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Abstract— The ICP (Iterative Closest Point) algorithm is the
de facto standard for geometric alignment of three-dimensional
models when an initial relative pose estimate is available. The
basis of the algorithm is the minimization of an error function
that takes point correspondences into account. While four
closed-form solution methods are known for minimizing this
function, linearization seems necessary for solving the global
scan registration problem. This paper presents such linear
solutions for registering n-scans in a global and simultaneous
fashion. It studies parameterizations for the rigid body trans-
formations of the n-scan registration problem.

I. INTRODUCTION

Registering 3D models is a crucial step in 3D model

construction and 3D mapping. Many applications use the

ICP algorithm: Nowadays precise 3D scanners are available

that are used in architecture, industrial automation, agricul-

ture, cultural heritage conservation, and facility management.

Other applications of point cloud registration algorithms

include medical data processing, art history, archaeology, and

rescue and inspection robotics. The advent of 3D TOF cam-

eras is likely to generate another burst of ICP applications

in the near future [2], [1].

The ICP algorithm registers two independently acquired

3D scans or 3D point clouds into a common coordinate

system. Here the algorithm relies on minimizing an error

function over closest point correspondences. The following

analogy is often used to depict the minimization issue: The

correspondences represent a system of springs that forces

the scan to be aligned to the correct position. Four closed

form solution methods are known for minimizing the ICP

error function [18]. The difficulty in minimizing the ICP

error function is to ensure the orthonormality constraint of

the included rotation matrix. This paper presents linearized

solution methods, where the optimal rotation is approximated

by solving a system of linear equations. The linearization

methods are the helix transform, the small angle approxima-

tion, and the uncertainty based registrations. For the latter

one we model the scan pose, i.e., position and orientation,

as Gaussian distributions and use the Euler and the quater-

nion representation. Our objective is to compare different

gradient-descent algorithms based upon different rotation

parameterizations to solve the bundle adjustment problem

that arises with 3D point clouds produced by range finders.

In [24] the recommendation concerning the parameterization

choice is stated as: “Similarly, experience suggests that

quasi-global 3 parameter rotation parameterizations such as
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Fig. 1. Registration of n-scans. Top: 3D scene HANNOVER2 of an urban environment

in a bird’s-eye view. The scans have been taken according to the sequence: A-B-C-D-

A-B-E-F-A-D-G-H-I-J-H-K-F-E-L-I-K-A. A video of the scan matching process can

be found under http://plum.eecs.jacobs-university.de/download/

icra2010/large slam.mpg

Euler angles cause numerical problems unless one can be

certain to avoid their singularities and regions of uneven

coverage. Rotations should be parameterized using either

quaternions subject to |q̇|2 = 1, or local perturbations RδR
or δRR of an existing rotation R, where δR can be any

well-behaved 3 parameter small rotation approximation, e.g.

δR = (I+[δr]×), the Rodriguez formula, local Euler angles,

etc.”. Recently, this was used by by Grisetti et al. [14] for

3D mapping. This paper studies alternative methods.

If n-scans have to be registered, any sequential applica-

tion of ICP will accumulate errors, and therefore the ICP

algorithm has to be extended. Locally consistent algorithms

retain the analogy of the spring system [13] and the resulting

algorithms need iterations for minimizing the global error

function. However, globally consistent algorithms minimize

the error function in one step. Therefore, it is more likely

to reach the global and hopefully the correct optimum.

Fig. 1 presents an urban scene, digitalized by roughly 1000

terrestrial 3D scans and Fig. 2 shows the accumulated error

when performing sequential ICP scan matching and the result

of globally consistent scan matching. Fig. 3 stresses the

difference between global and local optimal results and gives

a schematic illustration of the difference.

This paper presents novel global optimal solutions to

the global n-scan registration problem and stresses the role

of linearization. The presented methods are examined with

respect to computational requirements and to approximation

and implementation issues.
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Fig. 2. Top left: 3D view of the scene with the accumulated error. Top
right: Scene in a bird’s-eye view. Bottom row: Consistent registration results.
Left: Globally consistent registration in 3D view. Right: Bird’s eye view.

