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Abstract— One of the ultimate challenges in robotics is to
manipulate an arbitrary object without knowing its exact shape
beforehand. The shape is rather acquired on the spot via using
a laser range scanner, structure from multiple views; therefore,
maybe only partially observed and corrupted by a certain
degree of noise. We propose an algorithm to identify available
failsafe strategies capable of preventing an object from escaping
from the fingers, i.e. caging, even if its shape is partially and/or
inaccurately observed. This algorithm extends the previously
proposed one that characterizes all caging sets via a maximal
dispersion control but, instead of taking a single polytope P
exactly representing the object as input, it takes two polytopes:
P+ and P− containing P and contained in P , respectively. The
algorithm characterizes all possible formations of fingers that
guarantee to cage any polytope P such that P− ⊆ P ⊆ P+ as
long as the dispersion (i.e. looseness) of the fingers’ formation
is kept under a critical value called the maximal dispersion.
This allows us to gracefully handle uncertainty of acquired
shapes and quickly identify robust solutions in case of simplified
shapes.

I. INTRODUCTION

The problem of object caging was originally posed by

Kuperberg [1] as the problem of designing a minimum

formation of points to prevent an object from escaping to

infinity by any continuous rigid motion. A caged object does

not need to be immobilized but must be confined within a

bounded region. Studies in caging generally involve attempts

to loosely envelope the object by means of simple and robust

strategies that tolerate measurement and control noises. In the

past few decades, the concept has been applied to various

tasks such as grasping and in-hand manipulation [2], [3],

[4], [5], [6] motion planning [7], [8] part feeding [9], stable

stance computation [10], [11] where manipulators that work

as a cage are possibly mobile robots, fingers of grippers,

arrays of pins, cylindrical rods, for example.

A field closely related to caging is object grasping.

Most high-precision automation require object to be firmly

grasped. Computation of grasps aims at finding a configu-

ration that allows the fingers to exert force that can counter

balance external forces and torques. This usually relies on

sufficient conditions such as force closure and form closure.

A comprehensive review on grasping and contact mechanics

can be found in [12]. Caging, on the other hand, relies

only on geometrical obstruction in order to prevent object

from escaping. This offers a relatively large connected set
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Fig. 1. applications for the proposed algorithm: a) uncertainty of object
shape, imperfect rigid body, or approximate solution for complex object b)
incomplete shape knowledge.

of solutions, namely the caging set [2] (or capture region
[13]). A caging set contains fingers’ configurations that once

the fingers enter, the object cannot escape as long as the

fingers’ configuration is maintained to stay inside the set.

Error-tolerant grasping [4] can be achieved by tightening the

grasp while the finger configuration remains inside a caging

set. Similar concept has been applied to part manipulations

and stable stance computation [11].

Given a sufficient number of fingers, caging object on

a plane can be achieved by evenly placing fingers in a

circle formation surrounding the object. As long as the

distance between any pair of adjacent fingers is kept un-

der an upper bound value such as the object’s diameter
[14], or coverage diameter [15], the object cannot escape.

However, this often leads to inefficient utilization of fingers

because two fingers are, in fact, sufficient to cage most

objects with concave parts. Rimon and Blake works [2]

have laid fundamental concepts in caging and proposed a

numerical solution to determine the caging set associated

with a given immobilizing grasp of two fingers. Caging

with two fingers can be classified by how the separation

distance between the two fingers is maintained. One is caging

by squeezing fingers: moving the fingers closer together

will tighten the cage. The other is caging by stretching

fingers: the cage is tighten as the fingers’ separation distance

increases. Depending on the cage types, the object could

not escape if the separation distance is below or above a

critical value called the critical distance. A critical distance

is either maximal distance or minimal distance. The maximal

distance is the greatest distance such that the object cannot

escape as long as the fingers’ separation is lower than such

distance. Conversely, the minimal distance is the smallest

distance such that the object cannot escape as long as the

fingers’ separation exceeds such distance. The maximal and

the minimal distance serve as an upper and a lower bound

separation distance to maintain the caging by squeezing and
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stretching, respectively. Vahedi and van der Stappen [16],

Pipattanasomporn and Sudsang [17] independently proposed

algorithms that report all two-finger caging sets for a given

polygonal object. As the number of fingers increases, the

problem of reporting all caging sets becomes more complex.

