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Abstract— This work addresses the task of designing the
optimal survey route that an autonomous underwater vehicle
(AUYV) should take in mine countermeasures (MCM) operations.
It is assumed that the AUV is equipped with a side-looking
sonar that is capable of generating high-resolution imagery of
the underwater environment. The objective of the path-planning
task is framed in terms of maximizing the success of detecting
underwater mines in such imagery. Several commonly made
— but inaccurate — assumptions about the problem are raised
and refuted; it is demonstrated that mine detection performance
depends on both range and seabed type. The issue of how to
update detection probabilities when multiple views are obtained
is also addressed. These various considerations are exploited in
conjunction with synthetic aperture sonar (SAS) data to predict
detection performance and efficiently design AUV routes that
outperform standard ladder surveys. The proposed algorithm
can be used to assess and quantify detection performance
achieved in past, as well as future, missions. Because the entire
route of the AUV can still be designed before deployment,
no additional onboard processing or adaptive capabilities are
required of the AUV. Therefore, the proposed approach can be
immediately applied to systems conducting MCM operations at
sea. The method is demonstrated on real SAS imagery collected
by an AUV in the Baltic Sea.

I. INTRODUCTION

This work addresses the task of designing the optimal
survey route that an autonomous underwater vehicle (AUV)
should take in mine countermeasures (MCM) operations. It
is assumed that the AUV is equipped with a side-looking
sonar that is capable of generating high-resolution imagery
of the underwater environment. The objective of the path-
planning task is framed in terms of maximizing the success
of detecting underwater mines in such imagery.

Most research about path planning for AUVs deals with
attempting to find a route that will allow an AUV to transit
safely from one location to another, or through a series of
waypoints (e.g., [1]-[4]). With the exception of the water
currents that exist in the underwater milieu, this objective
is largely the same as for path planning with ground-based
robots. That is, the issue of AUV path-planning can essen-
tially be treated as an obstacle avoidance problem (albeit
in three-dimensional space) with additional robot control
constraints.

Path planning when specifically concerned with MCM
operations, however, is markedly different because the route
that the AUV takes will dictate the data that is collected and
subsequently analyzed. To paraphrase a cliché about life, the
emphasis and value in MCM operations with an AUV lie not
on the destination, but rather on the journey.
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Moreover, in MCM applications, the area of interest that
must be surveyed is typically a large rectangular area that
is also generally free of obstacles. In this regard, the MCM
problem shares more similarities to space-based applications
— such as spatial coverage using orbiting satellites [5] or
rovers [6] — than to the general problem of path planning
in underwater environments.

The path-planning approach currently used in practice for
underwater mine detection operations is to design a simple
ladder survey with equidistant tracks over the mission area.
This ladder survey is also referred to as a line sweep, a
lawnmower pattern, seed sowing, and a boustrophedon' path.

The adherence to traversing parallel tracks in MCM oper-
ations is partly because the collected raw data is subsequently
processed into imagery (e.g., SAS imagery), for which such
data is preferable. Thus, the crux of the path-planning task
becomes how to design the spacing of (parallel) tracks.

A. Previous Work

The popularity and perpetuation of the simplistic ladder-
survey of equidistant tracks can be attributed, in part, to
several inaccurate assumptions made about underwater mine
detection. The most egregious assumptions made in previous
work about path planning for mine detection is the manner in
which the effects of range, seabed type, and multiple views
(on detection probabilities) are handled.

In [8], [9], it is assumed (incorrectly) that mine detection is
independent of both range and seabed type. In [10], it is also
assumed that mine detection is independent of range, but an
ad hoc dependence on seabed type is offered. Specifically, in
[10], the probability of detection is assumed to be a ternary
quantity in which the values 0, 0.5, and 1 are assigned to
regions that (i) have not been interrogated, (ii) consist of
sand ripples or cluttered seabed, and (iii) consist of (flat)
sandy seabed, respectively.