II. STATE OF THE ART

a) The ICP Algorithm.: The following method is the

de-facto standard for registration of two point sets. The

complete algorithm was invented at the same time in 1991

by Besl and McKay [8], by Chen and Medioni [11] and by

Zhang [27]. The method is called the Iterative Closest Points

(ICP) algorithm.

Given two independently acquired sets of 3D points, M̂
(model set) and D̂ (data set) which correspond to a single

shape, we want to find the transformation (R, t) consisting

of a rotation matrix R and a translation vector t which

minimizes the following cost function:

E(R, t) =
∑

i=1

||mi − (Rdi + t)||2 , (1)

All corresponding points can be represented in a tuple

(mi,di) where mi ∈ M ⊂ M̂ and di ∈ D ⊂ D̂. Two things

have to be calculated: First, the corresponding points, and

second, the transformation (R, t) that minimizes E(R, t)
on the basis of the corresponding points. The ICP algorithm

uses closest points as corresponding points. A sufficiently

good starting guess enables the ICP algorithm to converge

to the correct minimum.

Current research in the context of ICP algorithms mainly

focuses on fast variants of ICP algorithms [22]. If the input

are 3D meshes then a point-to-plane metric can be used

instead of Eq. (1). Minimizing using a point-to-plane metric

outperforms the standard point-to-point one, but requires the

computation of normals and meshes in a preprocessing step.

b) Globally Consistent n-Scan Matching.: Chen and

Medioni [12] aimed at globally consistent range image align-

ment when introducing an incremental matching method, i.e.,

all new scans are registered against the so-called metascan,

which is the union of the previously acquired and registered

scans. This method does not spread out the error and is order-

dependent.

Bergevin et al. [7], Stoddart and Hilton [23], Benjemaa and

Schmitt [5], [6], and Pulli [21] present iterative approaches.

Based on networks representing overlapping parts of images,

they use the ICP algorithm for computing transformations

that are applied after all correspondences between all views

have been found. However, the focus of research is mainly

3D modeling of small objects using a stationary 3D scanner

and a turn table. Therefore, the used networks consist mainly

of one loop [21]. These solutions are locally consistent

algorithms that retain the analogy of the spring system [13]

whereas true globally consistent algorithms minimize the

error function in one step (cf. Fig. 3).

A probabilistic approach was proposed by Williams et

al. [25], where each scan point is assigned a Gaussian

distribution in order to model the statistical errors made by

laser scanners. This causes high computation time due to

the large amount of data in practice. Krishnan et al. [17]

presented a global registration algorithm that minimizes the

global error function by optimization on the manifold of 3D

rotation matrices.

III. LINEAR SOLUTIONS FOR n-SCAN MATCHING

To register scans globally consistent a network of poses is

formed, i.e., a graph. Every edge represents a link j → k of

matchable poses. The error function is extended to include

all links and to minimize for all rotations and translations at

the same time.

E =
∑

j→k

∑

i=1

||(Rjmi + tj) − (Rkdi + tk)||2 , (2)

Four methods can be used to minimize the error function (2)

that differ in linearization of the rotation, namely the helix

transform, which is due to Hofer and Pottman [16], a small

angle approximation and two uncertainty based methods

that represent the scan poses (rotation and translation) as

Gaussian distributed random variables. These methods are

discussed next.

A. Registration using the Helix Transform

Under the assumption that the transformations (R, t) that

have to be calculated are small, one can approximate the

solution by applying instantaneous kinematics. Instantaneous

1 2

Fig. 3. Left: Locally consistent algorithms reduce the registration errors
at the loop closing point but fail to distribute the error. Here in comparison
with the global optimal result in bird’s eye view. (cf. Fig. 2). Right:
Registration of 6 Scans, whose points are represented by different gray
values. Algorithms working locally optimal move every scan separately,
while global optimal algorithms minimize all distances at the same time.
This includes especially, that the transformation of scan 1 is continued to
scan 2 (the rightmost one), i.e., incorporating a ”‘leverage effect”’.
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Fig. 4. The affine position of a 3D point xi +v(xi) is different from the
rigid transformation that results in point x

′

i
. Based on [16].

kinematics computes the displacement of a 3D point by an

affine transformation via a so-called helical motion [20].

