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Abstract— Object tracking and segmentation find a wide
range of applications in robotics. Tracking and segmentation
are difficult in cluttered and dynamic backgrounds. We propose
a tracking and segmentation algorithm in which tracking and
segmentation are performed consecutively. We separate input
images into disjoint patches using an efficient oversegmentation
algorithm. Objects and their background are described by bags
of patches. We classify the patches in a new frame by searching
k nearest neighbors. K-d trees are constructed using these
patches to reduce computational complexity. Target location
is estimated coarsely by running the mean-shift algorithm.
Based on the estimated locations, we classify the patches again
using appearance and spatial information. This strategy out-
performs direct segmentation of patches based on appearance
information only. Experimental results show that the proposed
algorithm provides good performance on difficult sequences
with clutter.

I. INTRODUCTION

Visual tracking and segmentation in video sequences are
essential for action recognition and behavior analysis in
robotics. Tracking and segmentation are difficult due to
viewpoint variations, occlusions, and dynamic backgrounds.
In this work, we use appearance and spatial information
in an appropriate way, aiming at partially conquering these
difficulties.

One of the crucial problems underlying the construction
of reliable tracking and segmentation methods is the identi-
fication of characteristic properties of objects [21]. These
properties distinguish objects from one another and from
the background. Therefore, representation and localization
are the main issues to be addressed in designing a robust
tracker. We represent targets and their background using
bags of patches. We cast tracking and segmentation in two
consecutive steps, in contrast with the two most related
works [3], [13]. We estimate the location of objects in the
tracking process based on appearance information in image
patches. In addition, we consider spatial and appearance
information for the segmentation process. The objects are
segmented by considering appearance and spatial informa-
tion. In both stages, k-d trees are constructed to accelerate
the classification processes. In the tracking stage, we perform
approximate localization of targets. This information is then
employed in the second stage.

We advocate the use of oversegmentation for object lo-
calization and segmentation. Classification at the pixel level
is difficult because pixels lack discriminative power, and
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considering local neighboring information does not alleviate
the problem much [3]. Large patches are more discriminative
than pixels or small patches. At the same time, however,
large patches have less invariant abilities than small patches.
Moreover, partitioning an image into large patches tends
to produce more errors: objects and background can be
grouped into the same patches due to similar appearance.
Direct segmentation using an unsupervised algorithm can
lead to many errors since these segmentation methods are not
always reliable. We must find a tradeoff between invariancy
and discriminative power. In this work, we extend graph-
based segmentation to a more efficient oversegmentation al-
gorithm. The use of oversegmentation brings a good balance
between providing segments that contain enough information
for matching and reducing the risk of a segment spanning
multiple objects. Oversegmentation also reduces the compu-
tational complexity of the algorithm.

Based on oversegmentation results, the tracking process
calculates approximate locations for objects. The location
information is useful in segmenting an object. Both
appearance and spatial information are employed in the
segmentation process. We build another k-d tree in which
appearance and spatial information are indexed. The image
patches are classified again based on the spatial k-d tree.
This approach provides better segmentation results than
other segmentation methods [13].

This paper is organized as follows. After a brief review
of related works in Section II, we introduce the formulation
of the consecutive tracking and segmentation in Section III.
An oversegmentation algorithm developed from the graph-
based segmentation method [9] is described in Section IV.
Our tracking approach is introduced in Section V, and the
segmentation approach is introduced in Section VI. Section
VII describes the experimental results, and conclusions are
given in Section VIII.

II. RELATED WORK

Mean-shift tracking [5], [8] is essentially formulated using
a non-parametric density gradient estimator to find the image
window that is most similar to the object’s color histogram
in the current frame [17]. Comaniciu et al. [8] define
a spatially smooth similarity function and cast the state
estimation problem as a search of the basin of attraction
of this function. The success of the mean-shift depends
strongly on the discriminating power of the histograms that
are considered as the object’s probability density function.
The target representation in the original mean-shift tracker
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is color histograms. Color histograms are not sufficiently
discriminative in many cases. As a global representation of
the target, color histograms omit spatial information, which
is very important for localization of the target.