In sonar imagery, mines (as well as other objects raised
above the seafloor) exhibit a characteristic highlight-shadow
pattern that is commonly used for detection purposes. These
characteristics are affected by the range of the object from
the sensor, which in turn implies that detection performance
is also dependent on range. At longer ranges, less energy is
returned to the receiver, making the highlight portion of the
mine weaker (and thus more difficult to detect). Similarly,
the geometry of the problem means that a mine located at

IStrictly speaking, the term “boustrophedon” defines only writing that
alternates in direction on consecutive lines; nevertheless, the term has been
coopted (initially in [7]) to describe the standard survey patterns of AUVs
as well.
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Fig. 1. SAS image illustrating the relative difficulty of detecting mines (indicated in green boxes) in different seabed types.

short range will have a short shadow because of the steep
grazing angle.

Mine detection performance is also strongly dependent on
seabed type. For example, in seabed characterized by sand
ripples, a mine can blend in with the highlight of ripples or
be hidden in the shadows cast by ripples. In contrast, because
flat seabed does not introduce such complications, detection
performance should reflect this fact. Example SAS imagery
illustrating the effects of seabed type and range on detection
are shown in Fig. 1.

In [8], the detector is assumed to be perfect, resulting in
a binary performance in which the probability of detection”
is 1 for areas covered (i.e., by the sonar swath), and O for
areas not covered. This assumption of a perfect detector is
unjustified, and precludes addressing the problem of how the
probability of detection evolves when a location is viewed
multiple times. The issue of evolving detection probabilities
is also overlooked in [10] because of the use of fixed
detection probabilities for each seabed type.

In contrast, [9] does address the issue of how the proba-
bility of detection changes as a location is viewed multiple
times. The assumption made, however, that the probability
of failing to detect a target in any single view is indepen-
dent (and hence those probabilities multiply) is unrealistic.
Specifically, this assumption implies that given enough views
of a location with a sensor, every target can be detected with
probability 1 — ¢, for e arbitrarily small. This belief is false.
Many different phenomena (proftered in Sec. II-D) can cause
the physics of the problem to simply be absent, and thus
prevent the detection of a mine. Sensing a location multiple
times in such a situation will not guarantee the detection of
a mine’s presence.

The previous work with the most accurate assumptions
relevant for the underwater mine detection problem are actu-
ally found in work focussing on space-based exploration. In
[6], the range-dependence of coverage quality — for which
detection probability is an apt substitute — is explicitly

2In this work, the phrase “probability of detection” is assumed to always
mean the probability of successfully detecting a target if one were present.

accounted for. Moreover, it is assumed that the coverage
quality improves to the maximum of any single view of a
given location, rather than the multiplicative evolution (of
[9]) arising from independence assumptions. We advance the
study of the underwater mine detection problem by extending
our research in this vein, while also incorporating the effects
of seabed type on detection performance.

Additional work [11], [12] has instead examined detection
performance without seeking to exploit it for the improve-
ment of AUV path-planning. In [11], detection performance
as a function of range was studied for a side-scan sonar
system. However, the study was conducted at only a single
location (consisting of a single seabed type) with a relatively
small number of targets. In [12], a study examining the
detection rate of contacts (i.e., clutter and mines together)
in SAS imagery of different seabed types was undertaken.
Although the results did not establish detection performance
of mines, the results did provide anecdotal evidence that
supports the hypothesis that seabed type is an important
consideration in MCM operations.

Finally, other related work [13] discussed the topic of
AUV track-spacing for MCM operations with an eye toward
using basic geometry to cover the nadir gap while minimiz-
ing the overlap in swaths. This work dealt only with adjusting
tracks to alter the geometrical area coverage achieved by a
SAS system, but did not address the topic of detection at all.

B. Contribution of Paper

The main contribution of this work is an algorithm to
design the optimal survey route that an AUV should take in
order to maximize the mine detection performance in an area.
Practical constraints of the application, such as the desire to
survey in parallel tracks for imaging purposes, are respected.

This work also provides a metric by which one can assess
the detection performance that was or would be achieved for
a given mission. Moreover, the work can be used to deter-
mine the number of tracks — and equivalently, the amount
of time — needed to achieve a certain level of detection
performance, rather than using unprincipled estimates.

4756



In support of these main objectives, several auxiliary
contributions are also made.

First, we illuminate several inaccurate assumptions that
are commonly made about the problem, and explain the
reasons why they are flawed. In particular, we argue that
mine detection performance must explicitly account for range
and seabed-type dependence.