A 3D point di is mapped by adding a small displacement

v(di), i.e.,

v(di) = c̄ + c × di (3)

This displacement corresponds to an affine motion. Fig. 4

presents the displacement of a point using the affine trans-

formation and rigid transformation. Therefore in a post

processing step a rigid transformation (R, t) is calculated

from (c̄, c) as follows: If c = 0 only a translation is present.

In this case t = c̄ holds. Otherwise an axis G consisting

of a direction vector g and a momentum vector ḡ can be

computed. The tuple (g, ḡ) are the Plücker coordinates of

the axis G:

g =
c

||c||
, ḡ =

c − pc

||c||
, p =

cT · c̄

c2

Based on G the point di has to be transformed as follows:

d′
i = R(di − p) + (p φ)g + p (4)

Here R is the rotation matrix R =

1

b2
0
+b2

1
+b2

2
+b2

3





b2
0 + b2

1 − b2
2 − b2

3 2(b1b2 + b0b3) 2(b1b3 − b0b2)
2(b1b2 − b0b3) b2

0 − b2
1 + b2

2 − b2
3 2(b2b3 + b0b1)

2(b1b3 + b0b2) 2(b2b3 − b0b1) b2
0 − b2

1 − b2
2 + b2

3



 ,

where b0 = cos(φ/2), b1 = gx sin(φ/2), b2 = gy sin(φ/2),
and b3 = gz sin(φ/2). g = (gx, gy, gz) is the above

mentioned direction vector of the axis G. Furthermore in

Eq. (4) p is an arbitrary point on the axis G. Note: The

above Eq. is similar to the term for computing a rotation

matrix from a unit quaternion. Please refer to [16] for more

details.

Next, we minimize the error function for global consistent

scan matching, i.e., we improve the approach given in [20]

which is only locally consistent to include off-diagonal ele-

ments in the resulting system of equations [15]. To minimize

the error function using the new displacement Eq. (2) is

rewritten as follows:

E =
∑

j→k

∑

i

(mi − di + (c̄j + cj × mi) − (c̄k + ck × mi))
2

Reformulating E as

E = XT ·B · X + 2A ·X +
∑

i

(mi − di)
2,

allows us to solve for the optimal poses X = (cT
2 , c̄T

2 ,
. . . , cT

n , c̄T
n )T in the linear equation system:

BX =A.

Note that the first pose is fixed to the origin of the coordinate

system, i.e. c1 = c̄1 = 0. A is attained as follows:

2AX =
∑

j→k

∑

i

2((mi − di)(c̄j + cj × mi)

+ (di − mi)(c̄k + ck × mi))

Aj =
∑

j→k

∑

i

(

mi × (mi − di)
mi − di

)

+
∑

k→j

∑

i

(

mi × (di − mi)
di − mi

)

The matrix B is defined by

XT · B ·X =
∑

j→k

∑

i

((c̄j + cj × mi) − (c̄k + ck × mi))
2,

and given as

Bj,j =
∑

j→k

k→j

∑

i

Mi, Bj,k =
∑

j→k

∑

i

−Mi,

where

Mi =

















m2
y,i + m2

z,i −mx,imy,i −mx,imz,i 0 −mz,i my,i

−mx,imy,i m2
x,i + m2

z,i −my,imz,i mz,i 0 −mx,i

−mx,imz,i −my,imz,i m2
x,i + m2

y,i −my,i mx,i 0
0 mz,i −my,i 1 0 0

−mz,i 0 mx,i 0 1 0
my,i −mx,i 0 0 0 1

















.

After the linear equation system is solved the computed tu-

ples (cj , c̄j) are used to calculate the corresponding rotations

and translations (Rj , tj) by the post processing as explained

above.

B. Exploiting the Small Angle Approximation

Given a rotation matrix R based on the Euler angles

R = Rθx
Rθy

Rθz
(5)

we use the first-order Taylor series approximation that is

valid for small angles

sin θ ≈ θ −
θ3

3
+

θ5

5
− · · · , cos θ ≈ 1 −

θ2

2
+

θ4

4
− · · ·

and apply it to (5). As a second approximation we assume

that the result of a multiplication of small angles yields even

smaller values that can be omitted as well. This eliminates

second order and higher combination terms and Eq. (5)

becomes:

R ≈





1 −θz θy

θz 1 −θx

−θy θx 1



 (6)

We notice that this term is closely related to the Rodrigues

formula but is no longer orthonormal.