Tracking has been considered a two-class separation prob-
lem, where a classifier can be trained to distinguish the
object from the background. Ensemble tracking [3] trains a
classifiers using observations in the reference image. Every
pixel is classified using the learned classifier, which results
in a confidence map. They run a mean-shift algorithm on
confidence maps to localize objects. The classifier is updated
based on a least square computation. As mentioned in
the previous section, it is difficult to classify pixels into
foreground and background using information in pixel-level.
Lu and Hager [13] also treat tracking as classification by
sampling image patches. Their work achieves good perfor-
mance on many sequences. However, they do not use spatial
information, which is one of the reasons that the confidence
maps computed using their approach are not sufficient for
challenging sequences. In addition, they partition image into
patches using an unsupervised image segmentation algo-
rithm, which can lead the problems detailed in the previous
section.

Spatial information has been found useful in tracking.
Birchfield and Rangarajan [4] propose a spatiogram-based
tracking algorithm to make use of spatial information. They
model a target using a histogram in which each bin is spa-
tially weighted by the mean and covariance of the location of
the pixels that contribute to that bin. The experimental results
in [4] are not satisfying because the spatial information is not
well described. Spatial information has also been included
in a covariance matrix [16]. Adam et al. [1] build object
templates using fixed image fragments. Every patch votes
on possible positions of the object in the current frame, by
comparing its histogram with the corresponding image patch
histogram [15]. This approach can experience difficulties
when the objects have deformable structures, which makes
the voting process impossible.

Spatial information has been used in our previous work for
tracking [23]. In [23], appearance information is described by
kernels which are non-parametric; while spatial information
is represented by spatial Gaussians. Compared with other
works, the tracker [23] provides better likelihood images in
some cases. However, it does not aim at segmenting but
only tracking. That work decomposes a target into several
patches using a parametric description. Such description is
not sufficient for complex object segmentation. Moreover,
target localization in [23] can be deviated by a cluttered
background.

High-level knowledge has been introduced to conquer
the problems in tracking [12], [19] using category-level
appearance knowledge [18] or dynamics knowledge [20].
Such approaches require reliable a priori object appearance
or dynamic models, which must be learned before tracking.
Our work aims at dealing with tracking tasks in the absence
of an a priori object appearance model. We have little
knowledge before tracking and segmentation. The proposed

method can handle tracking and segmentation for a wide
range of objects, which is important in robotics.

III. FORMULATION OF

OUR CONSECUTIVE TRACKING AND SEGMENTATION

The objective of this work is to estimate target positions
and segmentations from monocular video sequences without
any special high-level knowledge. We present a two-stage
approach for object tracking and segmentation. In stage
1, moving objects are tracked based on bags-of-patches
representation. A bag of patches for each object is initialized
by labeling image patches. This stage provides a preliminary
estimate of each target’s positions and size.

In stage 2, segmentation is formulated as the problem of
local partition using appearance and spatial information. We
classify image patches again but spatial information is taken
into account.

The two stages are interactive in many cases. The
segmentation results are occasionally used for the modeling
of the objects and background. The segmentation results are
better than the approach proposed in [3], [13].

IV. GRAPH-BASED OVERSEGMENTATION

We represent objects and the background using bags of
patches since patches are more discriminative than pixels.
To partition an image into patches, we propose an unsu-
pervised oversegmentation algorithm using the graph-based
approach [9]. Ideally, the patches should not pass boundaries
between different objects or the background.

There are many unsupervised image segmentation algo-
rithms available. Felzenszwalb and Huttenlocher proposed an
efficient graph-based image segmentation algorithm. We de-
velop an oversegmentation algorithm based on their work [9]
because it is fast in practice and fits into our framework well.
We do not use the mean-shift segmentation algorithm [7]
because it is less efficient than the graph-based oversegmen-
tation we propose. Mean-shift segmentation finds compact
clusters in feature spaces. It generally assumes that the image
is piecewise constant, because searching for pixels that are
all close together in some feature space implicitly requires
that the pixels be alike. Mean-shift finds clusters by dilating
each point with a hypersphere of some fixed radius, and then
finds connected components of the dilated points. In contrast,
the graph-based segmentation for cluster finding does not
require all the points in a cluster to lie within any fixed
distance since it selects an appropriate dilation radius. In
addition, our graph-based oversegmentation is more efficient
than mean-shift segmentation.