Second, we address the manner in which the detection
probability should evolve when an area of seabed is observed
with multiple views.

Third, using an enormous database of real SAS data
collected at sea, we develop a model for mine detection
probability as a function of range in different seabed types.
Although the resulting model is for a specific system (i.e.,
detection algorithm and SAS sensor) the method is general in
that an identical approach can be taken by other researchers
with their own systems.

The most substantive practical benefit of this work is that
the proposed approach can be immediately applied to systems
conducting MCM operations at sea. Because the entire route
of the AUV can still be designed before deployment, no
additional onboard processing or adaptive capabilities are
required of the AUV. That is, there is no obstacle to adopting
the proposed track-design approach instead of a standard,
uniform ladder survey.

C. Organization of Paper

The remainder of this paper is organized in the following
manner. Sec. II discusses underwater mine detection and
includes a presentation of a detection algorithm and its results
on real SAS data. This detection work is then exploited
in the proposed AUV track-spacing algorithm in Sec. III.
Experimental results of the track-spacing algorithm using
real data collected at sea are shown in Sec. IV. Concluding
remarks and directions for future work are made in Sec. V.

II. UNDERWATER MINE DETECTION
A. Overview

Sonar can provide high-resolution imaging of underwater
environments, which is useful for the detection of mines on
the seabed. AUVs equipped with side-looking sonar — SAS
or lower-resolution side-scan sonar — is increasingly used
for this purpose. Usually, such AUVs are equipped with two
sonars, one on the port side and one on the starboard side.
These sensors image in a direction orthogonal to the motion
of the AUV. Because of the geometry of the problem, a dead
zone — from the AUV’s nadir up to a certain range on
either side — between the two sonar swaths will lack sonar
coverage. The standard AUV survey path used in practice is
a series of equidistant parallel tracks such that the swaths of
consecutive tracks interleave, resulting in coverage for the
entire area of interest.

Once the sonar data has been collected and processed into
imagery, a mine detection algorithm will be applied. Typi-
cally, these detection algorithms search for highlight-shadow
patterns characteristic of mines [14], [15]. The highlight is
the result of the acoustic echo from the mine itself, while

the shadow that is cast is due to the geometry between the
mine (and specifically its height above the seafloor) and the
grazing angle of the transmitted signal. Some examples of
mines in SAS imagery are shown in Fig. 1.

B. Detection Algorithm

We argue that the probability of detecting a mine should
be a function of both range and seabed type. To obtain a
realistic model of this mine detection probability, we use real
SAS data collected at sea. However, because the detection
algorithm is not the main focus of this paper, we describe
the method in a cursory manner here.

In this work, a cascaded detection algorithm composed
of two stages is employed. In the first stage, a detection
algorithm from [15] is applied to the SAS imagery as the
initial detector; this algorithm correlates a template, consist-
ing of a generic highlight-shadow pattern characteristic of
mines, with the scene image. The resulting correlation at each
location in the image is treated as the detection score d;. Each
alarm with a detection score above a given low threshold, 71,
is then passed to the second stage of the cascaded detector.

In the second stage, two templates — a highlight template
and a separate shadow template — are correlated with the
image chip of each alarm. For each alarm, the maximum of
the sum of these correlations is taken to be the detection
score do. All alarms for which this second detection score is
above a given threshold, 7», is retained; the other alarms are
discarded.

It has been found that applying the second stage to the
detection process removes many false alarms without greatly
eliminating many mines (whereas opting for a single-stage
approach in which the first threshold is higher would remove
many mines). In practice, the detection thresholds 7; and 7o
are set to achieve a desired alarm density.

C. Detection Results

In April-May 2008, the NATO Undersea Research Centre
(NURC) conducted the Colossus II sea trial in the Baltic Sea
off the coast of Latvia. During this trial, high-resolution sonar
data was collected by the MUSCLE autonomous underwater
vehicle (AUV). This AUV is equipped with a 300 kHz sonar
with a 60 kHz bandwidth that can achieve an along-track
image resolution of approximately 3 cm and an across-track
image resolution of approximately 2.5 cm. The sonar data
was subsequently processed into SAS imagery.