Replacing this approximation (6) in Rdi and rearranging

the unknown variables in a vector yields:

Rjdi =





0 dz,i −dy,i

−dz,i 0 dx,i

dy,i −dx,i 0



 ·





θz

θy

θx



+ di (7)

= Di · Xj + di. (8)
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Surprisingly, the resulting equation is equal to the notation

of Eq. (3) by Hofer and Pottmann [16], [20]. Therefore, the

result has to be interpreted as a so-called helical motion

and not using the small angle assumption. The small angle

approximation fails, since the rotation calculated by the ICP

algorithm always refers to the global coordinate system, i.e.,

represents a rotation about the origin (0, 0, 0). While the

helical motion takes care of this by calculating a rotation

axis, our approximation does not regard this. To make the

small angle approximation Eq. (6) work, we have to apply

the centroid trick. Using the centroids cj and ck , where

m′
i = mi − ck, d′

i = di − cj , Eq. (2) is restated as:

E =
∑

j→k

∑

i

|Rjm
′
i + Rjck + tj − (Rkd

′
i + Rkcj + tk)|

2

=
∑

j→k

(

∑

i

|Rjm
′
i − Rkd

′
i|

2

−2
∑

i

(tk − tj + Rkcj − Rjck)(Rjm
′
i − Rkd

′
i)

+
∑

i

|tk − tj + Rkcj − Rjck|
2

)

.

The term −2
∑

i(tk − tj + Rkcj −Rjck)(Rjm
′
i − Rkd

′
i)

equates to zero, because all values refer to the centroids.

This separates the rotation from the translation and enables

us to solve for the rotation of all poses independent of their

translation,

1) Computing the Rotation: Minimizing the first term of

the restated error metric allows us to derive the optimal

rotation of all poses. Each rotation Rj is represented as

Xj = (θz,j , θy,j, θx,j)
T . The following rotational error will

be minimized:

ER =
∑

j→k

∑

i

(Mi ·Xj − Di · Xk − (mi − di))
2

=
∑

j→k

∑

i

(Mi ·Xj − Di · Xk)
2

+ (mi − di)
2

− 2 (Mi ·Xj − Di · Xi) · (mi − di),

where Mi and Di are given as in Eq. (8). The error term is

rewritten with the rotations concatenated in X

ER =XBX + 2AX + (mk − dk)2

in order to solve the linear equation system

BX + A = 0.

With B given by:

Bj,j =
∑

j→k

∑

i

DT
i · Di +

∑

k→j

∑

i

MT
i ·Mi

case j < k:

Bj,k = −
∑

j→k

∑

i

MT
i · Di

case j > k:

Bj,k = −
∑

j→k

∑

i

DT
i ·Mi,

and A by:

Aj =
∑

k→j

∑

i





(mz,i − dz,i) · dy,i − (my,i − dy,i) · dz,i

(mx,i − dx,i) · dz,i − (mz,i − dz,i) · dx,i

(my,i − dy,i) · dx,i − (mx,i − dx,i) · dy,i





−
∑

j→k

∑

i





(mz,i − dz,i) · my,i − (my,i − dy,i) · mz,i

(mx,i − dx,i) · mz,i − (mz,i − dz,i) · mx,i

(my,i − dy,i) · mx,i − (mx,i − dx,i) · my,i





2) Computing the Translation: With the optimal rotations

successfully calculated, the optimal translation is determined

by minimizing the term:

ET =
∑

j→k

∑

i

(tk − tj + Rkcj − Rjck)
2
.

Let Rkcj −Rjck be abbreviated as Rj,k and ET is restated

in matrix notation:

ET =TTBT + 2AT +
∑

j→k

∑

i

R2
j,k.

This is minimized by solving the linear equation system:

BT + A = 0

Here, B is given by:

Bj,j =
∑

j→k

k→j

I, Bj,k = −
∑

j→k

I

and A by:

Aj =
∑

j→k

Rjck − Rkcj −
∑

k→j

Rjck − Rkcj .