We build a graph for an image before segmentation. Each
vertex in the graph has a corresponding image pixel. Each
edge in the graph corresponds to a connection between neigh-
boring pixels. Each pixel is connected to its four neighboring
pixels, including the pixels on its top-right, right, bottom,
and bottom right. Edge length is computed using the simple
Euclidean distance between the color vectors of two pixels.
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Fig. 1. The input image on the left is oversegmented into patches. The image on the right show these patches.

To perform single linkage clustering, a minimum spanning
tree of the data points is first constructed using Kruskal’s
algorithm [11]. The edges in the graph are sorted and nodes
are merged based on an increasing order of the length of
the edges. We define an adaptive predicate for measuring the
evidence for a boundary between two regions [9]. Any edges
with length greater than a given predicate are removed from
the tree. The predicate is adjusted according to the sizes of
patches, which is important for the success of the algorithm.

We aim at obtaining oversegmentation of an image using
the graph-based algorithm. We calculate an edge length for
a precise segmentation for the initialization. A threshold is
set according to the edge length. All the edges larger than
the threshold are not calculated, which leads to an efficient
oversegmentation.

The details of our algorithm are given as follows. Given
a graph G = (V,E), we seek an appropriate partition. The
number of vertexes, ‖V ‖, is w × h, where w and h are
width and height of an image, respectively. The number
of edges, ‖E‖, is roughly 4wh. We initialize a minimum
spanning tree by assigning vertexes in the graph to the
leaves in the tree. Each patch contains one pixel (one leaf)
after the initialization. Therefore, there are ‖V ‖ patches
(P = (P1, . . . , P‖V ‖)) in total. We compute the predicate for
two patches (or pixels) connected by an edge. The predicate
determines whether the two patches should be merged or not.
The predicate depends on the minimum internal difference
of a patch, which is defined as the longest edge in the patch.

We sort the edges in an increasing order,

E = (e1, . . . , e‖E‖),

in which ei ≤ ej if i < j. In our oversegmentation algorithm,
we give a threshold eT to stop the merging. All the edges
greater than the threshold will not be considered for merging.
A constant k is given to control the scale of patches. We set
k to 300 in all experiments. In initialization, the minimum
internal difference of every patch (pixel) is computed as k

‖P‖ ,
where ‖P‖ is the size of the patch. It is set to k since the
size of each patch is 1 in the initialization.

The detailed steps of the proposed oversegmentation
algorithm are as follows.

Algorithm: Graph-based Oversegmentation

For e = e1, . . . , eT ,
Assuming ec is in processing,
1. Let ec be an edge connecting two vertices vi and

vj ;
2. Let vertex vi be in a patch P c−1

vi
and vj be in a

patch P c−1
vj

. The patches are the processing results
up to the previous edge ec−1. Let emin

i be the
minimum internal difference of patch P c−1

vi
; and

emin
j be the minimum internal difference of patch

P c−1
vj

.
3. The two patches P c−1

vi
and P c−1

vj
are merged if

ec < min{emin
i , emin

j }.
4. If the two patches are merged in step 3, the min-

imum internal difference of the merged patch is
updated as

ec +
k

‖P c−1
vj ‖ + ‖P c−1

vi ‖ .

Otherwise the patches keep their minimum internal
difference unchanged.

End for.

We obtain a set of patches after the iteration without
exploring all the edges in the graph, which makes the
segmentation more efficient. One oversegmentation example
is shown in Fig. 1. We believe that oversegmentation is a
good choice for our purpose.

V. TRACKING STAGE

We run the graph-based oversegmentation algorithm de-
scribed in the previous section on the first frame. We initial-
ize the tracking by labeling image patches into foreground
target and background. We give different labels to different
targets when multiple objects are to be tracked.

After the initialization, we represent each target by using
two bag of patches. The first bag consists of appearance
information, whereas the second bag consists of spatial in-
formation. We construct k-d trees to accelerate the searching
of the nearest neighbors. The classification is carried out
through nearest neighbor searching in the k-d trees. We
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classify image patches into foreground and background based
on the proportion of foreground and background patches
in the nearest neighbors. We also use backward checking
techniques which are useful in improving classification re-
sults. We run the mean-shift algorithm on the confidence
map produced by the classification. The rough position of a
target is estimated. The rough position will be used in the
next section for segmentation.