The above cascaded detection algorithm was applied to
this data set of over 9,000 SAS images spanning a total
area of approximately 50 km?. Targets (i.e., mines) were laid
before some of the surveys, so ground-truth information is
available, from which we can determine the probability of
detection of the system (SAS sensor and cascaded detection
algorithm). The targets were laid in three different seabed
types — flat mud, flat sand, and sand ripples — which
allows the detection performance as a function of seabed
type (in addition to range) to be assessed. In total, there were
approximately 200 target detection opportunities in each of
the three seabed types.
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Fig. 2. Probability of detection as a function of range and seabed type.

The results of the detection algorithm in the three seabed
types as a function of range are summarized in Fig. 2. (Range
bins of 20 m were used in the calculations.) It should be
noted that if lower detection thresholds (7; and 75) were
used, the false alarm rate would increase but the probability
of detection would still not always reach unity.

It is these detection results that will drive the AUV track-
spacing experiments in Sec. IV.

D. Detection Improvement with Multiple Views

The assumption made in [9] is that the probability of
failing to detect a target in any single view is independent,
and hence those probabilities multiply. Specifically, this
assumption implies that given enough views of a location
with a sensor, every target can be detected with probability
1 — €, for € arbitrarily small.

However, many different phenomena can cause the physics
of the problem to simply be absent, and thus prevent the
detection of a mine. Sensing a location in such an instance
multiple times will not guarantee the detection of a mine’s
presence.

For example, a mine can be fully or partially buried such
that it casts no shadow. Additionally, a mine can be located
in a scour pit, which would alter the characteristic highlight-
shadow signature of the mine. Alternatively, a mine can
be composed of a material for which the frequency of the
imaging sonar is incompatible for detection purposes. And
finally, a mine can be obscured by the shadows of large rocks
or other bathymetric anomalies; example SAS imagery of
this scenario is shown in Fig. 3.

For these reasons, we adopt the convention employed
in [6] for when a location is interrogated multiple times.
Specifically, it is assumed that the probability of detecting
a mine if one is present improves to the maximum of any
single view of a given location.

III. AUV TRACK-SPACING

The adherence to traversing parallel tracks in MCM oper-
ations is partly because the collected raw data is subsequently
processed into imagery (e.g., SAS imagery), for which such
data is preferable. Thus, the crux of the path-planning task
becomes how to design the spacing of (parallel) tracks.
We address this objective, noting that the removal of the
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Fig. 3. SAS image with a bathymetric anomaly, the shadows of which

would prevent — even with multiple views — the detection of mines.

constraint permitting only parallel tracks does not induce
substantive complications.

A. Objective Function

The objective function we seek to optimize for the path-
planning work is defined to be the reward accrued from
performing a track; this reward is simply the difference of the
benefit and the cost of the track. The benefit of the track is
defined to be the increase in the mean probability of detection
over the entire mission area of interest.

The cost of the track is defined to be the energy costs
(e.g., battery) — in units adapted to be consistent with
those of the benefit — required to perform the track, which
are proportional to the distance of the track (plus transit
distance between tracks). This formulation naturally leads
to an intuitive termination criterion: perform tracks as long
as they would produce a positive reward (i.e., the benefit
exceeds the cost).

In practice, the relationship between the benefit and cost
of a track depends on the specific mission objectives and
must be specified by the controller of the AUV. Defining this
relationship will essentially determine when the algorithm
should terminate, and hence the number of tracks that can
be undertaken.

Alternatively, it can be assumed that the AUV has suffi-
cient energy to achieve a desired mean detection level; in this
case, the cost can be ignored so that the reward is equivalent
to the benefit. This situation is the realistic one encountered
at sea when an area must be surveyed to a certain detection
level, regardless of the length of time needed. To maintain
the focus on the general performance of the track-spacing
algorithm itself, as opposed to effects of problem-specific
costs, we assume we are operating in this regime hereafter.