C. Uncertainty-based Registration

For some applications it is necessary to have a notion of

the uncertainty of the poses calculated by the registration

algorithm. The following is the extension of the probabilistic

approach first proposed in [19] to 6 DoF. This extention

is not straightforward, since the matrix decomposition, i.e.,

Eq. (9) cannot be derived from first principles. For a more

detailed description of these extension refer to [9] and [10].

In addition to the poses Xj , the pose estimates X̄j and the

pose errors ∆Xj are required.

The positional error of two poses Xj and Xk is described

by:

Ej,k =
m
∑

i=1

‖Xj ⊕ di − Xk ⊕ mi‖
2 =

m
∑

i=1

‖Zi(Xj ,Xk)‖2

Here, ⊕ is the compounding operation that transforms a point

into the global coordinate system. For small pose differences,

Ej,k can be linearized by use of a Taylor expansion:

Zi(Xj ,Xk) ≈ X̄j ⊕ di − X̄k ⊕ mi

−
(

∇jZi(X̄j , X̄k)∆Xj −∇kZi(X̄j , X̄k)∆Xk

)

where ∇j , ∇k denotes the derivative with respect to Xj and

Xk respectively. Utilizing the matrix decompositions MiHj

and DiHk of the respective derivatives that separates the

poses from the associated points gives:

Zi(Xj ,Xk) = Zi(X̄, X̄k) − (MiHj∆Xj − DiHk∆Xk)

= Zi(X̄, X̄k) −
(

MiX
′
j − DiX

′
k

)
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Appropriate decompositions are given for both the Euler

angles and quaternion representation in the following para-

graphs. Because Mi as well as Di are independent of the

pose, the positional error Ej,k is minimized with respect to

the new pose difference E′
j,k:

E′
j,k = (Hj∆Xj − Hk∆Xk)

= (X′
j − X′

k).

E′
j,k is linear in the quantities X′

j that will be estimated so

that the minimum of Ej,k and the corresponding covariance

are given by

Ēj,k = (MT M)−1MTZ

Cj,k = s2(MTM).

where s2 is the unbiased estimate of the covariance of the

identically, independently distributed errors of Z:

s2 = (Z − MĒ)T (Z − MĒ)/(2m − 3).

Here Z is the concatenated vector consisting of all

Zi(X̄j , X̄k) and M the concatenation of all Mi’s.

Up to now all considerations have been on a local scale.

With the linearized error metric E′
j,k and the Gaussian dis-

tribution (Ēj,k,Cj,k) a Mahalanobis distance that describes

the global error of all the poses is constructed:

W =
∑

j→k

(Ēj,k − E′
j,k)TC−1

j,k(Ē′
j,k − E′

j,k)

=
∑

j→k

(Ēj,k − (X′
j − X′

k))C−1

j,k(Ē′
j,k − (X′

j − X′
k)).

In matrix notation, W becomes:

W = (Ē− HX)T C−1(Ē− HX).

Here H is the signed incidence matrix of the pose graph, Ē

is the concatenated vector consisting of all Ē′
j,k and C is

a block-diagonal matrix comprised of C−1

j,k as submatrices.

Minimizing this function yields new optimal pose estimates.

The minimization of W is accomplished via the following

linear equation system:

(HTC−1H)X =HTC−1Ē

BX =A.

The matrix B consists of the submatrices

Bj,k =















n
∑

k=0

C−1

j,k (j = k)

C−1

j,k (j 6= k).

The entries of A are given by:

Aj =

n
∑

k=0

k 6=j

C−1

j,kĒj,k.

In addition to X, the associated covariance of CX is com-

puted as follows:

CX = B−1

Note that the results have to be transformed in order to obtain

the optimal pose estimates.

Xj = X̄j − H−1

j X′
j ,

Cj = (H−1

j )CX
j (H−1

j )T .

1) Linearization of Euler Angles: The representation of
pose X in Euler angles, as well as its estimate and error is
as follows:

X =

0

B

B

B

B

B

@

tx

ty

tz

θx

θy

θz

1

C

C

C

C

C

A

, X̄ =

0

B

B

B

B

B

@

t̄x

t̄y

t̄z

θ̄x

θ̄y

θ̄z

1

C

C

C

C

C

A

, ∆X =

0

B

B

B

B

B

@

∆tx

∆ty

∆tz

∆θx

∆θy

∆θz

1

C

C

C

C

C

A

The matrix decomposition MiH = ∇Zi(X̄) is given by (9)

and

Mi =





1 0 0 0 −dy,i −dz,i

0 1 0 dz,i dx,i 0
0 0 1 −dy,i 0 dx,i



 .