One reason is that the caging set associated with a caging

configuration can no longer be parameterized by just a criti-

cal distance. Erickson et al [13] studied caging convex object

with three fingers and proposed both exact and approximate

algorithms to render capture region assuming that two fingers

are fixed on the boundary of the convex object. Their work

was extended to handle non-convex polygon by Vahedi and

van der Stappen [18]. Recently, a simplified strategy to cage

a polytope with dispersion control was proposed in [19],

extending the same strategy applied in two fingers [17], [20]

to allow any number of fingers. The idea is to use dispersion

as a measure to indicate the looseness of finger formation

instead of the separation distance. The condition that the

object is caged translates to maintaining the dispersion of

the fingers’ formation is below the maximal dispersion (or

above the minimal distance) instead of the maximal (resp.

minimal) distance.

To our knowledge, most works related to caging mainly

focused on the issues related to inaccurate control and uncer-

tainty in the object’s configuration but few have incorporated

the problems of uncertainty of object shape resulting from in-

complete knowledge, inaccurate observation and/or imperfect

rigidity of the object. Such issues undoubtedly arise when a

robot need to manipulate an “alien” object, whose shape is

not known beforehand and has to be acquired right on the

spot via, for example, a range scanner, or structure from

multiple views techniques. Moreover, the scanned model

are usually overly complex which requires an unreasonable

amount of time to report an output, especially for obvious

caging formations that can be instantly determined by one’s

eyeballs. Although, an estimated model can be used as an

input to the previously proposed algorithms, reported caging

strategies may not guarantee to work with the actual object

unknown to the robot. In particular, the algorithm does not

incorporate the uncertainty to promise a failsafe baseline, for

instance, some reported caging sets may not actually exist

and their critical values maybe greater than the correct ones.

In this paper, rather than assuming that a polytope P
representing the actual object shape is known, we assume

that we know for certain i) a polytope P+ that contains P
and ii) a polytope P− that was contained in P . Extending

from the one in [19], the new algorithm characterizes all the

formations that guarantee to cage any bounded polytopes

P such that P− ⊆ P ⊆ P+ via controlling the formation

dispersion below a maximal dispersion. The solution is

exactly that of the original algorithm if P− = P = P+, and

naturally degrades if P− and P+ are looser bounds of P .

This algorithm works with any finite dimensional workspace

and any number of fingers, like in [19], and also functions

as a countermeasure to any combinations of the aforesaid

problems. Apart from uncertainty in object shape measure,

possible applications of the algorithm, shown in Fig. 1.a) and

1.b), are for:

• Imperfect rigid body: set P−, P+ to bound all shapes

resulting from all possible deformation (Fig. 1.a)).

• Complex object: set P− and P+ as the simplified poly-

topes contained by P and containing P , respectively.

• Incomplete shape knowledge: one can set P− to be

the observed surface of the object while P+ to be the

unobserved or ambiguous region (Fig. 1.b)).

Note that in case of very high shape uncertainty, it is likely

that none of formation is the caging formation to all shapes

in the family, and the algorithm will not report any caging

set.

The paper is organized as follows. In the next section,

important results related to caging via controlling maximal

dispersion are reintroduced. We then study the important

relation between critical dispersion and the object shapes

in Section III. In Section IV, we extend to the previously

proposed algorithm to report all caging sets containing all

caging formations capable of caging any bounded polytope

P with in the family defined by P− and P+. Finally, we

conclude and discuss our work in Section V.

II. MAXIMAL DISPERSION CONTROL CAGING

This section review the basics for caging a shape, rigid and

exactly known to be a bounded subset P of η-dimensional

space. This shape is to be caged with maximal dispersion

control by φ point fingers. The shape is possibly not a

connected component but all the components must move

together as a single rigid body. For convenience, we choose

to observe the position of the fingers from the shape’s

frame of reference, treating the shape as a static obstacle.