Thus, the focus of the problem lies solely on determining
the best track-centerlines for the AUV to traverse.
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B. Track-Spacing Algorithm

The proposed track-spacing algorithm consists of a my-
opic (greedy) search for the best tracks. At each iteration,
the expected benefit (and cost) of every possible track is
calculated. The track that maximizes the expected reward (or
benefit when costs are ignored) at each iteration is chosen
and added to the set of tracks to traverse. The benefit is
calculated based on the probability of detection as a function
of range and seabed type (cf. Fig. 2) for the area covered by
the track’s swaths.

When it is determined that the objective will have been
met with the set of selected tracks — i.e., that the mean
probability of detection over the mission area exceeds the
desired level — the algorithm terminates. Importantly, this
entire process can be undertaken before the AUV is even
deployed.

Because of the greedy approach employed, the set of
selected tracks is necessarily ordered in terms of decreasing
benefit. Even so, it is not guaranteed that a (local) optimum of
the objective function has been reached. To further improve
upon the initial set of tracks selected, and to compensate
for the adverse effects of the greedy approach, a small
geographical displacement of each track is considered. One
at a time, we consider the result if a given track is shifted
to the port or starboard side one spatial increment. If the
objective function increases, the displaced track replaces the
previous version of the track. This iterative process continues
sequentially for all tracks, one at a time, until no such new
shift improves the objective function. This adjustment stage
can be thought of as improving closer to the (local) optimum.

A second optional adjustment can also be made. The set
of selected tracks are ordered in terms of decreasing benefit.
However, because we possess this entire set of tracks before
any track is traversed, the set of tracks can easily be resorted
in terms of geography so that the total transit distance (i.e.,
between the end and beginning of consecutive tracks) is
minimized. Although this rearrangement will not impact the
benefit of the set of the tracks, it will minimize energy
consumption costs.

It should be noted that the exhaustive, brute-force track
search that comprises the main portion of the algorithm is
not as computationally demanding as one may expect. This
fact is because the swath coverage of many tracks will not
intersect with the swath coverage of most other tracks. As
a result, the benefit of certain tracks can be calculated once
and saved. Only the tracks for which the coverage of the
previously selected track intersects must be recomputed in a
given iteration. The computational savings from exploiting
this insight increase proportional to the size of the mission
area.

In summary, the proposed track-spacing algorithm con-
sists of three stages. First, an exhaustive greedy search is
conducted until the detection criterion is reached. Second,
minor track adjustments via small centerline displacements
are considered. Third, the set of tracks is reordered in terms
of geography.

C. Benefit Calculation

The benefit of a track is defined in terms of the mean
increase in the probability of detection over the mission
area. This benefit can be obtained by calculating the increase
in the probability of detection at each location in a track.
Specifically, the benefit at a location (z,y) covered by a
track’s swath is B(z,y) = p(d|(z,y)) — p’(d|(z,y)), where
P’ (d|(x,y)) and p(d|(z,y)) are the probabilities of detection
at the given location before and after the new track is run,
respectively.

Let s(z,y) be the seabed type at location (z,y), and
r(x,y) be the range from the AUV (i.e., track centerline)
to the same location. For the location (z,y) covered by a
track, the probability of detection will be updated according
to

pld|(z,y)) = max{p'(d|(z, y)), p(d|s(z,y),r(,y))}, (1)

where p(d|s(z,y),r(z,y)) is the probability of detection at
range r(z,y) from the model corresponding to seabed type
s(z,y) in Fig. 2. The ‘maximum’ operator arises in (1)
because we assume that the probability of detection at a
point that is viewed multiple times is the maximum from
among those individual views.

The above assumes that the true seabed-type at every loca-
tion, s(z,y), is known a priori over the entire mission area.
When this is the case, the true benefit of every track can be
calculated readily. This a priori seabed-type information can
be obtained, for instance, from previous surveys conducted
in the area.

When the true seabed-type is not known,
p(d|s(z,y),r(z,y)) in (1) will be replaced by an
approximation, p(d|m(x,y),r(z,y)), that is based on
the belief that one holds about the seabed, which is
contained in the ambiguous quantity 7 (x,y).