As required, Mi contains all point information while H

expresses the pose information. Thus, this matrix decom-

position constitutes a pose linearization similar to those

proposed in the preceding sections. Note that, while the

matrix decomposition is arbitrary with respect to the column

and row ordering of H, this particular description was chosen

due to its similarity to the 3D pose solution given in [19].
2) Linearization of Quaternions: The representation of

the pose X as quaternions, as well as its estimate and error
are given as follows:

X =

0

B

B

B

B

B

B

B

@

tx

ty

tz

p
q
r
s

1

C

C

C

C

C

C

C

A

, X̄ =

0

B

B

B

B

B

B

B

@

t̄x

t̄y

t̄z

p̄
q̄
r̄
s̄

1

C

C

C

C

C

C

C

A

, ∆X =

0

B

B

B

B

B

B

B

@

∆tx

∆ty

∆tz

∆p
∆q
∆r
∆s

1

C

C

C

C

C

C

C

A

The matrix decomposition MiH = ∇Zi(X̄) for quaternions

is given by:

Mi =





1 0 0 dx,i 0 −dz,i dy,i

0 1 0 dy,i dz,i 0 −dx,i

0 0 1 dz,i −dy,i dx,i 0





H =

(

I3×3 −2 ·T
0 2 ·U

)

TT =









p̄t̄x + s̄t̄y − r̄t̄z −s̄t̄x + p̄t̄y + q̄t̄z r̄t̄x − q̄t̄y + p̄t̄z
q̄t̄x + r̄t̄y + s̄t̄z −r̄t̄x + q̄t̄y − p̄t̄z −s̄t̄x + p̄t̄y + q̄t̄z
r̄t̄x − q̄t̄y + p̄t̄z q̄t̄x + r̄t̄y + s̄t̄z −p̄t̄x − s̄t̄y + r̄t̄z
s̄t̄x − p̄t̄y − q̄t̄z p̄t̄x + s̄t̄y − r̄t̄z q̄t̄x + r̄t̄y − s̄t̄z









U =









p̄ q̄ r̄ s̄
q̄ −p̄ s̄ −r̄
r̄ −s̄ −p̄ q̄
s̄ r̄ −q̄ −p̄









Again, all point information is restricted to Mi and all pose

information to H, so that the matrices describe a lineariza-

tion of the quaternion transformation. Since this specific

linearization was derived without regarding the normalized

nature of the unit quaternions, this approach may yield non-

unit quaternions. As non-unit quaternions do not constitute
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H =

0

B

B

B

B

B

@

1 0 0 0 t̄z cos(θ̄x) + t̄y sin(θ̄x) t̄y cos(θ̄x) cos(θ̄y) − t̄z cos(θ̄y) sin(θ̄x)
0 1 0 −t̄z −t̄x sin(θ̄x) −t̄x cos(θ̄x) cos(θ̄y) − t̄z sin(θ̄y)
0 0 1 t̄y −t̄x cos(θ̄x) t̄x cos(θ̄y) sin(θ̄x) + t̄y sin(θ̄y)
0 0 0 1 0 sin(θ̄y)
0 0 0 0 sin(θ̄x) cos(θ̄x) cos(θ̄y)
0 0 0 0 cos(θ̄x) − cos(θ̄y) sin(θ̄x)

1

C

C

C

C

C

A

(9)

Fig. 5. Top left: Schema of the airborne based acquisition of reference
data. Top right: 3D map consisting of aerial laser data and extrapolated 2D
reference data. Bottom: Airborne and 3D map (green) with superimposed
3D scans (grey).

valid poses, the resulting quaternion must additionally be

normalized before use.

IV. EXPERIMENTS AND RESULTS

The experiments have been made using data of the Robotic

3D Scan Repository [3]. Implementations of the four meth-

ods can be found in [4]. The data set HANNOVER2 (cf.