If the shape is caged under maximal dispersion control, the

fingers will not be able to escape to infinity as long as

their dispersion is kept below the maximal dispersion. A

dispersion is a convex function that maps a formation to

a real value i.e. d : R
η×φ → R such that d(x) = d(x′)

for any x and x′ having the same formation shape. Note

that x ≡ (x1, x2, ..., xφ) and x′ have the same formation

shape if x′ = (Rx1 + t,Rx2 + t, ...,Rxφ + t) for some

R ∈ SO(η), t ∈ R
η. Convex function of distances between

fingers in the formation are dispersion, for example: ‖x1 −
x2‖2 + ‖x2 −x3‖2 + ‖x3 −x2‖2; the sum of square distance

of between each pair of fingers (supposedly, there are only

three of them). Dispersion possesses several properties that

later help us simplify the problem. One is that:

Proposition 1: If formations x and x′ have the same

formation shape, their dispersion are not less than that of

any formation lies on the line segment xx′
This leads to the fact that: any dispersion attains its

minimal value when all the fingers collapse to a single point.

Proposition 2: For any point x ∈ R
η, a dispersion d

attains its minimal value at (x, x, ..., x) ∈ R
η×φ.

Proof: If η is even, it can be verified that −Iη ∈ SO(η).
By Proposition 1, we have that the dispersion of the origin in

R
η×φ: d(0η×φ) ≤ d(x) for any formation x ∈ R

η×φ since

0η×φ lies at the midpoint between x and x′ = −x with

R = −Iη, t = 0η.
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When η is odd, it can be verified that:

A ≡
(

1 0T
(η−1)

0(η−1) −I(η−1)

)
, Ā ≡

( −I(η−1) 0(η−1)

0T
(η−1) 1

)
;

are both in SO(η). Let x ≡ (
t b

)T
, t ∈ R

1×φ,b ∈
R

(η−1)×φ. Consider the midpoint z between x and Ax:

z ≡ 1
2
(x + Ax) =

1
2

(
t + t
b − b

)
=

(
t

0(η−1)×φ

)
,

and the midpoint between z and Āz:

1
2
(z + Āz) =

1
2

(
t − t

0(η−1)×φ + 0(η−1)×φ

)
= 0η×φ

Apply Proposition 1 twice to obtain d(z) ≤ d(x) and

d(0η×φ) ≤ d(z). Hence, d(0η×φ) ≤ d(x) for any x ∈ R
η×φ.

It follows from the definition of dispersion that for any

x ∈ R
η, the dispersion d attains its minimal value at x ≡

(x, x, ..., x) ∈ R
η×φ.

When the fingers are at a point they can move together as a

single point arbitrarily far from P if P is without holes i.e.

the compliment of P is connected. Since the fingers cannot

initially reside in any of those holes; otherwise, the shape is

trivially caged by placing a finger in a hole, we can safely

assume that the compliment of P is connected.

For convenience, the dispersion function is coupled with

the object’s shape by setting the dispersion value of a

formation to +∞ if the formation is not valid i.e.

dP(x) =
{

d(x), x ∈ (Rη\P)φ;

+∞, otherwise.

We represent a continuous motion of the fingers’ forma-

tions with a path in R
η×φ. Concatenation of two paths α

and β, written as αβ, is possible if the starting point of

β is exactly the end point of α. The reverse of a path α is

denoted by α−1. A path that corresponds to a motion that all

the fingers eventually reach infinity is called an escape path.

Let Γ(x) be the set of all escape paths starting from x. The

maximal dispersion for a bounded shape P at a formation

x is given by the least supremum dispersion among all the

escape paths starting at x:

d∗P(x) = inf
α∈Γ(x)

{
sup

y∈img(α)

dP(y)

}
.