This approximation can be formulated in terms of a set
of prior probabilities on each potential seabed type. Thus,
when calculating the expected benefit of a track when the
true seabed is not known, rather than using the appropriate
probability of detection model given in Fig. 2, one would
instead weight each model by the prior probability of each
seabed type,

pld|m(z,y),r(z,y)) = Z s, (@, y)p(d]si, r(z,y)), (2)
s; €S

where p(d|s;,(x,y)) is the probability of detection at range
r(x,y) if the seabed type is s; from the set of possible
seabed types S, and g, (z,y) is the prior probability of
encountering seabed type s; at location (x,y). The prior
probabilities are non-negative and sum to unity. In this work,
S = {flat sand, flat mud, sand ripples}.

In the event that no knowledge about the seabed is pos-
sessed, one can specify an uninformative prior in which equal
prior probabilities are assumed for each possible seabed type
everywhere.

In practice, one will usually possess at least some knowl-
edge of the seabed types to be encountered. Additionally,
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it should be noted that for post-mission analysis objectives,
one will almost certainly know the composition of the seabed
since the data will have been collected.

IV. EXPERIMENTAL RESULTS
A. Data Set

To evaluate the proposed adaptive track-spacing algorithm,
we conduct experiments using real data collected during the
sea trial described in Sec. II-C. Specifically, the mission area
on which the experiments are applied is taken to be a nearly
4 km? area of seabed surveyed during the trial. We exploit
the manual ground-truthing result of this area (from [16]) in
our experiments here. The mission area is composed of flat
sand and sand ripples, as shown by the (ground-truth) seabed
map in Fig. 4.

om
Om 2200 m

Fig. 4. Seabed map for the mission area in the Baltic Sea used in the
experiments, where white areas correspond to flat sand and black areas
correspond to sand ripples.

B. Experimental Set-up

The objective of the proposed track-spacing algorithm is
to determine the set of tracks that will achieve the highest
mean probability of detection over the entire mission area.

(It should be noted that the only image data that exists
is that associated with the survey tracks actually run at sea.
However, to evaluate the proposed method via the experi-
ments here, re-creating the imagery for a different potential
track is not necessary because, at this stage, obtaining the
probability of detection values requires only the seabed type
(and range), not the actual image data.)

In these experiments, we compare three different track-
spacing methods on the area of seabed described in Sec. I'V-
A. Specifically, we consider two versions of the proposed
adaptive-spacing algorithm and one baseline method that
employs uniformly-spaced tracks.

The adaptive-spacing cases differ in the knowledge that is
assumed about the seabed. In one case, it is assumed that the
composition of the seabed is known a priori. In the second
case, it is assumed that no knowledge of the composition of
the seabed is possessed.

For this latter case, an uninformative prior (as described in
Sec. III-C) is assigned to the probability of encountering each
of three seabed types — flat sand, flat mud, and sand ripples
— everywhere in the mission area. That is, in calculating the

expected benefit of a track via (2), 7y, (x,y) = 1/3 for each
s; €8S.

For each of the three approaches considered, a set of N =
18 (vertical) tracks was selected. This value of IV was used
because it was the number of tracks needed to attain the
desired mean probability of detection for the case of adaptive
spacing with no seabed knowledge.

The above experiments are meant to demonstrate the utility
of the proposed adaptive-spacing algorithm for optimizing
detection performance in future missions for which an AUV
will be deployed. However, the proposed overall framework
— how the probability of detection evolves with multiple
views and as a function of range and seabed type — can also
be used to assess the level of detection achieved by already
completed missions. To this end, the detection performance
resulting from the tracks (8 horizontal and 10 vertical) that
were actually run during the Colossus II sea trial in the
mission area under study is also presented.

C. Results

The main experimental comparison is among the three
approaches used to determine the best set of AUV tracks.
Maps that qualitatively show the final probability of detection
everywhere in the mission area resulting from the selected
set of tracks for each of the three approaches are shown in
Fig. 5; this figure also shows the level of detection achieved
by the tracks that were actually run during the Colossus II
sea trial.

In addition to the maps of Fig. 5, the performance of the
three approaches is also summarized quantitatively, in terms
of the mean probability of detection over the entire mission
area, in Table 1.

To demonstrate the value of the stage of the proposed
approach that involves track-centerline shifts, we present this
mean probability of detection over the mission area, with
and without the final track-centerline shifts. (For the cases
in which the seabed was assumed known and unknown, five
and three of the 18 tracks were chosen to be displaced one
spatial increment, respectively.)