A. K-D Tree Construction

The computational cost of nearest-neighbor searching is
rather expensive, which includes finding the neighbors and
storing the entire training set [10]. With N observations
and p predictors, nearest-neighbor classification requires Np
operations to find the neighbors per query point.

K-d trees use a space partitioning data structure for saving
input data into k-dimensional space, which results in an
efficient search involving a multidimensional search key. K-d
trees are a special case of Binary Space Partitioning (BSP)
trees. They organize data using a specific rule to choose axis-
aligned splitting planes. The structure is helpful for reducing
time complexity of k-nearest neighbor searching.

We use the efficient approximate nearest neighbor algo-
rithm and k-d tree algorithm in [14]. We build k-d trees
both in the tracking and segmentation stages. In the tracking
stage, the input data is 3D. The expected time for a nearest
neighbor search is O(log(N)), where N is the number
of elements stored in the k-d trees. k-d trees require no
learning or training of parameters. The preprocessing step
has low complexity in the number of elements and has a
short runtime.

B. Confidence maps

We build a k-d tree using 3-tuples (R,G,B). Each object
is represented using a bag of patches. The background is
also represented using a bag of patches. Only appearance
information is employed in this stage. We classify image
patches by searching nearest neighbors in the k-d tree.

We partition the new frame into patches using the pro-
posed oversegmentation algorithm. These patches need to
be classified into foreground or background. We perform
forward and backward checking for the classification. In the
forward checking, we build a k-d tree for all the patches that
represent targets and background. For each image patch in
the frame, we search for their kT

F nearest neighbors in the k-
d tree (The subscript T denotes Tracking and the superscript
F denotes Forward checking). We set kT

F to 12 in all the
experiments. Assuming that mT

F patches in the kT
F nearest

neighbors belong to the foreground model, we assign the
foreground confidence value cT

F with

cT
F = mT

F . (1)

In the backward checking, we build a k-d tree for the
patches in the current frame. We find kT

B nearest neighbors
for all the patches in the foreground model. We set kT

B to 12.
Assuming one patch in the current frame is the nT

B th nearest

neighbor of a foreground patch, we compute the foreground
confidence value cT

B of this patch as

cT
B = kT

B − nT
B . (2)

We compute the final confidence value cT of a patch in
tracking stage by

cT =
cT
F + cT

B

kT
F + kT

B

. (3)

VI. SEGMENTATION STATE

We construct another k-d tree using (R,G,B,X, Y ) 5-
tuples for a frame to be classified. We use the object model
with spatial information to search for nearest neighbors in
the spatial k-d tree. Note that the last two elements in the
tuples are adjusted to the current frame according to the
rough position estimate.

Similar to the formulation in tracking stage, we carry out
forward checking and backward checking based on nearest
neighbor searching results. In the forward checking, we
build a k-d tree for the target and background models. We
find nearest neighbors for each patch in current frame. The
confidence value cS

F in forward checking is computed as
cS
F = mS

F , where mS
F is the number of foreground model

patches in the nearest neighbor searching results.
In the backward checking, we build a k-d tree for the

patches in current frame. We search nearest neighbors for
each patch in the target model. The foreground confidence
value cS

B in backward checking is computed as cS
B = kS

B −
nS

B , where kS
B is the nearest neighbor setting, and nS

B is the
rank of a patch in target model.

The final confidence value in segmentation stage is com-
puted using

cS =
cS
F + cS

B

kS
F + kS

B

. (4)

The classification result in segmentation stage is much
better than that in tracking stage since both appearance and
spatial information are considered for classification.

A. Target Re-localization

The confidence map produced in this stage is better than
that in the tracking stage since spatial information is em-
ployed in the classification. We can estimate better bounding
boxes of targets by running the mean-shift algorithm again.
The re-localization can give a better location of the target [5].

B. Computational Complexity Analysis

Compared with classification using exhaustive searching,
the proposed tracking algorithm has lower computational
costs. We analyze the computational complexity to show the
advantage of our algorithm.