Note that dP(x) ≤ d∗P(x) at every x. If dP(x) <
d∗P(x) < +∞, it is possible to control the dispersion d
below the maximal dispersion value d∗P(x); in other words,

it is possible to cage the shape P with the caging formation

x via maximal dispersion control. On the other hand, if

d(x) = d∗
P(x), the shape cannot be caged by maintaining

dispersion. For the case that d∗P(x) = +∞, either all escape

paths from x are blocked or the fingers cannot eventually

keep their formation dispersion finite. In the former situation,

we assume that the finger formation cannot cage at such

formation x since some of the fingers cannot initially reach

desired positions. The latter is however impossible since P is

bounded. For simplicity, we assume that all shapes referred in

the paper are bounded. Clearly, we cannot cage the fingers by

maintaining dispersion below a maximal dispersion starting

from the formation with minimal dispersion (e.g. when all

fingers are at a point by Proposition 2).

Proposition 3: The necessary and sufficient condition that

the formation of fingers can certainly cage a shape P via con-

trolling its formation dispersion below a maximal dispersion

starting from a formation x is: d(x) < d∗P(x) < +∞.
For convenience, a formation is called a caging formation

(for P) if it satisfies the condition in Proposition 3.

Our strategy to evaluate d∗P(x) is based on decomposing

the space of all formations R
η×φ into overlapping convex

sets such that dP restricted on each decomposed convex set

is a convex function. Applying Jensen’s inequality [21], it

follows that:

Proposition 4: Any two formations x, y in a decomposed

convex set are connected by a straight line path α in the set

such that sup {dP(z) | z ∈ img(α)} = sup {d(x), d(y)}.

Since every path connecting x and y must include x and

y, the supremum dispersion among all the formations in the

straight line path is the least possible among all the paths

connecting x and y.

Assume that the formations x and y are contained in two

decomposed convex sets C1 and C2, respectively. Consider

only paths that lie inside C1 ∪ C2 and route from x to

y. Among such paths, we are interested in a path with

least supremum dispersion. Observe that each of such paths

enter the overlapping region, C1 ∩ C2, before reaching y.

Therefore, the least possible supremum dispersion cannot

be less than sup {dP(x), dP(m), dP(y)} where m is the

formation in C1 ∩ C2 such that dP(m) ≤ dP(z) for any

z ∈ C1∩C2 (if C1∩C2 is empty, +∞ is assumed). Applying

Proposition 4, we can construct a path by concatenating two

straight line paths: one from x to m and the other from m
to y; having the least possible supremum dispersion among

paths in C1 ∪ C2. Such path construction can be applied to

any sequence of decomposed convex sets. This fact allows

us to evaluate the maximal dispersion of a formation by

considering all the sequences of decomposed convex sets

instead of all the paths from the formation. Those sequences

under consideration start from a convex set containing the

formation and ends at a convex set containing the formation

that all fingers collapse to a point. The maximal dispersion

is equivalently the least supremum dispersion of some path

induced by one of those sequences.

III. HANDLING SHAPE UNCERTAINTY

In this section, we present theoretical backgrounds for

identifying formations that permit us to cage any shapes in a

family defined by {P | P− ⊆ P ⊆ P+}. The most important

property that let us almost transparently extend previous

strategy applied in caging a shape to cage a shape family

is that:

Lemma 1: Given that a shape P that contains another

shape P−, the maximal dispersion for P− is everywhere

not greater than that for P i.e. d∗P−(x) ≤ d∗P(x), for any

formation x and P− ⊆ P .
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Proof: Observe that, for any P− ⊆ P , if one or more

fingers belongs to the formation y lie in P\P−, dP−(y) will

be less than dP(y) as dP(y) will be set to +∞; otherwise,

dP−(y) and dP(y) will have the same value i.e. either equals

to +∞ or d(y) depending whether some fingers belongs

to the formation y lie in P− or not. This implies that:

dP−(y) ≤ dP(y), for any y. Furthermore, for any set of

formations, Y: supy∈Y dP−(y) ≤ supy∈Y dP(y). Since

this applies to image of an arbitrary path, we conclude that

d∗P−(x) ≤ d∗P(x).
With this fact, we soon arrive at a simple criterion for

identifying whether a formation is a caging formation for

the shape family or not.

Theorem 1: The necessary and sufficient condition for the

fingers to certainly cage any shape P such that P− ⊆ P ⊆
P+ via maximal dispersion control starting from a formation

x is: d(x) < d∗P−(x) ≤ d∗P+(x) < +∞.

