = 1 by (3), also if λjt = 0, ∀j ∈ Ni then σit = 0 by
(2), thus σit is binary. Now let (λ, σ, θb) be a (possibly sub-
optimal) solution to to Problem 2 in which only θb differs
from the solution of problem 3. Let Z2 and Z3 be the cost
of the solutions to Problem 2 and 3 respectively. By (9), (10)
and (11) we get that that for each θit ∈ (0, 1], θb

it = 1. This
implies that Z3 ≤ Z2, but since the space that the variables
live in in problem 2 is a subset of the space in problem 3,
i.e., the latter is a relaxation, Z2 ≤ Z3. Thus Z2 = Z3.

V. SIMULATION EXAMPLES

When running Algorithm 1, it turns out that the best results
are found using α = 1. A drawback of the more intuitive α =
1/2 is that the pursuers might get stuck at positions where
they see a large area, e.g., looking down a corridor, but any
motion results in a reduction of this area. Thus we use α = 1
in all but one of the examples below. The simulations were
done on a Intel Xeon CPU X5450, 3.00GHz with 4 cores,
running the MILP software CPLEX 10.2 [1]. Furthermore,

5501

all results were found using the relaxed version, Problem 3,
as it was found to be on average twice as fast as the non
relaxed formulation.

(a) (b)

Fig. 4. The results of running Algorithm 1 with a 6 step planning horizon
(b) in the environment in (a). The color coding of the sets Fi corresponds
to their state at the end of the execution and the numbers denote pursuer
positions at corresponding time steps 1 . . . 6. Blue regions are in state S3

and white regions are in state S1 or S2.

The first problem instance is depicted in Figure 2 with the
corresponding solution in Figure 4. With a time horizon of
T = 6, and α = 1/2, a single RHC iteration was needed,
and found in 4 seconds.

(a) (b)

Fig. 5. The partition (b) of a manhattan grid with four obstacles (a).

The partitioning of the second problem instance with four
rectangular obstacles is shown in Figure 5. The problem was
first solved in 3 RHC iterations using a total number 10 time
steps. The computational time was about 3 seconds for each
iteration resulting in a computational time of 9 seconds in
total. These solutions are depicted in Figure 6 (a-c). Note that
the first two RHC iterations achieved progress with T = 3,
while the third iteration needed T = 4 to remove the last S4

region. Figure 6 (d) shows the result of the iteration leading
to the increase in horizon length. This problem was also
solved in a single iteration using a time horizon of T = 6,
with a corresponding computation time of 110 seconds.

The third problem instance is shown in Figure 7 with
corresponding solution in Figure 8. The solution involves
three RHC iterations with 2 pursuers, followed by one
iteration with three pursuers. The computational time was
about 5 seconds for the three first iterations and 15 seconds
for the last iteration. Trying to find a 2 pursuer solution we

(a) (b)

(c) (d)

Fig. 6. The results of running the algorithm on a manhattan grid with four
obstacles. The partition is showed in Figure 5, and the search problem is
solved with 2 pursuers in three iterations where the results of iteration 1,
2 and 3 are shown in (a), (b) and (c) respectively. Note that 4 time steps
were necessary in iteration 3, the result of the third iteration with 3 time
steps is showed in (d). White regions are in state S1 and S2, blue regions
are in state S3, whereas red regions are in state S4.

run the algorithm with 2 pursuers and 10 time steps in the
first iteration, after 45 minutes, the algorithm had not finished
the first iteration.

Fig. 7. A complex environment.

5502

(a) (b)

(c) (d)

Fig. 8. The results of running the algorithm on the environment in Figure
7. The search problem is solved with 3 pursuers in four iterations where
the results of iteration 1, 2, 3 and 4 are shown in (a), (b), (c) and (d)
respectively. After iteration 3, no improvement is achieved with 2 pursuers,
thus one more pursuer is added in iteration 4. The number of time steps
was also increased. White regions are in state S1 and S2, blue regions are
in state S3, whereas red regions are in state S4.

VI. CONCLUSIONS

In this paper a new approach for solving multi-pursuer
pursuit evasion problems in polygonal environments has been
proposed. In this approach a mixed integer linear programing
(MILP) formulation was used in an iterative RHC fashion,
to address the NP-hard pursuit problems.

From the simulations, conclusions can be drawn that the
algorithm has the potential to drastically reduce computa-
tional cost, at the expense of possibly sub-optimal pursuer
paths. For example, using the RHC approach a complex
problem was solved in under 20 s, while the search for an
optimal single iteration solution was aborted after running
for 45 minutes.

REFERENCES

[1] ILOG CPLEX. 10.2 User’s Manual. ILOG Inc., Gentilly, France, 2007.
[2] B.P. Gerkey, S. Thrun, and G. Gordon. Visibility-based pursuit-evasion

with limited field of view. The International Journal of Robotics
Research, 25(4):299, 2006.

[3] L.J. Guibas, J.C. Latombe, S.M. LaValle, D. Lin, and R. Motwani.
A visibility-based pursuit-evasion problem. International Journal of
Computational Geometry and Applications, 1999.

[4] G. Hollinger, S. Singh, and A. Kehagias. Efficient, Guaranteed
Search with Mult-Agent Teams. 2009 Robotics: Science and Systems
Conference, RSS, 2009.

[5] V. Isler, S. Kannan, and S. Khanna. Randomized pursuit-evasion in
a polygonal environment. IEEE Transactions on Robotics, 21(5):875–
884, 2005.

[6] A. Kolling and S. Carpin. The GRAPH-CLEAR problem: definition,
theoretical properties and its connections to multirobot aided surveil-
lance. In Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 1003–1008, 2007.

[7] B. Mettler and E. Bachelder. Combining on-and offline optimization
techniques for efficient autonomous vehicle’s trajectory planning. In
Proc. of the AIAA Guidance, Navigation, and Control Conference and
Exhibit, San Francisco, CA, USA, 2005.

[8] P. Ögren (Editor), D. Anisi, D. Berglund, D. Dimarogonas, H. Gus-
tavsson, L. Hedlin, J. Hedström, X. Hu, K. H. Johansson, F. Katsilieris,
V. Kaznov, P. Lif, M. Lindhé, U. Nilsson, M. Persson, M. Seeman,
P. Svenmarck, and J. Thunberg. Results from the project aures:
Autonomous ugv-system for reconnaissance and surveillance. Technical
Report FOI-R-2783-SE, Swedish Defence Research Agency (FOI),
2009.

[9] I. Suzuki and M. Yamashita. Searching for a mobile intruder in a
polygonal region. SIAM Journal on Computing, 21:863, 1992.

5503