Assuming the number of patches to be matched in an
image is N ; the number of patches in a target and back-
ground model is M , we compare the computational costs in
tracking and segmentation stages with and without the k-d
tree searching. In the tracking stage, Exhaustive search for
forward and backward matching involves O(2MN) times
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Fig. 2. Segmentation results of a street sequence. The images in the first row are the tracking results of the ensemble tracking [3]. The images in the
second row are the confidence maps for each frame in the first row. The confidence maps correspond to the dashed rectangle. The images in the third row
are the tracking and segmentation results of the proposed algorithm.

of vector distance calculation. It takes O(N log(M)) +
O(M log(N)) times calculation when we build k-d trees
for the matching. In the segmentation stage, exhaustive
searching for forward and backward matching involves
O(2MN) times of vector distance calculation. Using k-
d trees, O(N log(M)) + O(M log(N)) times matching for
the vectors is needed for the segmentation. Therefore, the
complexity ratio between exhaustive matching and k-d tree
based searching is approximately O(2MN))

O(N log(M))+O(M log(N) .
Considering the cost for building the k-d trees, the ratio
is O(2MN)

O(N log(M))+O(M log(N))+O(N log(N))+O(M log(M)) . N is
always much larger than M . Note that we use the over-
segmentation algorithm, thus the patch number tends to be
large. In all the test sequences, patch matching using k-d
trees is much more efficient than exhaustive matching. The
advantage of the k-d trees is more apparent when foreground
targets have large sizes.

VII. EXPERIMENTAL RESULTS

We have implemented the proposed tracking and seg-
mentation algorithm. It was tested on many challenging
image sequences. The testing results of two sequences are
shown here. While some segmentation algorithms [13] have
achieved success in image sequences with little additional
clutter, they have not been successfully applied to the kind
of cluttered images that we consider in this work.

The first sequence (the street sequence) was captured
by a hand-held camera. The tracking results are shown

in Fig. 2. We compare the proposed approach with the
ensemble tracker [3]. The ensemble tracker [3] essentially
is a binary classifier learning online. The objective of that
tracker is to classify pixels into foreground and background.
The localization is performed based on the classification
results. The background in Fig. 2 changes abruptly from
time to time; as a result, the ensemble tracker [3] does not
produce reliable confidence maps. The confidence maps it
produced are shown in the second row of Fig. 2. Note that
these confidence maps are post-processing results of pixel
classification by discarding ambiguous foreground pixels.
The ensemble tracking algorithm can track the pedestrians
successfully through the sequence. However, there are many
segmentation errors in the results. The proposed consecutive
tracking and segmentation algorithm classifies the patches
iteratively and gets better segmentation results, as shown in
the third row of Fig. 2.

The second sequence is from the public Carnegie Mellon
University (CMU) dataset with ground truth [6]. The car is
occluded by trees in the sequence, which brings difficulty
to tracking and segmentation. As shown in Fig. 3, the car
is tracked and segmented successfully in the frames having
occlusions.

These experiments demonstrate that our tracking and
segmentation algorithm is useful for object tracking and
segmentation in cluttered background. Spatial information is
one of the reasons that good results were obtained in the
experiments.
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Fig. 3. Segmentation results of a street sequence from the CMU dataset. The images in the first row are the input frames and the images in the second
row show the tracking and segmentation results of the proposed algorithm.

VIII. CONCLUSIONS AND FUTURE WORK

We propose an effective consecutive tracking and seg-
mentation algorithm. Tracking using appearance information
is conducted by classifying image patches. The estimated
location information is combined with appearance and spatial
information to separate objects from background. We build
k-d trees for accelerating the tracking and segmentation.

Although the proposed oversegmentation algorithm is ef-
ficient and helpful in improving segmentation performance,
it cannot avoid errors due to the limitation of the bottom-up
segmentation approach. We are interested in further improv-
ing segmentation performance using shape information in the
future.

We adopt the mean-shift algorithm to do localization
on confidence maps. The mean-shift algorithm requires the
object kernels in the consecutive frames to have a certain
overlap. This requirement cannot be met when the motion
between consecutive frames is large. We are going to use
the strategies presented in [24] to deal with this problem.
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