Proof: (⇒) Since d(x) < d∗P−(x) and, by Lemma 1,

d∗P−(x) ≤ d∗P(x) so d(x) ≤ d∗P(x). Meanwhile, d∗P+(x) <
+∞ and, by Lemma 1, d∗P(x) ≤ d∗P+(x) implies that

d∗P(x) < +∞. Hence, d(x) < d∗P(x) < +∞ which satisfies

the condition in Proposition 3. Notice that this proposition

just differs slightly from Proposition 3.

(⇐) By Lemma 1, d∗P−(x) ≤ d∗P+(x). What remains to be

shown is: if d∗P+(x) = +∞ or d(x) = d∗P−(x), the condition

in Proposition 3 will no longer hold for some shape P such

that P− ⊆ P ⊆ P+. If d∗P+(x) = +∞, the condition in

Proposition 3 will not hold for P = P+. On the other hand,

if d(x) = d∗P−(x), the condition in Proposition 3 will not

hold for P = P−.

Note that we can safely assume that P+ (and P−) does not

contain any hole (i.e. the compliment of P+ is connected)

since a formation with at least a finger in the hole is

considered not reachable. Consequently, the formation is not

a caging formation for P+; therefore, not a caging formation

for all the shapes in the family. This means that whether a

formation is a caging formation for any shape in the family

does not affect even if we fill all the holes of P+ and

P−. The assumption that the compliment of a shape P is

connected simplifies the condition for d∗P(x) to be less than

infinity. Normally, d∗P(x) < ∞, if and only if, an escape path

from x that does not overlap with P exists. However, given

the assumption, the condition reduces to: d∗P(x) < +∞, if

and only if, dP(x) < +∞ i.e. non of the fingers belongs to

the formation x is in P . Together with Lemma 1, the caging

condition in Theorem 1: d(x) < d∗P−(x) ≤ d∗P+(x) < +∞;

reduces to d(x) < d∗
P−(x) and dP+(x) < +∞.

Like caging formations for a single shape, a maximally

connected set of caging formations of a shape family forms

a caging set.

Definition 1: The set of maximally connected caging for-

mation for a shape family containing all P such that P− ⊆
P ⊆ P+ is said to be the caging set for the shape family.

It can be implied directly from the definition that any pair

of formations: x and y; are in a caging set for a shape family

if they are connected by a path α such that d(z) < c, for

some c < +∞ and dP+(z) < +∞, for any z ∈ img(α).

What remains to be shown is that the converse is also true.

Before that, we need the following proposition:

Proposition 5: Given any two formations x and y,

d∗P(x) = d∗P(y) if there exists a path α from x to y such

that sup {dP(z) | z ∈ img(α)} < d∗P(y).
Proof: Let β (and γ) be the escape path from x

(and y) such that the supremum value of dP among all

formation in its image is exactly d∗P(x) (and d∗P(y)). The

concatenated path αγ is an escape path from x such that

sup {dP(z) | z ∈ img(αγ)} = d∗P(y). This implies that

d∗P(x) ≤ d∗P(y). However, it is not possible for d∗P(x) to

be less than d∗P(y); otherwise, α−1β forms an escape path

from y such that sup
{
dP(z) < d∗P(y) | z ∈ img(α−1β)

}
<

d∗P(y), contradicting the definition of d∗P(y).
Proposition 6: Any two formations x,y in a caging set

for the shape family defined by {P|P− ⊆ P ⊆ P+} are

connected by a path α such that, for some c < +∞,

d(z) < d∗P−(z) = c ≤ d∗P+(z) < +∞, for any z ∈ img(α).
Proof: Since x and y are both in the same caging

set, there exists a path from x to y, say α, such that, for

any z ∈ img(α), d(z) < d∗
P−(z) ≤ d∗P+(z) < +∞. Let

z∗ ∈ img(α) such that d(z∗) ≥ d(z) for any z ∈ img(α).
Applying Proposition 5 to every formation z ∈ img(α) and

z∗ to obtain that d(z) < d∗P−(z) = d∗P−(z∗).