TABLE I
MEAN PROBABILITY OF DETECTION OVER THE MISSION AREA

SPACING WITHOUT | WITH

METHOD SEABED CENTERLINE SHIFTS
UNIFORM — 0.8442
ADAPTIVE | UNKNOWN 0.8530 0.8562
ADAPTIVE KNOWN 0.8582 0.8646

As can be seen from the table, the proposed adaptive
track-spacing approach achieves a higher mean probability of
detection than the baseline approach that employs uniform
track-spacing. Importantly, the adaptive approach performs
better than the uniform spacing approach even when it is
assumed that no knowledge of the seabed is possessed.

Table I provides only a coarse summary measure of perfor-
mance. To more finely assess the implications of the different
approaches, the results are presented in an alternative format
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Fig. 5. Final probability of detection maps from performing a certain set of 18 tracks: using adaptively-spaced tracks (proposed method) when the seabed
is (a) unknown, and (b) known; (c) using uniformly-spaced tracks; (d) using the tracks actually run during the Colossus II trial.
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Fig. 6. Proportion of the mission area that is above any probability of
detection for the three cases considered.

in Fig. 6. Specifically, this figure shows the proportion of the
mission area that has a final probability of detection that is
above a given value.

This method of assessment is valuable because in practice

it is important to know that everywhere in the mission area
has been covered to a certain probability of detection. For
example, at the natural threshold of a probability of detection
of 0.5, it can be seen from the figure that 5.80% of the area
has not been covered to this level when employing uniform
track-spacing. In comparison, only 0.69% and 1.90% of the
area has not been covered to this level when employing the
proposed adaptive spacing, with or without seabed knowl-
edge, respectively.

Next, to demonstrate the value of the final stage of
the proposed approach that involves reordering tracks ge-
ographically, we present the transit distance for each of the
approaches with and without this sorting step, in Table II.

TABLE II
TOTAL TRANSIT DISTANCES (IN KILOMETERS)

SPACING WITHOUT | WITH
METHOD SEABED TRACK SORTING
UNIFORM — 1.98

ADAPTIVE | UNKNOWN 8.14 2.04
ADAPTIVE KNOWN 15.82 1.96

The transit distance is defined here to be the sum of the
distances from the end of each track to the beginning of the
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Fig. 7. Selected track centerlines for each of the three track-spacing methods considered. The correspondence of methods to line colors and types are
the same as that in Fig. 6. (Note that the figure is stretched horizontally to more clearly display the tracks.)

subsequent track.

As can be seen from the table, including the geographical
sorting of tracks in the algorithm greatly reduces the transit
distance, which in turn would allow resources (e.g., battery
life) to be conserved.

Finally, we show the locations of the actual tracks selected
by the three different approaches — from which all of the
preceding results were obtained — overlaid on the mission
area’s seabed map, in Fig. 7.

V. CONCLUSION

This work addressed the task of designing the optimal
survey route that an AUV should take in MCM operations.
In the process, several commonly made — but inaccurate —
assumptions about the problem were also raised and refuted.

An elegantly simple algorithm to design the optimal survey
route that an AUV should take was proposed. The work
provides a metric — the mean probability of detection — by
which one can quantify the detection performance achieved
in a past mission. Alternatively, the work can be used to
determine the number and location of tracks needed to
achieve a certain level of detection performance in a future
mission.

The proposed approach can be immediately applied to sys-
tems conducting MCM operations at sea. Because the entire
route of the AUV can still be designed before deployment,
no additional onboard processing or adaptive capabilities are
required of the AUV. That is, there is no risk in adopting
the proposed track-design approach instead of a standard,
uniform ladder survey. Therefore, in an upcoming NURC sea
trial, the proposed adaptive track-spacing algorithm will be
employed for determining the AUV’s data-collection route.

Other future work will seek to refine the probability of
detection models of Fig. 2, using more data, because intuition
suggests that the curves therein should be smoother. Addi-
tional work will be devoted to developing similar models for
other seabed types, such as posidonia fields. The dependence
of the probability of detection models on other features —
such as bathymetric anomalies and the size and orientation
of sand ripples — will also be investigated.
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