Fig. 1) has been acquired in an urban area and contains 922

3D scans each containing up to 35000 3D data points. It

was acquired by a robot carrying a continuously rotating 3D

scanner [26]. In this manner, hundreds of 3D scans can be

acquired and globally consistent scan matching can be stud-

ied. To the data set HANNOVER2 ground truth data in form

of a 2D map provided by the German land registry office

(Katasteramt) is available. This map contains the buildings

with a precision of 1 cm. In addition, we obtained airborne

based 3D data. Based on this data so-called reference data is

generated as follows (see Fig. 5): The 2D map is extrapolated

to 3D by vertical 3D points and fused with the 3D data from

the airplane. The result is a precise 3D reference map. Using

this 3D reference map, we generate reference poses for all

922 3D laser scans by matching the scans with the reference

map. To these poses we will refer to as “ground truth”.

We used the incremental ICP algorithm to match a se-

quence of 3D scans. Here we matched every 3D scan against

its predecessor and take into account that errors sum up.

After the robot returned with the scanner approximately to a

known position a loop is closed. Then we applied the global

relaxation and analyzed this error function minimization.

Fig. 6 presents the results for two 3D scans (No. 80 and No.

150). Two loop closings are recorded, i.e., the first relaxation

was up to iteration 150, the second one up to iteration 300.

We see that all methods converge to stable different minima

and except the quaternion algorithm, the final minimum is

close to the ground truth.

Fig. 7 shows the precision of two 3D scans that reside

in the second loop closing. Two methods, namely the small

angle approximation and the uncertainty based quaternion

solution show convergence to incorrect minima for scan No.

200, while for scan No. 384 only the quaternion solutions

seems to be incorrect. Note that the error of the small angle

approximation is only due to misalignment errors on the y-

coordinate, i.e., the height of the scans.

The best performance in terms of accuracy is achieved

by the helix transform and the uncertainty based optimiza-

tion using Euler angles. The experiments show that global

registration of many systems yield a complex and fragile op-

timization system. Small variances in the calculated matrices

yield different closest point pairs in the following iteration,

which in turn result in different matrices. Most stable results

with respect to the final pose estimates of the 3D scans can

be reported for the approximation of the error function using

the helix transform and the uncertainty based optimization

using Euler angles. The quaternion based approach needs a

renormalization step to compute orthonormal rotation matri-

ces. Thus, it is more likely to fail.

V. CONCLUSIONS AND FUTURE WORK

This paper addressed the n-scan registration problem.

Four methods that approximate a closed-form solution for

a global optimal iterative closest point algorithm have been

implemented and compared. Using the helix transform or

the uncertainty based optimization using Euler angles yields

more precise registration results than the other two methods.

The principal problem that was addressed here is how to do

optimization with quantities that should stay in the manifolds

of rotations, i.e., in SO(3). The helix transform gives a solu-

tion that lies in this space, i.e., there is a surjection between

each helix transform and the rigid body transformation. For

small angles this is not true since one can calculate new

angles and the rigid body transformation founds does not

correspond with the infinitesimal displacement calculated

by the gradient descent step. However as a linearization

method this method seems to work as well, since only small

displacements are computed from the point pairs. We showed

that the helix transform works the best. The uncertainty-

based with Euler angles seems working similarly good,

while not being identical to the helix transform. Since the
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Fig. 6. Convergence of the registration of scan 80 (left) and 150 (right) using different minimization algorithms. The first 150 iterations correspond to
the first relaxation (sequence A-B-C-D-A-B) while the second 150 iterations represent the result after registration of 384 3D scans (sequence: A-B-C-D-
A-B-E-F-A).
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Fig. 7. Convergence of the registration of scan 200 (left) and 384 (right) using different minimization algorithms. The 150 iterations correspond to the
second relaxation (sequence: A-B-C-D-A-B-E-F-A).

quaternion-based method leaves SO(3) it shows the poorest

performance and we do not recommand using it.

Currently we are working on an uncertainty-based reg-

istration using the Helix transform. In future work we are

aiming at finding a closed form solution to get rid of the

linearization and the problems due to it. Furthermore, as

future work we plan to apply the proposed algorithms to

large scale experiments, i.e., to 3D mapping of cities. Then,

the back-end, i.e., solving the system of linear equations

becomes important.
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