IV. ALGORITHM

From the properties derived in the previous section, we

extend the algorithm for exact shapes presented in [19] to

support incompleteness and uncertainty. Basically, the the

extended algorithm roughly follows the same steps of the

previous algorithm, so it is rephrased briefly here:

1) Partition the workspace given by R
η\P into convex

subsets: W1,W2, ...,Wn; such that their union is the

workspace itself. We assume for simplicity that bound-

ary of P is given in the form of (η − 1)-dimensional

faces and Wi∩Wj must be either empty or an (η−1)-
dimensional face belongs to the boundary of P .

2) Construct the roadmap, a graph (V,E) such that V
contains all possible φ − 1 cartesian products among

W1,W2, ...,Wn and E contains all intersections be-

tween pairs of elements in V except ∅. In other words:

V ≡ {
Wi1 × Wi2 × ... × Wiφ

}
E ≡ {C1 ∩ C2 | C1, C2 ∈ V} \ {∅} .

3) Locate the local minima. Find a formation with the

least dispersion that resides within each vertex and

edge. Such task amounts to solving a convex optimiza-

tion problem. We decorate a set, say X , by underline,

X , to refer to such formation belongs to the set X .

4) Compute the maximal dispersion. Let Wi × Wi ×
... × Wi = Wφ

i ∈ V, for some i, it follows from

Proposition 2 that d∗P
(
Wφ

i

)
is at the global minimum

value of dispersion. To obtain the maximal dispersion

for all the vertices, the recurrence:

d∗P (C) = inf
C∩C′∈E

{sup {d∗P (C ′) , dP (C ∩ C ′)}} ;

2686



is propagated starting from Wφ
i using an algorithm

similar to Dijkstra’s shortest path, with all vertices

except those in the form of Wφ
i initially assigned to

possess +∞ maximal distance.

5) Identify caging sets. If C and C ′ are connected by a

path whose image is contained in C ∪C ′ and contains

all formations that can guarantee to cage P , C and C ′

are assigned to the same caging set. Note that this step

is not necessary if the user does not need to enumerate

caging sets or query them later.

After these steps, the algorithm finishes its job in produc-

ing a data structure containing information readied for the

following queries.

a) Query maximal dispersion at a given formation x =
(x1, x2, ..., xφ). First, we need to find the graph vertex,

say Cx, containing x. Cx is identified using a point

location algorithm [22] by locating the containing

convex set Wij for each finger xj , j = 1, 2, ..., φ;

hence, Cx ≡ Wi1 × Wi2 × ... × Win
. Following the

Proposition 4, we can evaluate the maximal distance

at x: d∗P(x) = sup
{
dP(x), d∗

P
(
Cx

)}
.

b) Query caging set containing a given formation x. This

query performs a step further than a) in that: if x
is known to be a caging formation by checking its

formation dispersion against the maximal dispersion.

The containing caging set is then reported.

If we neither require to enumerate caging set nor query

them, we can just assign P in the aforesaid steps to P−,

the polytope known for certain to contain the actual shape,

instead of the exact one so as to obtain d∗P− in step 4) and

stop there. The maximal dispersion query can be achieved in

exactly the same manner but the given formation x need to

be checked whether it lies in P+ or not. If it does, x is not a

valid formation for the shape family {P | P− ⊆ P ⊆ P+}.

However, for the fully extended version of the algorithm, we

need additional tune up. In the original algorithm, a vertex

may only overlap with at most one caging set. At the current

situation, it is possible that more than one caging sets may

appear in a vertex. This causes the algorithm to malfunction

at step 5) and when querying a containing caging set.

Assuming that P+ is an η-dimensional polytope whose

boundary is given in the form of (η − 1)-dimensional faces,

a simple solution is to force all (η − 1)-dimensional faces

of P+ to appear as a face of some convex polytope Wi.

Such partitioning can be achieved via a constrained triangu-

lation/tetrahedronization algorithm. As a result, each Wi is

either entirely contained in P+ or not overlapped with P+

at all. This implies that, for each vertex C ∈ V, the fingers

forming any formation in C has a fixed number of fingers,

denoted by φC , in the interior of P+. If φC is zero, none of

the fingers belong to every formation in C are in the interior

of shape P+; otherwise, some of the fingers belong to every

formation in C are.

Proposition 7: Each vertex obtained from the proposed

partitioning may overlap with at most one caging set for the

shape family {P | P− ⊆ P ⊆ P+}.

Fig. 2. Polygons with solid outline and dotted outline are P− and P+,
respectively, served as bounds for the curved shape P (dashed outline on
the top left). Top right: the representative for caging set for the shape family
P|P− ⊆ P ⊆ P+ . Bottom: representatives of each caging set for the

shape P−.

Proof: Let C be a vertex that contains x and y from

distinct caging sets for the shape family. We assume without

loss of generality that d∗P−(x) ≥ d∗P−(y). Since x and y
come from distinct caging sets, they are not connected by any

path α such that sup {dP−(z) | z ∈ img(α)} < d∗P−(x) <
+∞. However, Proposition 4 states that there exists a path

β from x to y such that sup {dP−(z) | z ∈ img(β)} =
sup {dP−(x), dP−(y)}. Observe that i) x and y are in caging

sets so sup {dP−(x), dP−(y)} < d∗P−(x) ii) every formation

along β is not in P+ since x,y are not (by the proposed

partitioning). This is a contradiction.

The proposed partitioning also leads the condition to

identify whether any two adjacent vertices C,C ′ ∈ V are

to be assigned to the same caging set (in step 5)). That is: if

i) φC = φC′ = 0 and ii) d(C), d(C ′), d(C ∩ C ′) are all less

than d∗P−(C) = d∗P−(C ′), C,C ′ are assigned to the same

caging set. Since i) implies that the concatenation of straight

line paths from C to C ∩ C ′ and from C ∩ C ′ to C ′ does

not overlap with P+ while ii) and Proposition 4 implies that

any formation z in the image of the concatenated path has

dispersion less than d∗P−(C) = d∗P−(C ′). By Proposition 6,

C and C ′ are in the same caging set if i) and ii) hold.

We have implemented and tested the algorithm. The ex-

perimental results are shown in Fig. 2, 3 and 4. We perform

the experiments on two dimensional workspace with three

fingers using the dispersion d(x1, x2, x3) ≡ ‖x1 − x2‖2 +
‖x2−x3‖2 +‖x3−x1‖2. Least dispersion formations belong

to distinct caging sets are shown in the illustrations. The red

lines’ altitude above the horizontal axis indicates the square

root of difference between the maximal dispersion and the

dispersion of the least dispersion formation. For visualiza-

tion, the red lines’ altitude in Fig. 2, 3 and 4 is (resp.) 5, 10

and 5 times of the square root of difference. The results show

that caging sets for the shape family {P | P− ⊆ P ⊆ P+}
are significantly smaller (i.e. less difference between the

maximal dispersion and the least dispersion formation) than

caging sets for a single shape P− and some caging sets for

P− alone are not caging sets for the shape family. In Fig.

4, observe that it is still possible obtain several caging sets

for the shape family even if P+ occupies a large region but

not where the fingers should form a caging formation.
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Fig. 3. Polygons with solid outline and dotted outline are P− and P+, respectively. Top: representatives of each caging set for the shape family
P|P− ⊆ P ⊆ P+ . Bottom: representatives of each caging set for the shape P−.

Fig. 4. The region with dotted outlines indicate unobserved region with
some degree of uncertainty, P+. Left: dashed region represents the actual
shape. Right: caging sets of the partially observed shape.

V. CONCLUSIONS AND FUTURE WORKS

The proposed work extend the previous algorithm to han-

dle shape uncertainty. Like the previous algorithm, the caging

set for a shape family can be enumerated and queried in the

same manner. Although this allows simplification of complex

shapes, its workload still increases exponentially with respect

to the number of fingers. This still contradicts with one’s

commonsense that the object should be easier to cage with

more fingers. Alternatively, one may cage to the object with

a fence of fingers by setting the gap between adjacent fingers

less than the coverage diameter as in [15] since time used

computing coverage diameter does not depend on the number

of fingers. We aim to extend the coverage diameter to support

shape uncertainty as well.
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